334 research outputs found

    A left-handed simplicial action for euclidean general relativity

    Get PDF
    An action for simplicial euclidean general relativity involving only left-handed fields is presented. The simplicial theory is shown to converge to continuum general relativity in the Plebanski formulation as the simplicial complex is refined. This contrasts with the Regge model for which Miller and Brewin have shown that the full field equations are much more restrictive than Einstein's in the continuum limit. The action and field equations of the proposed model are also significantly simpler then those of the Regge model when written directly in terms of their fundamental variables. An entirely analogous hypercubic lattice theory, which approximates Plebanski's form of general relativity is also presented.Comment: Version 3. Adds current home address + slight corrections to references of version 2. Version 2 = substantially clarified form of version 1. 29 pages, 4 figures, Latex, uses psfig.sty to insert postscript figures. psfig.sty included in mailing, also available from this archiv

    Dont Mess with Texas: Getting the Lone Star State to Net-Zero by 2050

    Get PDF
    The world is decarbonizing. Many countries, companies, and financial institutions have committed to cutting their emissions. Decarbonization commitments have been issued by: 136 countries including Canada, China, and the UK, at least 16 U.S. states including New York, Louisiana, and Virginia, and a third of the largest 2,000 publicly traded companies in the world, including Apple, Amazon, and Walmart, and numerous Texas companies like ExxonMobil, American and Southwest Airlines, Baker Hughes, and AT&T.1–9 These decarbonizing countries, states, cities, and companies are Texas's energy customers. If Texas ignores the challenge to decarbonize its economy, it may eventually face the more difficult challenge of selling carbon-intensive products to customers around the world who do not want them. We are already seeing this scenario beginning to play out with France canceling a liquified natural gas deal from Texas gas producers and both U.S. and international automakers announcing shifts to electric vehicles. Proactive net-zero emissions strategies might allow Texas to maintain energy leadership and grow the economy within a rapidly decarbonizing global marketplace.Thankfully, Texas is uniquely positioned to lead the world in the transition to a carbon-neutral energy economy. With the second highest Gross State Product in the US, the Texas economy is on par with countries like Canada, Italy, or Brazil. Thus, Texas's decisions have global implications. Texas also has an abundant resource of low-carbon energy sources to harness and a world-class workforce with technical capabilities to implement solutions at a large-scale quickly and safely. Texas has a promising opportunity to lead the world towards a better energy system in a way that provides significant economic benefits to the state by leveraging our renewable resources, energy industry expertise, and strong manufacturing and export markets for clean electricity, fuels, and products. The world is moving, with or without Texas, but it is likely to move faster--and Texas will be more prosperous--if Texans lead the way.There are many ways to fully decarbonize the Texas economy across all sectors by 2050. In this analysis, we present a Business as Usual (BAU) scenario and four possible pathways to Texas achieving state-wide net-zero emissions by 2050. Figure ES-1 provides a visual comparison of scenario conditions

    ``Sum over Surfaces'' form of Loop Quantum Gravity

    Get PDF
    We derive a spacetime formulation of quantum general relativity from (hamiltonian) loop quantum gravity. In particular, we study the quantum propagator that evolves the 3-geometry in proper time. We show that the perturbation expansion of this operator is finite and computable order by order. By giving a graphical representation a' la Feynman of this expansion, we find that the theory can be expressed as a sum over topologically inequivalent (branched, colored) 2d surfaces in 4d. The contribution of one surface to the sum is given by the product of one factor per branching point of the surface. Therefore branching points play the role of elementary vertices of the theory. Their value is determined by the matrix elements of the hamiltonian constraint, which are known. The formulation we obtain can be viewed as a continuum version of Reisenberger's simplicial quantum gravity. Also, it has the same structure as the Ooguri-Crane-Yetter 4d topological field theory, with a few key differences that illuminate the relation between quantum gravity and TQFT. Finally, we suggests that certain new terms should be added to the hamiltonian constraint in order to implement a ``crossing'' symmetry related to 4d diffeomorphism invariance.Comment: Seriously revised version. LaTeX, with revtex and epsfi

    High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    Get PDF
    An improved single-cell photonic band-gap (PBG) structure with an inner row of elliptical rods (PBG-E) was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz), achieving a gradient of 128  MV/m at a breakdown probability of 3.6×10-3 per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.United States. Dept. of Energy. High Energy Physics Division (Contract DEFG02-91ER40648

    Communication breakdown : dissecting the COM interfaces between the subunits of nonribosomal peptide synthetases

    Get PDF
    Nonribosomal peptides are a structurally diverse and bioactive class of natural products constructed by multidomain enzymatic assembly lines known as nonribosomal peptide synthetases (NRPSs). While the core catalytic domains and even entire protein subunits of NRPSs have been structurally elucidated, little biophysical work has been reported on the docking domains that promote interactions—and thus transfer of biosynthetic intermediates—between subunits. In the present study, we closely examine the COM domains that mediate COMmunication between donor epimerization (E) and acceptor condensation (C) domains found at the termini of NRPS subunits. Through a combination of X-ray crystallography, circular dichroism spectroscopy, solution- and solid-state NMR spectroscopy, and molecular dynamics (MD) simulations, we provide direct evidence for an intrinsically disordered donor COM region that folds into a dynamic helical motif upon binding to a suitable acceptor. Furthermore, our NMR titration and carbene footprinting experiments illuminate the residues involved at the COM interaction interface, and our MD simulations demonstrate folding consistent with experimental data. Although our results lend credence to the previously proposed helix-hand mode of interaction, they also underscore the importance of viewing COM interfaces as dynamic ensembles rather than single rigid structures and suggest that engineering experiments should account for the interactions which transiently guide folding in addition to those which stabilize the final complex. Through activity assays and affinity measurements, we further substantiate the role of the donor COM region in binding the acceptor C domain and implicate this short motif as readily transposable for noncognate domain crosstalk. Finally, our bioinformatics analyses show that COM domains are widespread in natural product pathways and function at interfaces beyond the canonical type described above, setting a high priority for thorough characterization of these docking domains. Our findings lay the groundwork for future attempts to rationally engineer NRPS domain–domain interactions with the ultimate goal of generating bioactive molecules

    Achieving a quantum smart workforce

    Full text link
    Interest in building dedicated Quantum Information Science and Engineering (QISE) education programs has greatly expanded in recent years. These programs are inherently convergent, complex, often resource intensive and likely require collaboration with a broad variety of stakeholders. In order to address this combination of challenges, we have captured ideas from many members in the community. This manuscript not only addresses policy makers and funding agencies (both public and private and from the regional to the international level) but also contains needs identified by industry leaders and discusses the difficulties inherent in creating an inclusive QISE curriculum. We report on the status of eighteen post-secondary education programs in QISE and provide guidance for building new programs. Lastly, we encourage the development of a comprehensive strategic plan for quantum education and workforce development as a means to make the most of the ongoing substantial investments being made in QISE.Comment: 18 pages, 2 figures, 1 tabl

    Building a Quantum Engineering Undergraduate Program

    Get PDF
    Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs. Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor\u27s level. Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem? Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap. Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics
    • …
    corecore