289 research outputs found

    Neonatal Cerebral Hypoxia-Ischemia Impairs Plasticity in Rat Visual Cortex

    Get PDF
    Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal cerebral hypoxia–ischemia (HI) on ODP. The rationale extends from observations that neonatal HI results in death of subplate neurons, a transient population known to influence development of inhibition. In rodents subjected to neonatal HI and controls, maps of visual response were derived from optical imaging during the critical period for ODP and changes in the balance of eye-specific response following MD were measured. In controls, MD results in a shift of the ocular dominance index (ODI) from a baseline of 0.15 to −0.10 (p < 0.001). Neonatal HI with moderate cortical injury impairs this shift, ODI = 0.14 (p < 0.01). Plasticity was intact in animals with mild injury and in those exposed to hypoxia alone. Neonatal HI resulted in decreased parvalbumin expression in hemispheres receiving HI compared with hypoxia alone: 23.4 versus 35.0 cells/high-power field (p = 0.01), with no change in other markers of inhibitory or excitatory neurons. Despite abnormal inhibitory neuron phenotype, spontaneous activity of single units and development of orientation selective responses were intact following neonatal HI, while overall visual responses were reduced. Our data suggest that specific plasticity mechanisms are impaired following early brain injury and that the impairment is associated with altered inhibitory neuronal development and cortical activation

    Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety

    Full text link
    5G promises many new vertical service areas beyond simple communication and data transfer. We propose CPCL (cooperative passive coherent location), a distributed MIMO radar service, which can be offered by mobile radio network operators as a service for public user groups. CPCL comes as an inherent part of the radio network and takes advantage of the most important key features proposed for 5G. It extends the well-known idea of passive radar (also known as passive coherent location, PCL) by introducing cooperative principles. These range from cooperative, synchronous radio signaling, and MAC up to radar data fusion on sensor and scenario levels. By using software-defined radio and network paradigms, as well as real-time mobile edge computing facilities intended for 5G, CPCL promises to become a ubiquitous radar service which may be adaptive, reconfigurable, and perhaps cognitive. As CPCL makes double use of radio resources (both in terms of frequency bands and hardware), it can be considered a green technology. Although we introduce the CPCL idea from the viewpoint of vehicle-to-vehicle/infrastructure (V2X) communication, it can definitely also be applied to many other applications in industry, transport, logistics, and for safety and security applications

    Twisting K3 x T^2 Orbifolds

    Get PDF
    We construct a class of geometric twists of Calabi-Yau manifolds of Voisin-Borcea type (K3 x T^2)/Z_2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K3 over T^2 while preserving the Z_2 involution. As an important application, the Voisin-Borcea class contains T^6/(Z_2 x Z_2), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited from T^6, but our work extends these twists to a subset of the blow-up modes. Our work naturally generalizes to arbitrary K3 fibered Calabi-Yau manifolds and to nongeometric constructions.Comment: 57 pages, 4 figures; uses harvmac.tex, amssym.tex; v3: minor corrections, references adde

    Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Get PDF
    A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index) and sensor response are discussed

    High and Low Molecular Weight Fluorescein Isothiocyanate (FITC)–Dextrans to Assess Blood-Brain Barrier Disruption: Technical Considerations

    Get PDF
    This note is to report how histological preparation techniques influence the extravasation pattern of the different molecular sizes of fluorescein isothiocyanate (FITC)–dextrans, typically used as markers for blood-brain barrier leakage. By using appropriate preparation methods, false negative results can be minimized. Wistar rats underwent a 2-h middle cerebral artery occlusion and magnetic resonance imaging. After the last imaging scan, Evans blue and FITC–dextrans of 4, 40, and 70 kDa molecular weight were injected. Different histological preparation methods were used. Sites of blood-brain barrier leakage were analyzed by fluorescence microscopy. Extravasation of Evans blue and high molecular FITC–dextrans (40 and 70 kDa) in the infarcted region could be detected with all preparation methods used. If exposed directly to saline, the signal intensity of these FITC–dextrans decreased. Extravasation of the 4-kDa low molecular weight FITC–dextran could only be detected using freshly frozen tissue sections. Preparations involving paraformaldehyde and sucrose resulted in the 4-kDa FITC–dextran dissolving in these reactants and being washed out, giving the false negative result of no extravasation. FITC–dextrans represent a valuable tool to characterize altered blood-brain barrier permeability in animal models. Diffusion and washout of low molecular weight FITC–dextran can be avoided by direct immobilization through immediate freezing of the tissue. This pitfall needs to be known to avoid the false impression that there was no extravasation of low molecular weight FITC–dextrans

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model

    The 1988-1989 Drought in Illinois: causes, dimensions, and impacts

    Get PDF
    The 1988-1989 drought was one of the most disastrous droughts in the history of the state. Hydrologic, meteorological, and climatological aspects of the 1988-1989 drought in Illinois are addressed. The drought is evaluated in terms of precipitation, streamflow, lakes and reservoirs, and ground-water resources of the state. The meteorological conditions that produced the drought also are addressed. Impacts and problems resulting from the drought are discussed along with various actions taken to ameliorate the problems. Although the primary goal of the study was to quantify the drought, primarily in a physical sense, an important secondary goal was to assess the impacts and the actions employed in order to derive information needed in future planning and handling of Illinois droughts. The report thus ends with a set of recommendations for coping with future droughts.Ope
    • …
    corecore