1,907 research outputs found

    Facilitating Equitable Access and Retention for Underrepresented Students at the University of Mary Washington

    Get PDF
    Higher education institutions are facing increasing pressure to find new ways to attract, retain, and graduate the diverse populations of college students. As a result, colleges and universities need to adapt to the changing demographics of students who benefit from more sustained and engaged forms of support that are responsive to their specific social, cultural, and economic backgrounds. This sequential mixed methods study seeks to understand the ways in which the University of Mary Washington serves its underrepresented students in order to develop strategies to enhance the recruitment and retention of Black, Hispanic/Latinx, low-income, and first-generation college students. Building on the literature on retention and persistence, sense of belonging, and organizational change, researchers developed a student sense of belonging survey, an organizational readiness for change assessment, and conducted focus group discussions with UMW students. In particular, the project sought to understand the current institutional culture regarding inclusion and sense of belonging for underrepresented students. This study\u27s findings inform how the University of Mary Washington can better facilitate the recruitment, retention, and graduation of underrepresented students

    Adverse loading effects on tribocorrosive degradation of 28 mm metal-on-metal hip replacement bearings<sup>*</sup>

    Get PDF
    Following the high clinical failure rates of metal-on-metal total hip replacements much work has been undertaken to investigate their poor performance. So called adverse loading scenarios such as acetabular inclination and microseparation have been attributed to indicators for failure of the implants. The ISO hip simulation standards (ISO 14242:1) still rely on gravimetric and ex situ analysis, considering only the total wear during articulation. Live in situ sensing can provide valuable insight into the degradation mechanisms of metallic interfaces under such scenarios. Clinical 28 mm diameter metal-on-metal components were articulated in a full-ISO hip simulator. The bearings were subjected to increasing angles of acetabular inclination and retroversion over short-term periods of articulation. Corrosive degradation was monitored during sliding by means of an in situ three-electrode cell. Changing acetabular inclination from 30° to 50° resulted in greater cathodic shifts in OCP upon the initiation of sliding; from −50 mV to as much as −150 mV. Under anodic polarisation (0 mV vs. Ag/AgCl) the resultant currents at the initiation of sliding also increased significantly with inclination; from approximately 4–10 µA to over 120 µA. Increased retroversion of 20° also resulted in increased anodic currents of 55–60 µA. Changing the nature of articulation demonstrated increased corrosive material loss compared to a standard ISO 14242 profile. The sole use of gravimetric assessment to determine a wear rate for hip replacement bearings under simulation can therefore neglect important degradation mechanisms, such as tribocorrosive loss in devices with metal sliding interfaces.</p

    Contemporary Problems of Drug Abuse - II. Saturday Morning

    Get PDF

    Land Use Implications of Expanding Biofuel Demand

    Get PDF
    The Renewable Fuel Standard mandates in the Energy Independence and Security Act of 2007 will require 36 billion gallons of ethanol to be produced in 2022. The mandates require that 16 of the 36 billion gallons must be produced from cellulosic feedstocks. The potential land use implications resulting from these mandates were examined using two methods, the POLYSYS model and a general equilibrium model. Results of the POLYSYS analysis indicated that 72.1 million tons of corn stover, 23.5 million tons of wheat straw, and 24.7 million acres would be used to produce 109 million tons of switchgrass in 2025 to meet the mandate. Results of the CGE analysis indicated that 10.9 billion bushels of corn grain, 71 million tons of corn stover, and 56,200 tons of switchgrass is needed to meet the mandate.cellulosic ethanol, corn stover, grain ethanol, renewable fuel standard, switchgrass, Crop Production/Industries, Demand and Price Analysis, Environmental Economics and Policy, Land Economics/Use, Resource /Energy Economics and Policy, Q15, Q42,

    A Model of Function-Based Representations

    Get PDF
    The need to model and to reason about design alternatives throughout the design process demands robust representation schemes of function, behavior, and structure. Function describes the physical effect imposed on an energy or material flow by a design entity without regard for the working principles or physical solutions used to accomplish this effect. Behaviors are the physical events associated with a physical artifact (or hypothesized concept) over time (or simulated time) as perceived by an observer. Structure, the most tangible concept, partitions an artifact into meaningful constituents such as features, Wirk elements, and interfaces in addition to the widely used assemblies and components. The focus of this work is on defining a model for function-based representations that can be used across various design methodologies and for a variety of design tasks throughout all stages of the design process. In particular, the mapping between function and structure is explored and, to a lesser extent, its impact on behavior is noted. Clearly, the issues of a function-based representation\u27s composition and mappings directly impact certain computational synthesis methods that rely on (digitally) archived product design knowledge. Moreover, functions have already been related to not only form, but also information of user actions, performance parameters in the form of equations, and failure mode data. It is essential to understand the composition and mappings of functions and their relation to design activities because this information is part of the foundation for function-based methods, and consequently dictates the performance of those methods. Toward this end, the important findings of this work include a formalism for two aspects of function-based representations (composition and mappings), the supported design activities of the model for function-based representations, and examples of how computational design methods benefit from this formalism

    Highly lubricious SPMK-g-PEEK implant surfaces to facilitate rehydration of articular cartilage

    Get PDF
    To enable long lasting osteochondral defect repairs which preserve the native function of synovial joint counter-face, it is essential to develop surfaces which are optimised to support healthy cartilage function by providing a hydrated, low friction and compliant sliding interface. PEEK surfaces were modified using a biocompatible 3-sulfopropyl methacrylate potassium salt (SPMK) through UV photo-polymerisation, resulting in a ∼350 nm thick hydrophilic coating rich in hydrophilic anionic sulfonic acid groups. Characterisation was done through Fourier Transformed Infrared Spectroscopy, Focused Ion Beam Scanning Electron Microscopy, and Water Contact Angle measurements. Using a Bruker UMT TriboLab, bovine cartilage sliding tests were conducted with real-time strain and shear force measurements, comparing untreated PEEK, SPMK functionalised PEEK (SPMK-g-PEEK), and Cobalt Chrome Molybdenum alloy. Tribological tests over 2.5 h at physiological loads (0.75 MPa) revealed that SPMK-g-PEEK maintains low friction (μ &lt; 0.024) and minimises equilibrium strain, significantly reducing forces on the cartilage interface. Post-test analysis showed no notable damage to the cartilage interfacing against the SPMK functionalised surfaces. The application of a constitutive biphasic cartilage model to the experimental strain data reveals that SPMK surfaces increase the interfacial permeability of cartilage in sliding, facilitating fluid and strain recovery. Unlike previous demonstrations of sliding-induced tribological rehydration requiring specific hydrodynamic conditions, the SPMK-g-PEEK introduces a novel mode of tribological rehydration operating at low speeds and in a stationary contact area. SPMK-g-PEEK surfaces provide an enhanced cartilage counter-surface, which provides a highly hydrated and lubricious boundary layer along with supporting biphasic lubrication. Soft polymer surface functionalisation of orthopaedic implant surfaces are a promising approach for minimally invasive synovial joint repair with an enhanced bioinspired polyelectrolyte interface for sliding against cartilage. These hydrophilic surface coatings offer an enabling technology for the next generation of focal cartilage repair and hemiarthroplasty implant surfaces.</p
    • …
    corecore