79 research outputs found

    Disease Control With FOLFIRI Plus Ziv-aflibercept (zFOLFIRI) Beyond FOLFIRI Plus Bevacizumab: Case Series in Metastatic Colorectal Cancer (mCRC)

    Get PDF
    Background: The prognosis of patients with metastatic colorectal cancer (mCRC) is poor, especially after failure of initial systemic therapy. The VELOUR study showed modestly prolonged overall survival (OS) with ziv-aflibercept plus 5-fluorouracil, leucovorin, and irinotecan (zFOLFIRI) vs. placebo+FOLFIRI after progression on 5-fluoruracil, leucovorin, and oxaliplatin (FOLFOX) ± bevacizumab. The utility of zFOLFIRI after bevacizumab+FOLFIRI is unknown and not recommended in NCCN guidelines. We explored whether zFOLFIRI may be active beyond progression on bevacizumab+FOLFIRI.Methods: We undertook a retrospective analysis of patients treated in routine clinical practice. A chart review was conducted for a cohort (N = 19) of advanced cancer patients (18 mCRC) who received zFOLFIRI from 2014 to 2018 at Fox Chase Cancer Center (FCCC). Analysis included time on zFOLFIRI, PFS, OS, CEA trends and adverse events. A second mCRC cohort (N = 26) from the Flatiron Health EHR-derived database treated with zFOLFIRI after prior bevacizumab+FOLFOX and bevacizumab+FOLFIRI was analyzed for time-on-treatment and overall survival.Results: Median age of mCRC cohort at zFOLFIRI treatment was 54 (FCCC; N = 18) and 62 (Flatiron Health-cohort; N = 26). Of 18 FCCC mCRC patients, 1 patient had prior bevacizumab+FOLFOX and ramucirumab+irinotecan prior to zFOLFIRI for 8.5 months. Of 17 FCCC mCRC patients with prior bevacizumab+FOLFIRI who received zFOLFIRI, 13 had mutant-KRAS, 3 WT-KRAS, and one BRAF-V600E. The patient with BRAF-V600E mutation achieved stable disease on zFOLFIRI after multiple BRAF-targeted therapies. One patient (WT-KRAS mCRC) remained on zFOLFIRI for 14 months. Of 14 patients with mutated-KRAS, 8 remained on zFOLFIRI for >5 months including 3 for >15 months. The rate-of-change in CEA measures on zFOLFIRI was significantly different (p = 0.004) between rapid progressors and those with PFS>4 months. For mCRC patients treated with zFOLFIRI in the 3rd line or greater (N = 18), median PFS was 7.1 months (214 days) and median OS was 13.8 months (416 days). Median time-on-treatment with zFOLFIRI in the Flatiron Health cohort was 4.4 months, median OS was 7.8 months, and longest time-on-treatment with zFOLFIRI was 266 days.Conclusions: In these small real-world cohorts, clinical meaningful stable disease and overall survival on zFOLFIRI beyond progression on bevacizumab+FOLFIRI was observed in patients with mCRC. Further exploration of this approach is warranted

    Characterization of a genomic signature of pregnancy identified in the breast.

    Get PDF
    The objective of this study was to comprehensively compare the genomic profiles in the breast of parous and nulliparous postmenopausal women to identify genes that permanently change their expression following pregnancy. The study was designed as a two-phase approach. In the discovery phase, we compared breast genomic profiles of 37 parous with 18 nulliparous postmenopausal women. In the validation phase, confirmation of the genomic patterns observed in the discovery phase was sought in an independent set of 30 parous and 22 nulliparous postmenopausal women. RNA was hybridized to Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays containing probes to 54,675 transcripts, scanned and the images analyzed using Affymetrix GCOS software. Surrogate variable analysis, logistic regression, and significance analysis of microarrays were used to identify statistically significant differences in expression of genes. The false discovery rate (FDR) approach was used to control for multiple comparisons. We found that 208 genes (305 probe sets) were differentially expressed between parous and nulliparous women in both discovery and validation phases of the study at an FDR of 10% and with at least a 1.25-fold change. These genes are involved in regulation of transcription, centrosome organization, RNA splicing, cell-cycle control, adhesion, and differentiation. The results provide initial evidence that full-term pregnancy induces long-term genomic changes in the breast. The genomic signature of pregnancy could be used as an intermediate marker to assess potential chemopreventive interventions with hormones mimicking the effects of pregnancy for prevention of breast cancer

    Characterization of a genomic signature of pregnancy identified in the breast.

    Get PDF
    The objective of this study was to comprehensively compare the genomic profiles in the breast of parous and nulliparous postmenopausal women to identify genes that permanently change their expression following pregnancy. The study was designed as a two-phase approach. In the discovery phase, we compared breast genomic profiles of 37 parous with 18 nulliparous postmenopausal women. In the validation phase, confirmation of the genomic patterns observed in the discovery phase was sought in an independent set of 30 parous and 22 nulliparous postmenopausal women. RNA was hybridized to Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays containing probes to 54,675 transcripts, scanned and the images analyzed using Affymetrix GCOS software. Surrogate variable analysis, logistic regression, and significance analysis of microarrays were used to identify statistically significant differences in expression of genes. The false discovery rate (FDR) approach was used to control for multiple comparisons. We found that 208 genes (305 probe sets) were differentially expressed between parous and nulliparous women in both discovery and validation phases of the study at an FDR of 10% and with at least a 1.25-fold change. These genes are involved in regulation of transcription, centrosome organization, RNA splicing, cell-cycle control, adhesion, and differentiation. The results provide initial evidence that full-term pregnancy induces long-term genomic changes in the breast. The genomic signature of pregnancy could be used as an intermediate marker to assess potential chemopreventive interventions with hormones mimicking the effects of pregnancy for prevention of breast cancer

    Clinical Utilization Pattern of Liquid Biopsies (LB) to Detect Actionable Driver Mutations, Guide Treatment Decisions and Monitor Disease Burden During Treatment of 33 Metastatic Colorectal Cancer (mCRC) Patients (pts) at a Fox Chase Cancer Center GI Oncology Subspecialty Clinic

    Get PDF
    Background: Liquid biopsy (LB) captures dynamic genomic alterations (alts) across metastatic colorectal cancer (mCRC) therapy and may complement tissue biopsy (TB). We sought to describe the utility of LB and better understand mCRC biology during therapy.Methods: Thirty-three patients (pts) with mCRC underwent LB. We used permutation-based t-tests to assess associations between alts, and clinical variables and used Kendall's tau to measure correlations.Results: Of 33 pts, 15 were women; 22 had colon, and the rest rectal cancer. Pts received a median of two lines of therapy before LB. Nineteen pts had limited testing on TB (RAS/RAF/TP53/APC), 11 extended NGS, and 3 no TB. Maxpct and alts correlated with CEA (p < 0.001, respectively). In 3/5 pts with serial LB, CEA correlated with maxpct trend, and CT tumor burden. In 6 pts, mutant RAS was seen in LB and not TB; 5/6 had received anti-EGFR therapy prior to LB, suggesting RAS alts developed post-therapy. In two pts RAS-mutated by TB, no RAS alts were detected on LB; these pts had low disease burden on CT at time of LB that also did not reveal APC or TP53 alts. In six patients who were KRAS wt based on TB, post anti-EGFR LB revealed subclonal KRAS mutations, likely a treatment effect. The median number of alts was higher post anti-EGFR LB (n = 12) vs. anti-EGFR naïve LB (n = 22) (9.5 vs. 5.5, p = 0.059) but not statistically significant. More alts were also noted in post anti-EGFR therapy LB vs. KRAS wt anti-EGFR-naïve LB (n = 6) (9.5 vs. 5) among patients with KRAS wild-type tumors, although the difference was not significant (p = 0.182).Conclusions: LB across mCRC therapy detects driver mutations, monitors disease burden, and identifies sub-clonal alts that reflect drug resistance, tumor evolution, and heterogeneity. Interpretation of LB results is impacted by clinical context

    A hierarchical clustering approach to identify repeated enrollments in web survey data.

    No full text
    INTRODUCTION:Online surveys are a valuable tool for social science research, but the perceived anonymity provided by online administration may lead to problematic behaviors from study participants. Particularly, if a study offers incentives, some participants may attempt to enroll multiple times. We propose a method to identify clusters of non-independent enrollments in a web-based study, motivated by an analysis of survey data which tests the effectiveness of an online skin-cancer risk reduction program. METHODS:To identify groups of enrollments, we used a hierarchical clustering algorithm based on the Euclidean distance matrix formed by participant responses to a series of Likert-type eligibility questions. We then systematically identified clusters that are unusual in terms of both size and similarity, by repeatedly simulating datasets from the empirical distribution of responses under the assumption of independent enrollments. By performing the clustering algorithm on the simulated datasets, we determined the distribution of cluster size and similarity under independence, which is then used to identify groups of outliers in the observed data. Next, we assessed 12 other quality indicators, including previously proposed and study-specific measures. We summarized the quality measures by cluster membership, and compared the cluster groupings to those found when using the quality indicators with latent class modeling. RESULTS AND CONCLUSIONS:When we excluded the clustered enrollments and/or lower-quality latent classes from the analysis of study outcomes, the estimates of the intervention effect were larger. This demonstrates how including repeat or low quality participants can introduce bias into a web-based study. As much as is possible, web-based surveys should be designed to verify participant quality. Our method can be used to verify survey quality and identify problematic groups of enrollments when necessary

    Dysregulation of miR-1-3p: An Early Event in Colitis-Associated Dysplasia

    No full text
    Detection of colorectal dysplasia during surveillance colonoscopy remains the best method of determining risk for colitis-associated colorectal cancer (CAC). miRNAs (miRs) show great promise as tissue-specific biomarkers of neoplasia. The goal of this study was to explore the miR expression profile of precancerous dysplastic lesions in the AOM/DSS mouse model and identify early molecular changes associated with CAC. Epithelial cells were laser-microdissected from the colonic mucosa (inflamed versus dysplastic) of mice with AOM/DSS-induced colitis. A miR signature that can distinguish inflamed non-neoplastic mucosa from dysplasia was identified. Bioinformatic analyses led to the discovery of associated miR gene targets and enriched pathways and supported the construction of a network interaction map. miR-1a-3p was one of the miRs with the highest number of predicted targets, including Cdk6. Interestingly, miR-1a-3p and Cdk6 were down- and up-regulated in dysplastic lesions, respectively. Transfection of HCT116 and RKO cells with miR-1a-3p mimics induced apoptosis and cell cycle arrest in G1, suggesting its biological function. A slight reduction in the level of CDK6 transcripts was also observed in cells transfected with miR-1. These data provide novel insight into the early molecular alterations that accompany the development of CAC and identify a miR signature that represents a promising biomarker for the early detection of colitis-associated dysplasia

    Normal IFN-β signaling in the absence of RIPK3.

    No full text
    <p><b>(A)</b> Heatmap showing expression profiles of genes upregulated by IFN-β in WT MEFs. Expression levels in untreated cells were normalized to one (2<sup>0</sup>, yellow), and genes demonstrating 4-fold or more induction at 6 h were considered induced and sorted based on fold-induction at 6 h. Heat bars shown to the left represent relative expression levels on a log<sub>2</sub> scale. <b>(B)</b> Heatmap displaying the behavior of IFN responsive genes in <i>ripk3</i><sup><i>+/+</i></sup> MEFs (column 1–4), <i>ripk3</i><sup><i>+/+</i></sup> MEFs treated with RIPK3 inhibitor (GSK’872 at 5μM, column 5–8), or <i>ripk3</i><sup><i>-/-</i></sup> MEFs (column 9–12) following PR8-ΔNS1 infection. Expression levels in mock infected in <i>ripk3</i><sup><i>+/+</i></sup> MEFs were normalized to one (2<sup>0</sup>, yellow) and genes displaying at least two-fold changes at 18 h were considered IAV regulated. Genes are sorted based on fold-induction at 18 h in <i>ripk3</i><sup><i>+/+</i></sup> MEFs. No genes were found to be dependent on RIPK3. <b>(C)</b> Levels of ISG-encoded proteins were compared in <i>ripk3</i><sup><i>+/+</i></sup> and <i>ripk3</i><sup><i>-/-</i></sup> MEFs by immunoblot analysis following treatment with IFN-β (1000U/mL) for the indicated times.</p
    corecore