137 research outputs found

    Word-frequency effect in lexical decision: finding a frequency-based component

    Get PDF
    Journal ArticleSubjects making lexical decisions are reliably faster in responding to high-frequency words than to low-frequency words. This is known as the word frequency effect. We wished to demonstrate that some portion of this effect was due to frequency differences between words rather than to other dimensions correlated with word frequency. Three groups of subjects (10 engineers, 10 nurses, and 10 law students) made lexical decisions about 720 items, half words and half nonwords, from six different categories (engineering, medical, low-frequency nontechnical, medium-frequency nontechnical, and two groups of high-frequency nontechnical). Results of t w o analyses of variance revealed a crossover interaction such that engineers were faster in responding to engineering words than to medical words, whereas nurses were faster in responding to medical words than to engineering words. The engineering and medical words were equally long and equally infrequent by standard word counts. We take this as support for a frequency-based component in the word frequency effect. The practical implications of this research for estimating the readability of technical text are discussed

    Optimal Design Of English Auctions With Discrete Bid Levels

    No full text
    This paper considers a form of ascending price English auction widely used in both live and online auctions. This discrete bid auction requires that the bidders submit bids at predetermined discrete bid levels, and thus, there exists a minimal increment by which the bid price may be raised. In contrast, the academic literature of optimal auction design deals almost solely with continuous bid auctions. As a result, there is little practical guidance as to how an auctioneer, seeking to maximize its revenue, should determine the number and value of these discrete bid levels, and it is this omission that is addressed here. To this end, a model of a discrete bid auction from the literature is considered, and an expression for the expected revenue of this auction is derived. This expression is used to determine both numerical and analytical solutions for the optimal bid levels, and uniform and exponential bidder’s valuation distributions are compared. Finally, the limiting case where the number of discrete bid levels is large is considered. An analytical expression for the distribution of the optimal discrete bid levels is derived, and an intuitive understanding of how this distribution maximizes the revenue of the auction is developed

    Information Variability Impacts in Auctions

    Get PDF
    A wide variety of auction models exhibit close relationships between the winner's expected profit and the expected difference between the highest and second-highest order statistics of bidders' information, and between expected revenue and the second-highest order statistic of bidders' expected asset values. We use stochastic orderings to see when greater environmental variability of bidders' information enhances expected profit and expected revenue

    The complex heavy-quark potential in an anisotropic quark-gluon plasma — Statics and dynamics

    Get PDF
    We generalize a complex heavy-quark potential model from an isotropic QCD plasma to an anisotropic one by replacing the Debye mass mD with an anisotropic screening mass depending on the quark pair alignment with respect to the direction of anisotropy. Such an angle-dependent mass is determined by matching the perturbative contributions in the potential model to the exact result obtained in the Hard-Thermal-Loop resummed perturbation theory. An advantage of the resulting potential model is that its angular dependence can be effectively described by using a set of angle-averaged screening masses as proposed in our previous work. Consequently, one could solve a one-dimensional Schrödinger equation with a potential model built by changing the anisotropic screening masses into the corresponding angle-averaged ones, and reproduce the full three-dimensional results for the binding energies and decay widths of low-lying quarkonium bound states to very high accuracy. Finally, turning to dynamics, we demonstrate that the one-dimensional effective potential can accurately describe the time evolution of the vacuum overlaps obtained using the full three-dimensional anisotropic potential. This includes the splitting of different p-wave polarizations.publishedVersio

    Competition Between Auctions

    Get PDF
    Even though auctions are capturing an increasing share of commerce, they are typically treated in the theoretical economics literature as isolated. That is, an auction is typically treated as a single seller facing multiple buyers or as a single buyer facing multiple sellers. In this paper, we review the state of the art of competition between auctions. We consider three different types of competition: competition between auctions, competition between formats, and competition between auctioneers vying for auction traffic. We highlight the newest experimental, statistical and analytical methods in the analysis of competition between auctions.auctions, bidding, competition, auction formats, auction houses

    The effective complex heavy-quark potential in an anisotropic quark-gluon plasma

    Get PDF
    We introduce a method for reducing anisotropic heavy-quark potentials to isotropic potentials by using an effective screening mass that depends on the quantum numbers l and m of a given state. We demonstrate that, using the resulting 1D effective potential model, one can solve a 1D Schrödinger equation and reproduce the full 3D results for the energies and binding energies of low-lying heavy-quarkonium bound states to relatively high accuracy. This includes the splitting of different p-wave polarizations. The resulting 1D effective model provides a way to include momentum anisotropy effects in open quantum system simulations of heavy-quarkonium dynamics in the quark-gluon plasma

    Structuring Collaboration Scripts: Optimizing online group work on classroom dilemmas in teacher education

    Get PDF
    The optimal structure in collaboration scripts for serious games has appeared to be a key success factor. In this study we compare a ‘high- structured’ and ‘low-structured’ version of a mastership game where teachers-in-training discuss solutions on classroom dilemmas. We collected data on the differences in learning effects and student appreciation. The most interesting result shows that reports delivered by students that played the low-structured version received significantly higher teacher grades when compared to the high-structured version

    Computing optimal coalition structures in polynomial time

    Get PDF
    The optimal coalition structure determination problem is in general computationally hard. In this article, we identify some problem instances for which the space of possible coalition structures has a certain form and constructively prove that the problem is polynomial time solvable. Specifically, we consider games with an ordering over the players and introduce a distance metric for measuring the distance between any two structures. In terms of this metric, we define the property of monotonicity, meaning that coalition structures closer to the optimal, as measured by the metric, have higher value than those further away. Similarly, quasi-monotonicity means that part of the space of coalition structures is monotonic, while part of it is non-monotonic. (Quasi)-monotonicity is a property that can be satisfied by coalition games in characteristic function form and also those in partition function form. For a setting with a monotonic value function and a known player ordering, we prove that the optimal coalition structure determination problem is polynomial time solvable and devise such an algorithm using a greedy approach. We extend this algorithm to quasi-monotonic value functions and demonstrate how its time complexity improves from exponential to polynomial as the degree of monotonicity of the value function increases. We go further and consider a setting in which the value function is monotonic and an ordering over the players is known to exist but ordering itself is unknown. For this setting too, we prove that the coalition structure determination problem is polynomial time solvable and devise such an algorithm
    corecore