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Abstract

The objective of this study was to comprehensively compare the genomic profiles in the breast of parous
and nulliparous postmenopausal women to identify genes that permanently change their expression
following pregnancy.

The study was designed as a two-phase approach. In the discovery phase, we compared breast
genomic profiles of 37 parous with 18 nulliparous postmenopausal women. In the validation phase,
confirmation of the genomic patterns observed in the discovery phase was sought in an independent
set of 30 parous and 22 nulliparous postmenopausal women. RNA was hybridized to Affymetrix
HG_U133 Plus 2.0 oligonucleotide arrays containing probes to 54,675 transcripts, scanned and the
images analyzed using Affymetrix GCOS software. Surrogate variable analysis, logistic regression, and
significance analysis of microarrays were used to identify statistically significant differences in
expression of genes. The false discovery rate (FDR) approach was used to control for multiple
comparisons. We found that 208 genes (305 probe sets) were differentially expressed between parous
and nulliparous women in both discovery and validation phases of the study at an FDR of 10% and
with at least a 1.25-fold change. These genes are involved in regulation of transcription, centrosome
organization, RNA splicing, cell-cycle control, adhesion, and differentiation. The results provide initial
evidence that full-term pregnancy induces long-term genomic changes in the breast. The genomic
signature of pregnancy could be used as an intermediate marker to assess potential chemopreventive
interventions with hormones mimicking the effects of pregnancy for prevention of breast cancer.
Cancer Prev Res; 4(9); 1457-64. ©2011 AACR.

in life. This long-term reduction in risk has been attrib-
uted to the early differentiation of breast tissue, which
otherwise remains undifferentiated and susceptible to
carcinogenic insults (1, 2). Because a first full-term preg-
nancy (FIP) and ensuing breastfeeding are the most
significant physiologic events which transform the breast
from an immature to a fully mature organ, Russo and
colleagues hypothesized that having completed at least 1
FTP would result in a specific, detectable genomic signa-

Introduction

It is well established that a pregnancy completed to
term at a young age reduces the risk of breast cancer later
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ture in the breast (3-6). Only 1 study to date has exam-
ined gene expression in the healthy breast and it was
limited to 64 genes (7).

Identification of a specific genomic fingerprint of
pregnancy would open up a broad set of opportunities
for understanding, and possibly preventing, breast can-
cer. We, therefore, undertook to compare the gene
expression profiles in breast biopsy specimens of healthy
parous and nulliparous volunteers from the general
population, using a genome-wide approach. Because
we were interested in long-term genomic changes asso-
ciated with FTP, the study was focused on postmeno-
pausal women.
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Materials and Methods

Study design

The study was designed to include 2 phases, a discovery
phase (DP) and a validation phase (VP) with a total target
sample size of 120 women (40 parous and 20 nulliparous
in each phase). Recruitment was conducted without inter-
ruption between the 2 phases of the study, using the same
source population. The parity distribution was reviewed
after every group of 10 eligible volunteers. If the nullipar-
ous to parous ratio differed from 1:2, recruitment was
limited to the underrepresented group (usually nullipar-
ous) until the ratio reached the 1:2 target.

Reproducibility study

To assess within- and between-laboratory reproducibility
of gene expression profiles in replicate experiments, we
conducted a substudy prior to the start of the discovery and
validation phases. Breast tissue samples from 4 subjects
were processed, and their gene expression profiles were
analyzed at 3 independent laboratories (Fox Chase Cancer
Center Breast Cancer Research Laboratory of Dr. Jose
Russo; University of Memphis Genomic Laboratory of
Dr. Thomas Sutter; and Fox Chase Cancer Center Genomic
Laboratory) using identical procedures. Data were pre-
processed for each of the 3 laboratories separately using
the methods described in the statistical methods section.
Supplementary Table S1 shows concordance correlation
coefficients (8) and Pearson’s correlation coefficients for
within- and between-laboratory comparisons. The within-
laboratory correlations were very high (Pearson’s and con-
cordance correlation coefficients: >97%) and very similar
to those reported by others (9). The between-laboratory
correlations were also high (Pearson’s and concordance
correlation coefficients: >92%).

Study population and eligibility criteria

Study subjects were recruited at the Sunderby Hospital in
Lulea, Sweden, among women who have had a normal
mammogram within the year prior to enrollment. Post-
menopausal women (defined as lack of menstrual periods
for the previous 12 months) between the ages of 50 and 69
years were approached by a research nurse who explained
the study procedures and provided informed consent
forms. Volunteers who signed informed consent to parti-
cipate in the study and to donate biological samples for
research were scheduled for an interview.

Women who reported a history of any cancer, the use of
any hormonal medications in the 6 months preceding
their visit, prior breast biopsy or breast implants were
excluded. In the discovery phase, it became apparent that
women with fatty breast (transparent mammograms) had
to be excluded because of low RNA yield. As a conse-
quence, women with similarly fatty breast were consid-
ered ineligible for biopsy in the validation phase of the
study. The project was approved by the Regional Ethical
Review Board for Northern Sweden at the University of
Umea, Sweden.

Data and sample collection

The study nurse obtained anthropometrical measures
(height and weight) and administered the study question-
naire to eligible and consented women. The collected data
included a detailed reproductive history, medical history,
first-degree family history of breast cancer, smoking, and
use of oral contraceptives (OC), hormone replacement
therapy (HRT), and other medications.

An experienced intervention radiologist carried out all
breast biopsies with a Bard Monopty (C. R. BARD Inc.)
automated core biopsy instrument (14 Gauge, 10-cm
long, 22-mm penetration depth) through a single small
skin incision after the puncture site had been sterilized
and anaesthetized (Xylocain and Adrenalin solution,
10 mg/mL + 5 pg/mL, Astrazeneca). Several (3-5) random
biopsies were taken from the upper outer quadrant of
1 breast. One biopsy specimen was placed in 70% ethanol
for histopathologic analysis, and the remaining ones
were immediately placed in RNAlater (Ambion) solution.

The study pathologist has reviewed all tissues to make
sure that research biopsies were free of atypia or cancer
using criteria published previously (10). This review
resulted in the exclusion of 1 study subject (see, Supple-
mentary Fig. S1).

Sample and data blinding

Prior to sending the samples and data to laboratory at the
Fox Chase Cancer Center, Philadelphia, all samples were
stripped of any personal identifiers and assigned random
numbers. The link between the subject’s random number
and subject’s identifiable information was accessible only
by the authorized personnel in Sweden. The laboratory
personnel at the Fox Chase Cancer Center were blinded to
samples’ parity status and other personal information.

RNA isolation

Total RNA from the core biopsy samples was isolated
using the Qiagen Allprep RNA/DNA Mini Kit, according to
the manufacturer’s instructions (Qiagen). Total RNA was
eluted in a final volume of 60uL (H,O) and stored at
—80°C until further processing. RNA quantity and quality
were assessed by means of the Agilent 2100 Bioanalyzer
(Agilent Technologies). The amount of total RNA yielded
from the core biopsies ranged from 150 ng to 4 ug depend-
ing on the ratio of stroma to epithelial tissue.

Affymetrix microarray gene analysis

The GeneChip Expression 3’-Amplification Two-Cycle
cDNA Synthesis Kit was used (Affymetrix). Double-
stranded ¢cDNA was synthesized from 100 ng of total
RNA. An in vitro transcription reaction was then done to
produce biotin-labeled cRNA from the cDNA. The cRNA
was fragmented before hybridization. A hybridization
cocktail, which included the fragmented target, was pre-
pared. The hybridization cocktail was then hybridized
to Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays
containing probes to 54,675 transcripts. Standard Affyme-
trix quality control measures (average background, scale
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factors, and percent present calls) were applied to assess the
quality of RNA samples and their subsequent labeling and
hybridization, and chips that did not pass the quality
control criteria were rejected. Additionally, graphical cri-
teria based on probe-level model (PLM) analysis were
applied.

Statistical Methods

Data preprocessing

Raw data from array scans were preprocessed and ana-
lyzed using the R language for statistical computing (11)
and Bioconductor (12), an open source software for bioin-
formatics. The data were preprocessed using the Robust
Multichip Average method implemented in the Biocon-
ductor package affy that includes background correction,
quantile normalization, and summarization of expression
values (13-15). Probes for which the proportion of present
calls was less than 75%, and the difference in the propor-
tion of present calls between parous and nulliparous
women was less than 25% were filtered out. Probes with
low coefficient of variation across samples (below first
quartile) were also removed. These filtering criteria left
19,028 probes for analysis in the discovery phase and
17,750 probes in the validation phase. The overlap
between the 2 sets of probes consisted of 16,002 probes.

Batch adjustment

The microarray experiments in both phases were con-
ducted in 8 batches. To account for potential between-
batch variability, an Empirical Bayes method, implemented
in the COMBAT software, developed by (16) and written in
R, was used. We also corrected for batch effects in the
analysis. Additionally, the quality control duplicate sam-
ples were used to evaluate the batch effects and the effec-
tiveness of batch adjustments.

Differential gene expression

To identify genes differentially expressed between parous
and nulliparous samples, we used the following 3 methods:
significance analysis of microarrays (SAM; method 1;
ref. 17) implemented in the R package samr, surrogate
variable analysis (SVA; method 2; ref. 18, 19) implemented
in the R package sva, and logistic regression analysis (LRA;
method 3).

It has been shown that genetic, environmental, demo-
graphic, and technical factors may have substantial effects
on gene expression (18-21). In addition to measured
variables of interest, there might be sources of signal
because of unknown or unmeasured factors. Leek and
Storey (18) showed that failing to incorporate these sources
of heterogeneity into analysis can result in both spurious
and masked associations. They introduced SVA to over-
come the problems caused by heterogeneity in gene expres-
sion studies and showed that SVA increases the biological
accuracy and reproducibility of gene expression studies.
SVA uses a residual expression matrix, obtained by remov-
ing the effects of the outcome variable (parity status in our

study) on expression, to estimate, via singular value decom-
position of the residual matrix, the signatures of expression
heterogeneity in terms of an orthogonal basis of singular
vectors. Statistical procedures are then used to assess the
significance of these signatures, to identify the subset of
genes driving each signature, and to form surrogate vari-
ables (SV) based on the signatures of the corresponding
subsets of genes in the original expression data. The result-
ing SVs are used to adjust the analysis of the associations
between genes and parity status. For each gene, an unad-
justed P value measuring the significance of that gene as an
independent predictor of the outcome variable is calculated
using logistic regression that adjusts for SVs (method 2).

We also used LRA (method 3) to identify differentially
expressed genes while controlling for the effects of poten-
tially confounding factors that were measured in the study,
such as body mass index (BMI), OC use history, HRT, and
smoking history. To select a subset of the measured char-
acteristics for inclusion in the LRA for adjustment, we
compared them to the significant SVs derived in method
2 using the Spearman’s correlation. The top 5 character-
istics that were most significantly associated with 1 of the
SVs in the discovery phase were selected to be adjusted for
in the LRA. These characteristics were BMI, HRT duration,
breast density, smoking duration, and OC use history.
Other combinations of characteristics significantly asso-
ciated with SVs were also adjusted for in the logistic
regression analyses of parity status. For each gene, an
unadjusted P value measuring the significance of that gene
as an independent predictor of parity status was calculated
using logistic regression adjusting for the selected variables.

The false discovery rate (FDR) approach was used to
control for multiple comparisons (17, 22, 23). SAM
(method 1) computes a 2-sample ¢ test-like statistic for
each gene and uses a permutation procedure to estimate
FDRs which are used to select differentially expressed genes.
For SVA and logistic regression, the QVALUE method (22)
implemented in the R package qvalue was used to adjust P
values for multiple comparisons. Genes with an FDR of less
than 10% and at least a 1.25-fold change between parous
and nulliparous samples were considered statistically sig-
nificant.

Genomic signature of pregnancy in the breast

To derive a genomic predictor of pregnancy in the breast,
we used 5 classification methods: "neareast shrunken cen-
troids" method implemented in the Bioconductor package
pamr (24), support vector machine implemented in the R
library e1071 (25), Classification and Regression Trees
implemented in the R library rpart (26), boosted classifica-
tion trees using the AdaBoost algorithm (27) and random
forestimplemented in the R package randomForest (28). The
approximately 500 most significant genes based on a com-
bined FDR and fold-change criterion were used for these
analyses except for methods that carry out automatic vari-
able selection (e.g., nearest shrunken centroids classifier).
We then used the genomic classifiers identified in the dis-
covery phase to estimate the probability of being parous
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(parity score) for each woman in the validation phase. The
significance of the genomicsignature of parity was evaluated
using the logistic regression model with FTP as the response
variable and the parity score (genomic predictor) along with
potential confounding variables, such as BMI, breast den-
sity, HRT, and OC duration and smoking history, as inde-
pendent predictors. Sensitivity and specificity of each
genomic classifier derived in the discovery phase were eval-
uated in the validation phase. The statisticians were blinded
to the parity status of the women in the validation phase.

Results

Supplementary Fig. S1 provides a workflow of subject
accrual and sample processing. A total of 389 women were
interviewed between September 2008 and May 2009.
Among these, 134 (34%) were excluded based on the
eligibility criteria and 4 (1%) cancelled their interview.
This resulted in 251 women (111 nulliparous and 140
parous) included in the study. Two (0.5%) women were
excluded later in the study when it was found that one of
them had breast cancer and the other one had premeno-
pausal FSH levels. Additionally, 123 women were excluded
after RNA extraction because of RNA degradation, absence
of epithelial structures or an insufficient amount of RNA.
The remaining 126 women (44 nulliparous and 82 parous)
were included in the current study. Nineteen microarray
chips were rejected based on standard Affymetrix quality
control measures (average background, scale factors, and
percent present calls) and based on PLM analysis. This left
107 chips for the differential expression analysis of parous
versus nulliparous women: 55 in the discovery phase (37
parous and 18 nulliparous) and 52 in the validation phase
(30 parous and 22 nulliparous).

Table 1 presents characteristics of parous and nulliparous
women in the discovery and validation phases. There were
no statistically significant differences between parous and
nulliparous women within each study phase or between
women in the discovery and validation phases within each

parity group.

Differential gene expression

Using SVA, we identified 11 significant SVs in the dis-
covery and 9 in the validation phase. These variables poten-
tially have a significant effect on gene expression. Two of the
SVs in both phases accounted for over 10% of the variation
in gene expression (data not shown). Supplementary Tables
S2A and SB show Spearman’s correlation coefficients of the
SVs, including batch. Prior to batch adjustment, the batch
variable was significantly associated with SV1 (p = 0.56, P =
0.01), indicating that batch adjustment was required. It was
no longer significantly associated with any of the SVs after
adjustment using the COMBAT method. BMI, HRT dura-
tion, OC duration, breast density, and smoking history
were significantly associated with the SVs indicating that
these factors might impact gene expression. These variables
were controlled for in LRA (method 3). Some of the SVs
were found to be significantly associated with FTP (e.g., SV1

and SV4 in the discovery phase and SV2, SV4, and SV6 in
the validation phase) and were, therefore, excluded from
SVA analysis (method 2) because our objective was to
identify genes significantly associated with FIP.

Table 2 presents the numbers of statistically significant
genes identified using the 3 statistical methods in the dis-
covery and validation phases at an FDR of 10% and with at
least a 1.25-fold change. The numbers of differentially
expressed genes were much higher in the discovery than
in the validation phase. In both phases combined, depend-
ing on the statistical method used, between 228 and 288
genes were identified as differentially expressed, whereas
218 genes were identified as differentially expressed by all 3
methods. Upregulated genes were found to be more repro-
ducible than the downregulated genes with 62% to 64% of
the significant genes identified in the validation phase being
also significant in the discovery phase, compared with 9% to
13% of downregulated genes. SAM and LRA yielded the
highest proportion of reproducible genes: 45% of genes
significant in the validation phase were also significant in
the discovery phase. Using LRA, 305 probe sets identified as
significantly differentially expressed in the discovery phase
and confirmed in the validation phase. These genes are
reported in Supplementary Table S3.

Genomic signature of pregnancy in the breast

Five genomic predictors of parity were derived in the
discovery phase using the 5 classification methods
described in the Statistical Methods section, and their
significance was evaluated in the validation phase using
logistic regression models that adjusted for clinical vari-
ables. Table 3 shows the estimated coefficients, standard
errors, and P values of the genomic predictors and clinical
variables in the logistic regression models applied to the
validation phase with FTP as dependent variable. The
results indicate that the genomic predictors derived using
the discovery phase data remained significant predictors of
parity in the validation phase with and without adjustment
for other variables (data without adjustment are not
shown). Boosted classification trees and nearest shrunken
centroids consistently carried out better than the other
classification methods. The prediction accuracy of the best
classifiers was estimated in the validation phase to be
between 65% and 75%.

Discussion

To our knowledge, this is the first study that seeks to
comprehensively characterize in an unselected, popula-
tion-based group of healthy volunteers the differences in
gene expression in breast core biopsy specimens between
parous and nulliparous women. Using a discovery valida-
tion approach, 274 upregulated and 31 downregulated
probe sets were identified, which may constitute the core
genomic signature that distinguishes the breast of parous
postmenopausal women from that of nulliparous ones.
Using supervised learning methods, we derived a genomic
signature of parity in breast specimens from the subjects
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Table 2. Significant genes identified by the 3 methods (SAM, SVA, and LRA) using FDR equal to 10% and
fold change greater than 1.25

Methods

Method 1: SAM

Method 2: SVA

Method 3: LRA

Upregulated genes
Significant genes

Intersection

Consistency?®
Downregulated genes

Significant genes

Intersection

Consistency?®
Overall

Significant genes

Intersection
Consistency?®

DP
VP

DP VP

DP
VP

DP VP

DP
VP

DP VP

1749
463
288
1314 (75%) 446 (96%)

1061
246

30

847 (80%) 152 (62%)

2810

709

318

2158 (77%) 597 (85%)

1859
370
228
1366 (73%) 351 (95%)

1058
288

26

844 (80%) 146 (51%)

2917
658
254
2210 (76%) 497 (76%)

1773
428
274
1344 (76%) 411 (96%)

1030
243

31

837 (81%) 154 (63%)

2803
671
305
2181 (78%) 565 (84%)

8Consistency is defined as the proportion of significantly upregulated (or downregulated) genes in the DP (VP) phase that are also
upregulated (or downregulated) in the VP (DP) phase.

included in the discovery phase of the project and estab-
lished that it was a significant independent predictor of
parity in the subjects in the validation phase.

The genes differentially expressed in parous and nullipar-
ous postmenopausal women are presented in Supplemen-
tary Table S3 and involved in regulation of transcription,
centrosome organization, RNA splicing, cell-cycle control,
adhesion, and differentiation. Among upregulated genes,
EZH?2 is a member of polycomb group of proteins involved

in maintaining transcriptional repression of genes. This
gene acts as a tumor suppressor and also functions as a
histone methyltransferase (29). NINL, TRAF5, and SFI1 are
upregulated in parous breast and involved in centrosome
organization and maintaining the microtubule cytoskele-
ton. CDK3, MCTS1, and SYCP2 are involved in cell-cycle
control. PRPF39, LUC7L3, HNRNPA1, HNRNPA2B1, PNN,
PABPN1, RBMX, SNRNP200, PRPF4B, and SFPQ are
involved in RNA splicing. Among the downregulated genes,

Table 3. Significance of the genomic predictors of parity derived in the discovery phase and evaluated in
the validation phase using logistic regression models: estimated coefficients, standard errors, and P
values of parity scores and other clinical covariates in the validation phase

Support vector

Neareast shrunken

Classification tree Tree AdaBoost machine Random forest centroids

B(SE) P B (SE) P B (SE) P B (SE) P B (SE) P
Parity score® 1.799 (0.98) 0.0657 4.726 (1.77) 0.0075 3.611 (1.77) 0.0414 4.122 (1.72) 0.0164 4.289 (1.30) 0.0010
BMI —0.094 (0.13) 0.4640 -0.169 (0.14) 0.2391 -0.155 (0.14) 0.2705 -0.176 (0.14) 0.2242 -0.209 (0.14) 0.1358
Breast density  0.931 (0.72) 0.1931  1.363 (0.81) 0.0923 1.182 (0.76) 0.1201  1.307 (0.79) 0.0959 1.071 (0.80) 0.1816
HRT duration 0.037 (0.07) 0.5914  0.037 (0.07) 0.6063 0.022 (0.07) 0.7496 0.022 (0.07) 0.7591 0.048 (0.08) 0.5246
OC use 1.003 (0.67) 0.1342  0.791 (0.70) 0.2602 0.797 (0.67) 0.2308 0.753 (0.68) 0.2662  0.769 (0.78) 0.3247
Smoking -0.013 (0.02) 0.5331 -0.019 (0.02) 0.3707 -0.013 (0.02) 0.5307 -0.015 (0.02) 0.4637 -0.009 (0.02) 0.7087

duration

significant P values are shown in bold.

@Parity score is a woman's probability of being parous estimated using the genomic predictors of parity derived in the discovery
phase. The significance of the parity scores was evaluated in the validation phase using logistic regression models with FTP as the
response variable and parity score, BMI, breast density, HRT duration, OC use, and smoking history as predictors. Statistically

Cancer Prev Res; 4(9) September 2011

Cancer Prevention Research

Downloaded from cancerpreventionresearch.aacrjournals.org on November 7, 2011
Copyright © 2011 American Association for Cancer Research


http://cancerpreventionresearch.aacrjournals.org/
http://www.aacr.org/

Published OnlineFirst May 27, 2011; DOI:10.1158/1940-6207.CAPR-11-0021

Genomic Signature of Pregnancy

CLDN10, CD36, PDZD2, CLSTN2, LAMA4, PCDH9, and
SORBS1 play role in cell adhesion. It is of interest that
upregulated genes were more prevalent and consistent than
downregulated genes in parous compared with nulliparous
women. This suggests that parity results mainly in over-
expression of genes involved in breast cell differentiation,
organization, and tumor suppression as opposed to down-
regulation of genes that might drive development of cancer.
The details and biological significance of the genes and
pathways differentially expressed in parous versus nullipar-
ous breast will be discussed in a separate paper.

Recently, Asztalos and colleagues (7) examined gene ex-
pression in the normal premenopausal human breast, com-
paring nulliparous, recently parous (0-2 years since
pregnancy), and distantly pregnant (5-10 years after preg-
nancy) age-matched premenopausal women. They analyzed
a customized 64-gene set focusing on the genes involved in
inflammation, extracellular matrix remodeling, angiogenesis,
and estrogen signaling. They reported that 14 of the 64
selected genes were differentially expressed in parous versus
nulliparous breast tissues. Compared with nulliparous breast,
parous breast had significant upregulation of genes related to
inflammation (CCL21, LBP, SAA1/2, and IGKC) and down-
regulation of genes involved in angiogenesis (VEGFA) and
estrogen signaling (ERo, PGR, and ERBB2; ref. 7).

There was no overlap between the differentially-
expressed genes reported here and those reported by Asz-
talos and colleagues (7), an inconsistency possibly related
to differences in menopausal status, study populations, and
laboratory methods. Compared with the hypothesis-driven
report by Asztalos and colleagues (7), our study took a
comprehensive approach and addressed a much broader
list of genes. It also focused on older, postmenopausal
women because the objective was to detect long-term gene
expression changes, that is, gene expression differences
between parous and nulliparous that could be observed
many years after the first FID.

The study’s strengths include the formal 2-phase
approach for analyses of genomic differences between
parous and nulliparous breast, with independent discovery
and validation phases but identical procedures throughout
the study. The comprehensive gene assessment with micro-
array assays is strength of our study. The study focused on
healthy subjects attending a mammography clinic and,
therefore, representative of the general population of Swe-
den, a country where mammography is widely accepted. In
addition to using rigorous research procedures, stringent
criteria were used to control for multiple comparisons and
FDR. The laboratory personnel were blinded to samples
parity status. In addition, all data analysts were blinded to
the parity status of subjects in the validation phase until the
parity status predictions were made and the parity scores
were derived for the subjects in the validation phase. The
consistency of results across 3 different statistical methods
used (SAM, SVA, and LRA) strengthened our confidence in
the study results.

There were some limitations as well. The study popula-
tion was restricted to residents of the northernmost part of

Sweden, and all participants were of Swedish or Finnish
ethnicity. It was felt that these characteristics would be
advantageous to avoid gene expression variations resulting
from differences in ethnicity rather than parity. The study
results, however, should be confirmed in other popula-
tions. In addition, although the vast majority of eligible
women accepted rather enthusiastically to participate in the
study, some women were excluded from the study based on
eligibility criteria (34%) or because of RNA degradation,
absence of epithelial structures, or an insufficient amount
of RNA (32%). Because pregnancy may affect mammo-
graphic density, exclusion of women with low-density
mammograms may have resulted in differential selection
of women at higher, or lower, risk of breast cancer between
parous and nulliparous subjects. This is an issue, though,
not easily addressable because examination of gene expres-
sion cannot be done unless both epithelial structures and
sufficient RNA of good quality are present.

We used a FDR of 10%. However, the true FDR corre-
sponding to our list of significant genes is likely to be much
lower than 10% because only probes that passed the FDR of
10% in both the discovery and the validation phases were
included in the list and those that passed the FDR of 10% in
only 1 of the 2 phases were excluded. Additionally, because
we were studying normal, rather than pathologic tissues,
we a priori expected modest effect sizes (e.g., fold change of
1.25) for genomic changes associated with pregnancy in
healthy postmenopausal women.

In summary, the results provide initial support to the
concept that an FIP induces permanent genomic changes
in the breast, thus reflecting the well-known permanent
phenotypical changes that follow an FTP. Once further
confirmed in additional populations with wider ranges
of age, ethnicity, and other characteristics, a well-character-
ized genomic signature of pregnancy could be used as an
intermediate marker for instance to assess potential che-
mopreventive interventions with hormones mimicking the
effects of pregnancy.
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