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Abstract. We introduce a method for reducing anisotropic heavy-quark poten-
tials to isotropic potentials by using an effective screening mass that depends on
the quantum numbers l and m of a given state. We demonstrate that, using the
resulting 1D effective potential model, one can solve a 1D Schrödinger equa-
tion and reproduce the full 3D results for the energies and binding energies of
low-lying heavy-quarkonium bound states to relatively high accuracy. This in-
cludes the splitting of different p-wave polarizations. The resulting 1D effective
model provides a way to include momentum anisotropy effects in open quantum
system simulations of heavy-quarkonium dynamics in the quark-gluon plasma.

1 Introduction

The survival probability of the heavy quarkonium states, such as J/Ψ and Υ has been widely
used as a sensitive probe to study the quark-gluon plasma (QGP) formed in relativistic heavy-
ion experiments at RHIC and LHC [1, 2]. Due to non-relativistic nature of heavy quarkonium
states, one can obtain their in-medium properties, such as masses and decay rates by solving
a Schrödinger equation with a complex heavy-quark (HQ) potential. The real part of the HQ
potential provides the binding energy, whereas the imaginary part provides information about
the decay of a quarkonium state via wave function decoherence [3–9]. One can obtain the HQ
potential at short distances by making use of hard-thermal-loop (HTL) resummed perturba-
tion theory in the weak-coupling limit. Recently, several attempts have been made to develop
complex-valued potential models to understand the in-medium properties of quarkonia quan-
titatively [10–19]. During the last decade, many prior works have treated the QGP as an
anisotropic medium by incorporating momentum-space anisotropies generated by longitudi-
nal expansion into the underlying parton distribution functions. To make a phenomenological
study of this effect in heavy-ion collisions, we consider the following spheroidal distribution
function ansatz in the local rest frame (LRF) of the QGP [20]

f LRF
aniso(k) ≡ fiso

(
1
λ

√
k2 + ξ(k · n)2

)
. (1)
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This form takes into account the rapid longitudinal expansion of the QGP at early times
and allows for explicit pressure anisotropies in the LRF [21, 22]. Here, fiso is an arbitrary
isotropic distribution function, λ is a temperature-like scale, which becomes the temperature
T of the system in the thermal equilibrium limit. The degree of momentum-space anisotropy
(ξ) in the range −1 < ξ < ∞ is given by

ξ =
1
2
⟨k2
⊥⟩

⟨k2
z ⟩
− 1 , (2)

where kz ≡ k · n and k⊥ ≡ k − n (k · n) correspond to the particle momenta along and
perpendicular to the direction of anisotropy (n), respectively. Many prior works have stud-
ied heavy quarkonium physics by considering the momentum-space anisotropy inside the
QGP [10, 13, 16–18, 20, 21, 23]. Here we focus on how to efficiently take momentum-
space anisotropy into account in a one-dimensional effective theory and compare the one-
and three-dimensional results for static and dynamical quantities numerically.

In this proceedings contribution, we summarize our previous works where the real part
of a 3D anisotropic HQ potential has been reduced to 1D effective potential [24, 25]. This
work is organized as follow: In sec. 2 we describe the isotropic complex HQ potential model,
in sec. 3 we obtain the anisotropic complex HQ potential model, in sec. 4 we obtain our
effective complex HQ potential model, in sec. 5 we present our static results, and in sec. 6
we present our dynamic results.

2 Isotropic Potential Model
The Fourier transform of the real time gluon propagator in the static limit gives the complex
HQ potential in an isotropic QGP [26].

V(λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1)D00(p0 = 0,p, λ) . (3)

2.1 Perturbative Contribution

The perturbative contribution to the complex HQ potential can be obtained from HTL re-
summed perturbation theory. The real and imaginary parts of this perturbative contribution
are given by

Re Vpt(λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1)
 1

p2 + m2
D

−
1
p2

 ≡ αmD(I1(r̂) − 1) , (4)

Im Vpt(λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1)
−πλm2

D

p(p2 + m2
D)2
≡ αλ(I2(r̂) − 1) , (5)

where the integrals I1(r̂) and I2(r̂) are

I1(r̂) = 4π
∫

d3p̂
(2π)3 eip̂·r̂ 1

p̂2( p̂2 + 1)
=

1 − e−r̂

r̂
,

I2(r̂) = 4π2
∫

d3p̂
(2π)3 eip̂·r̂ 1

p̂( p̂2 + 1)2 = ϕ2(r̂) , (6)

with

ϕn(r̂) = 2
∫ ∞

0
dz

sin(zr̂)
zr̂

z
(z2 + 1)n . (7)

Here, p̂ ≡ p/mD, r̂ ≡ rmD, and the strong coupling constant α = g2CF/(4π). We also
subtracted a term 1/p2 in eq. (4) to make the r-independent part finite.
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2.2 Non-perturbative Contribution

The gluon propagator also contains a non-perturbative string contribution which arises from
a dimension two gluon condensate. Its Fourier transform gives us the non-perturbative con-
tributions [26]

Re Vnpt(λ, r) = −g2CFm2
G

∫
d3p

(2π)3 (eip·r − 1)
p2 + 5m2

D

(p2 + m2
D)3
≡ −

2σ
mD

(I3(r̂) − 1) , (8)

Im Vnpt(λ, r) = −g2CFm2
G

∫
d3p

(2π)3 (eip·r − 1)
4πλm2

D(p2 − 2m2
D)

p(p2 + m2
D)4

≡
4σλ
m2

D

(I4(r̂) − 1) , (9)

where σ = αm2
G/2 and m2

G is a dimensionful constant. The integrals appearing above are

I3(r̂) = 4π
∫

d3p̂
(2π)3 eip̂·r̂ p̂2 + 5

( p̂2 + 1)3 = (1 + r̂/2)e−r̂ ,

I4(r̂) = 8π2
∫

d3p̂
(2π)3 eip̂·r̂ 2 − p̂2

p̂( p̂2 + 1)4 = −2ϕ3(r̂) + 6ϕ4(r̂) . (10)

2.3 Total Isotropic potential

The sum of the perturbative and non-perturbative contributions give us the total complex
isotropic HQ potential

Re VIso(r) = Re Vpt(λ, r) + Re Vnpt(λ, r)

= αmD

(
1 − e−rmD

rmD

)
− αmD −

σ

mD
(2 + rmD) e−rmD +

2σ
mD
−
α

r
, (11)

Im VIso(r) = Im Vpt(λ, r) + Im Vnpt(λ, r)

= αλϕ2 (rmD) − αλ −
8σλ
m2

D

ϕ3(rmD) +
24σλ
m2

D

ϕ4(rmD) −
4σλ
m2

D

. (12)

We include a relativistic correction, −0.8σ/(m2
b/cr), in the potential model while solving the

Schrödinger equation for charmonia and bottomonia [10], where the masses of the charm and
bottom quarks are taken to be mc = 1.3 GeV and mb = 4.7 GeV, respectively.

3 3D Anisotropic Potential Model

The real and imaginary part of the 3D anisotropic potential model as derived in our previous
work [25] are

Re VAniso(r, θ, ξ) = αmA
D

1 − e−rmR
D

rmR
D

 − αmA
D −

σ

mA
D

(
2 + rmR

D

)
e−rmR

D +
2σ
mA

D

−
α

r
, (13)

Im VAniso(r, θ, ξ) = αλAϕ2

(
rmI

D

)
− αλA −

8σλA(
mA

D

)2 ϕ3

(
rmI

D

)
+

24σλA(
mA

D

)2 ϕ4

(
rmI

D

)
−

4σλA(
mA

D

)2 , (14)

where,

mA
D = mD

(
1 −

ξ

6

)
, λA = λ

(
1 −

ξ

6

)
, (15)
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and

mR
D = mD

[
1 + ξ (0.108 cos 2θ − 0.131)

]
, mI

D = mD

[
1 + ξ (0.026 cos 2θ − 0.158)

]
. (16)

Eq(15) assures a correct asymptotic behavior of the potential. Eq. (16) was obtained by
matching effective and exact result at r̂ = 1 as described in [25].

4 1D Effective Potential Model
Due to the angular dependence in the 3D anisotropic potential model, solving a 3D
Schrödinger equation to find various in-medium properties of the quarkonium states is rather
time consuming and much more complicated. One possible solution to this problem is to
introduce an angle-averaged effective screening massMlm(λ, ξ) [24]

M
R,I
lm (λ, ξ) = ⟨Ylm(θ, ϕ)|mR,I

D (λ, ξ, θ)|Ylm(θ, ϕ)⟩ ,

=

∫ 1

−1
d cos θ

∫ 2π

0
dϕYlm(θ, ϕ)mR,I

D (λ, ξ, θ)Y∗lm(θ, ϕ) , (17)

and where Ylm(θ, ϕ) refers to the spherical harmonics with azimuthal quantum number l and
magnetic quantum number m. The main advantage of using an angle-averaged effective
screening massMlm(λ, ξ) is to utilize the spherical symmetry in the potential model which
significantly simplifies the numerics.

The real and imaginary part of the 1D effective potential model as derived in our previuos
work [25] are

Re VEff(r, ξ) = αmA
D

1 − e−rMR
lm

rMR
lm

 − αmA
D −

σ

mA
D

(
2 + rMR

lm

)
e−rMR

lm +
2σ
mA

D

−
α

r
, (18)

Im VEff(r, ξ) = αλAϕ2

(
rMI

lm

)
− αλA −

8σλA(
mA

D

)2 ϕ3

(
rMI

lm

)
+

24σλA(
mA

D

)2 ϕ4

(
rMI

lm

)
−

4σλA(
mA

D

)2 , (19)

where,

Klm =
2l(l + 1) − 2m2 − 1

4l(l + 1) − 3
(20)

and

MR
lm = mD

[
1 + ξ (0.216Klm − 0.239)

]
, MI

lm = mD

[
1 + ξ (0.052Klm − 0.184)

]
. (21)

The l and m values of various quarkonium states are given in Table 1.

5 Static Results
For the static solutions, we used a previously developed 3D eigensolver called quan-
tumFDTD [27, 28]. Using this code, we compared results obtained with the 1D effec-
tive potential and the full 3D anisotropic potential. In Table 2, we list the exact results
of the eigenenergies (Re E), decay widths (Im E) and the binding energies (Ebind) with the
anisotropy parameter ξ = 1 for Υ(1S ) and J/Ψ.

In the numerical evaluations, we took α = 0.272 and σ = 0.215 GeV2. For the Υ(1S )
state, we used a lattice size of N3 = 5123 with a lattice spacing of a = 0.020 GeV−1 ≈

0.004 fm giving a lattice size of L = Na ≈ 2.05 fm. For the J/ψ, we used a lattice size of
N3 = 2563 with a lattice spacing of a = 0.085 GeV−1 ≈ 0.017 fm giving a lattice size of
L = Na ≈ 4.35 fm.
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Table 1. l and m values of various quarkonium states.

Υ(1S ) ReE δReE Ebind ImE δImE
To 182.869 0.611 −662.669 11.838 0.027

1.1To 174.957 0.593 −570.612 14.830 0.031
1.2To 166.556 0.573 −493.689 18.190 0.034
1.4To 148.439 0.531 −372.540 26.004 0.039

J/Ψ ReE δReE Ebind ImE δImE
To 439.336 1.230 −406.202 41.980 0.107

1.1To 422.207 1.163 −323.362 51.467 0.105
1.2To 404.597 1.095 −255.648 61.698 0.098
1.3To 386.604 1.028 −199.583 72.564 0.086
1.4To 368.301 0.963 −152.678 83.958 0.070

Table 2. The exact 3D results of the complex eigenenergies (E) and binding energies (Ebind) for
different quarkonium states at various temperatures with ξ = 1. δE are the differences in results

obtained using 1D effective and 3D anisotropic potentials. Here To is 192 MeV and all results are in
MeV [25].

6 Dynamical Results

In order to solve the 3D Schrödinger equation in real time, we used a split-step pseudospectral
method [29] with temporal step size ∆t = 0.001 fm/c. Once again we compare results ob-
tained with the full 3D anisotropic potential to those obtained with the 1D effective potential.
We evolve the wave function from τ = 0 fm/c to τ = 0.25 fm/c in the vacuum (T = 0). Start-
ing at τ = τ0 = 0.25 fm/c, we consider a fixed anisotropy parameter ξ = 1 and boost-invariant
Bjorken evolution for the hard scale

λ(τ) = λ0

(
τ0

τ

)1/3
. (22)

Here we take the initial hard scale to be λ0 = 630 MeV. Further details of the numerical
method can be found in [25].
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Figure 1. The top row shows the overlaps of Υ(1S ), Υ(2S ), and Υ(3S ) resulting from real-time solution
of the Schrödinger equation. Here we initialized the wave function as pure Υ(1S ) eigenstate. The
bottom row shows the time evolution of the bottomonium p-wave overlaps resulting from initialization
with different p-wave polarizations [25].

6.1 Bottomonium

For bottomonium states we take the box size to be L = 2.56 fm, mb = 4.7 GeV, and use
N = 128 lattice points in each direction. The top row of fig. 1 shows the time evolution
of overlaps of the Υ(1S ), Υ(2S ), and Υ(3S ) using a pure Υ(1S ) eigenstate as the initial
condition. Whereas the bottom row shows the time evolution of the bottomonium p-wave
overlaps resulting from initialization with different p-wave polarizations. Results with pure
Υ(2S ) and Υ(3S ) eigenstates and a Gaussian as the initial condition can be found in Ref. [25].

6.2 Charmonium

For charmonium states we take L = 5.12 fm, mc = 1.3 GeV, and use N = 128 lattice points
in each direction. The top row of the fig. 2 shows the time evolution of overlaps of the J/ψ,
ψ(2S ), and ψ(3S ) by using pure J/ψ eigenstate as the initial condition. Whereas the bottom
row shows the time evolution of the charmonium p-wave overlaps resulting from initialization
with different p-wave polarizations. The results with pure ψ(2S ) and ψ(3S ) eigenstate and
Gaussian as the initial condition can be found in Ref. [25].
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Figure 2. The top row shows the overlaps of J/ψ, ψ(2S ), and ψ(3S ) resulting from real-time solution
of the Schrödinger equation. Here we initialized the wave function as pure J/ψ eigenstate. The bottom
row shows the time evolution of the charmonium p-wave overlaps resulting from initialization with
different p-wave polarizations [25].

7 Conclusions

We have reduced anisotropic heavy-quark potentials to isotropic ones by introducing an ef-
fective screening mass that depends on the quantum numbers l and m of a given state. We
demonstrated that, using the resulting 1D effective potential model, one can reproduce the
full 3D results for the energies and binding energies of low-lying heavy-quarkonium bound
states to relatively high accuracy. This finding is important because it can be used to incorpo-
rate anisotropy effects into one-dimensional real-time Schrödinger equations which underpin
phenomenological calculations of bottomonium suppression in open quantum systems ap-
proaches.
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