257 research outputs found

    Platelets in defense against bacterial pathogens

    Get PDF
    Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology

    Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Get PDF
    Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins

    Proteomic and Membrane Lipid Correlates of Reduced Host Defense Peptide

    Get PDF
    We previously described a transposon mutant in Staphylococcus aureus strain SH1000 that exhibited reduced susceptibility to cationic thrombin-induced platelet microbicidal proteins (tPMPs). The transposon insertion site was mapped to the gene snoD, the staphylococcal nuo orthologue. Hence, further studies have been performed to understand how this mutation impacts susceptibility to tPMP, by comparing proteomics profiling and membrane lipid analyses of the parent vs. mutant strains. Surprisingly, the mutant showed differential regulation of only a single protein when cultivated aerobically (FadB), and only a small number of proteins under anaerobic growth conditions (AdhE, DapE, Ddh, Ald1, IlvA1, AgrA, Rot, SA2366, and SA2367). Corresponding to FadB impact on lipid remodeling, membrane fatty acid analyses showed that the snoD mutant contained more short chain anteiso-, but fewer short chain iso-branched chain fatty acids under both aerobic and anaerobic conditions vs. the parental strain. Based upon these proteomic and membrane compositional data, a hypothetical "network" model was developed to explain the impact of the snoD mutation upon tPMP susceptibility

    Transposon Disruption of the Complex I NADH Oxidoreductase Gene (snoD) in Staphylococcus aureus Is Associated with Reduced Susceptibility to the Microbicidal Activity of Thrombin-Induced Platelet Microbicidal Protein 1

    Get PDF
    The cationic molecule thrombin-induced platelet microbicidal protein 1 (tPMP-1) exerts potent activity against Staphylococcus aureus. We previously reported that a Tn551 S. aureus transposon mutant, ISP479R, and two bacteriophage back-transductants, TxA and TxB, exhibit reduced in vitro susceptibility to tPMP-1 (tPMP-1(r)) compared to the parental strain, ISP479C (V. Dhawan, M. R. Yeaman, A. L. Cheung, E. Kim, P. M. Sullam, and A. S. Bayer, Infect. Immun. 65:3293-3299, 1997). In the current study, the genetic basis for tPMP-1(r) in these mutants was identified. GenBank homology searches using sequence corresponding to chromosomal DNA flanking Tn551 mutant strains showed that the fourth gene in the staphylococcal mnh operon (mnhABCDEFG) was insertionally inactivated. This operon was previously reported to encode a Na(+)/H(+) antiporter involved in pH tolerance and halotolerance. However, the capacity of ISP479R to grow at pH extremes and in high NaCl concentrations (1 to 3 M), coupled with its loss of transmembrane potential (DeltaPsi) during postexponential growth, suggested that the mnh gene products are not functioning as a secondary (i.e., passive) Na(+)/H(+) antiporter. Moreover, we identified protein homologies between mnhD and the nuo genes of Escherichia coli that encode components of a complex I NADH:ubiquinone oxidoreductase. Consistent with these data, exposures of tPMP-1-susceptible (tPMP-1(s)) parental strains (both clinical and laboratory derived) with either CCCP (a proton ionophore which collapses the proton motive force) or pieracidin A (a specific complex I enzyme inhibitor) significantly reduced tPMP-induced killing to levels seen in the tPMP-1(r) mutants. To reflect the energization of the gene products encoded by the mnh operon, we have renamed the locus sno (S. aureus nuo orthologue). These novel findings indicate that disruption of a complex I enzyme locus can confer reduced in vitro susceptibility to tPMP-1 in S. aureus

    Structural correlates of antimicrobial efficacy in IL-8 and related human kinocidins

    Get PDF
    AbstractChemokines are small (8–12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure–activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved γ-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 γ-core (IL-8γ) and α-helical (IL-8α) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8α motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing γ-core motifs and microbicidal helices associated with antimicrobial activity

    Early agr activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections

    Get PDF
    Objectives Persistent MRSA infections are especially relevant to endovascular infections and correlate with suboptimal outcomes. However, the virulence signatures of Staphylococcus aureus that drive such persistence outcomes are not well defined. In the current study, we investigated correlations between accessory gene regulator (agr) activation and the outcome of vancomycin treatment in an experimental model of infective endocarditis (IE) due to MRSA strains with different agr and clonal complex (CC) types. Methods Twelve isolates with the four most common MRSA CC and agr types (CC5-agr II, CC8-agr I, CC30-agr III and CC45-agr I) were evaluated for heterogeneous vancomycin-intermediate S. aureus (hVISA), agr function, agrA and RNAIII transcription, agr locus sequences, virulence and response to vancomycin in the IE model. Results Early agr RNAIII activation (beginning at 2 h of growth) in parallel with strong δ-haemolysin production correlated with persistent outcomes in the IE model following vancomycin therapy. Importantly, such treatment failures occurred across the range of CC/agr types studied. In addition, these MRSA strains: (i) were vancomycin susceptible in vitro; (ii) were not hVISA or vancomycin tolerant; and (iii) did not evolve hVISA phenotypes or perturbed δ-haemolysin activity in vivo following vancomycin therapy. Moreover, agr locus sequence analyses revealed no common point mutations that correlated with either temporal RNAIII transcription or vancomycin treatment outcomes, encompassing different CC and agr types. Conclusions These data suggest that temporal agr RNAIII activation and agr functional profiles may be useful biomarkers to predict the in vivo persistence of endovascular MRSA infections despite vancomycin therap
    corecore