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Membrane inflation tests were performed on fresh, intact human corneas using a 
fiber optic displacement probe to measure the apical displacements. Finite element 
models of each test were used to identify the material properties for four different 
constitutive laws commonly used to model corneal refractive surgery. Finite element 
models of radial keratotomy using the different best-fit constitutive laws were then 
compared. The results suggest that the nonlinearity in the response of the cornea is 
material rather than geometric, and that material nonlinearity is important for model­
ing refractive surgery. It was also found that linear transverse isotropy is incapable 
of representing the anisotropy that has been experimentally measured by others, and 
that a hyperelastic law is not suitable for modeling the stiffening response of the 
cornea. 

Introduction 
Keratorefractive surgical procedures are designed to increase 

or decrease the radius of curvature of the cornea and thereby 
reduce or eliminate refractive errors in the eye. In radial keratot­
omy, for example, the surgeon makes a radial pattern of inci­
sions in the cornea. The incisions weaken the peripheral cornea, 
which bows outward in response to the internal pressure in the 
eye, thereby flattening the central cornea. Although technically 
simple, this procedure has resulted in 30 percent of patients 
being undercorrected by more than one diopter, and 10 percent 
of patients being overcorrected by more than one diopter (War­
ing et al , 1987). 

Finite element-based biomechanical models of the eye have 
been presented in recent years as tools to help better predict 
radial keratotomy and other refractive surgeries. For the most 
part, these models have been based on standard constitutive 
laws with material properties either culled from the literature 
or chosen to give reasonable results. Hanna et al. (1988), Vito 
et al. (1989) and Bryant et al. (1987) have presented models 
of refractive surgery employing linear elastic isotropy. Recog­
nizing the layered structure of the corneal stroma, with its inher­
ent anisotropy, Hanna et al. (1989a) and Bryant and Velinsky 
(1991) employed transversely isotropic constitutive laws to 
model arcuate and radial incisions and radial keratotomy, re­
spectively. Modeling the cornea as an elastomer, Hanna et al. 
(1989b) apphed the Mooney-Rivlin law in a biomechanical 
model of radial keratotomy. The constants for a materially non­
linear isotropic law were identified by Wray et al. (1994) by 
comparing their model to previously reported pressure-volume 
data and to clinical results from two studies of radial keratot­
omy. 

Huang et al. (1988) established the first constitutive law 
formulated specifically for radial keratotomy by defining an 
effective corneal thickness based on a qualitative description of 
the distribution of cut fibrils in the corneal stroma resulting 
from a pattern of radial keratotomy incisions. Pinsky and Datye 
(1991) took this approach a step further by mathematically 
deriving the distribution of cut fibrils from an assumed arrange­
ment of corneal lamellae, and used this to define an effective 
stiffness for a thin shell model of radial keratotomy. They have 
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recently extended this approach to a fully three-dimensional 
finite element formulation that includes interlamellar shear ef­
fects, making this the first general, geometrically nonlinear finite 
element formulation that represents the cornea's lamellar micro-
structure in detail (Pinsky and Datye, 1994). 

Because of the difficulty of performing good, controlled ex­
periments of radial keratotomy and other refractive surgeries, 
none of these models have been accurately verified against the 
results of refractive surgery. Consequently, it is not known if 
one of the more common constitutive laws, such as transverse 
isotropy or the Mooney-Rivlin law, is adequate to model kera­
torefractive surgery, or if a more complex formulation, such as 
Pinsky and Datye's, is required. Similarly, it is not known which 
features (e.g., nonlinearity or anisotropy) are most important 
in modeling refractive surgery or how the different formulations 
vary in predicting the results of radial keratotomy. This study 
sought to answer some of these questions by performing side-
by-side comparisons of different constitutive laws that are 
readily available and commonly used to model radial kera­
totomy. To enable the comparison, the material constants for 
the different laws were identified from the same experimental 
data, which were generated from membrane inflation tests on 
fresh, human corneas. 

Materials and Methods 
1 Experimental Measurements. Fresh human corneas 

were obtained from the Lions Doheny Eye Bank (an affiliate 
of Tissue Banks International). The corneas had been preserved 
in corneal storage medium (Optisol GS, Chiron, Irvine, CA) at 
4°C within 24 hours of patient death. All corneas were used 
within eight days of preservation. The corneas retained a 2 -3 
mm scleral rim, but all other ocular structures (iris, ciliary 
body, etc.) had been removed. Testing was conducted at room 
temperature (21°C) with the corneas covered in a bath of 15 
percent dextran (295,000 MW, Sigma Co., St. Louis, MO), a 
high molecular weight substance that has been demonstrated 
to maintain corneal thickness within the physiological range 
(Duffey et al., 1989). To bring a cornea into equilibrium with 
the test conditions, it was submersed in the dextran solution for 
approximately 30 minutes prior to testing. The cornea was then 
mounted on an artificial anterior chamber (custom design. Lions 
Doheny Eye Bank), shown in Fig. 1, which clamped against the 
scleral rim, allowing the cornea to maintain its natural curvature. 

The epithelium was mechanically removed from the cornea 
with a blunt instrument, and the central corneal thickness was 
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Fig. 1 Artificial anterior chamber, shown mounted with human cornea 
and with fiber optic displacement probe positioned over corneal apex. 
The water bath, normally mounted on the top surface of the chamber 
and surrounding the cornea, has been removed. 

then measured to the nearest micron with an ultrasonic pachy-
meter (DGH 1000, DGH Technology, Inc., Frazer, PA). Digital 
calipers were used to measure the corneal diameter at the longest 
meridian and at the meridian perpendicular to that, and the two 
values were averaged to obtain a mean corneal diameter. A 
drop of silver paint, approximately 2 mm in diameter, was 
placed on the corneal apex to serve as a target for the fiber 
optic probe. The paint was allowed to dry 5 minutes before 
submerging the cornea in the dextran bath. To pressurize the 
cornea, a bottle of 15 percent dextran was connected to the 
artificial anterior chamber and to a digital pressure gauge. The 
pressure gauge had an accuracy of approximately 1 mm Hg 
with a precision of 0.1 mm Hg. The pressure was adjusted by 
changing the vertical position of the bottle. 

A fiber optic displacement probe (Model 88N1, Philtec, Ar­
nold, MD) was used to record the apical displacement of the 
cornea after each pressure change. The probe had a resolution 
of less than 1 fim and was calibrated at the factory. Based on 
our ability to set and maintain the gain required to match the 
calibration curve, we estimated the accuracy of the probe to be 
about 3 fjxa. 

Before testing a cornea, it was preconditioned by cycling it 
between the pressures of 40 mm Hg and less than 1 mm Hg. 
Three complete cycles were performed, holding the pressure 
approximately 10 minutes at the extremes of each cycle. The 
pressure gauge and the fiber optic probe were then reset, and 
the test was started. Beginning at a low pressure of less than 
1 mm Hg, the pressure in the artificial anterior chamber was 
incrementally increased in ten steps: 0.5, 2, 4, 6, 10, 14, 19, 24, 
30, and 40 mm Hg. The pressure sequence was then reversed. So 
that the data would represent the cornea's steady-state response, 
the tissue was allowed to creep after each pressure change be­
fore the probe output was recorded. Readings were taken when 
the probe output was stable to 0.01 V, corresponding to approxi­
mately 1.4 fim, for at least 2 minutes. This resulted in times 
between pressure changes of about 10-20 minutes. 

After the test was completed, the probe output was checked 
at both the high (40 mm Hg) and low (less than 1 mm Hg) 
pressures to determine the extent of drift in the probe output. 
The apical height (in the sagittal direction) of the specimen 
was then measured at the lowest pressure (less than 1 mm Hg) 
with the digital calipers. To determine if the corneal thickness 
had remained stable throughout the test, the pachymetry mea­
surement was repeated. 

Since the probe output gives relative rather than absolute 
displacement, the origin of the pressure-displacement curve was 

located by linearly extrapolating from the two lowest measure­
ment points (at 0.5 and 2 mm Hg). 

2 Identification of Material Properties Using Finite Ele­
ment Analysis. Finite element analysis was performed using 
COSMOS/M (Structural Research and Analysis Corp., Santa 
Monica, CA) on a 486 PC. The corneas were modeled as axi-
symmetric structures, with the axis of symmetry along the ante­
rior-posterior axis of the eye (Fig. 2) . The radial distance, R 
in Fig. 2, was set to one half the average diameter, as determined 
from the measurements described above. The height of the cor­
neal apex in the sagittal direction, H, and the corneal thickness 
at the apex, T„, were set to the measured values. The peripheral 
thickness, Tp, was set to 0.65 mm. Each model consisted of 
150 four-node isoparametric axisymmetric (two-dimensional) 
elements and 186 nodes (Fig. 2) , resulting in 354 equations. 
The corneal material was assumed to be homogeneous, and the 
small scleral rim where the cornea was clamped was not mod­
eled. The symmetry condition at the corneal apex was imposed 
by constraining nodes along the y (anterior-posterior) axis 
against displacement in the x (radial) direction, and nodes along 
the peripheral edge of the model were fixed, representing clamp­
ing of the artificial anterior chamber against the scleral rim. A 
uniform pressure distribution was applied normal to the poste­
rior surface of the model. 

Individual finite element models were constructed for each 
measured cornea. Four different constitutive laws were consid­
ered: linear elastic isotropy, nonlinear elastic isotropy, linear 
transverse isotropy, and hyperelasticity (Ogden's model). In 
addition, geometric nonlinearity was added to a second set of 
linear isotropic models. In each case, the material parameters 
( Young's modulus, nonlinear modulus, or Ogden' s coefficients) 
were chosen to match the measured pressure-displacement 
curve to the one generated by the finite element model. Al­
though some hysteresis was evident in all samples, the material 
properties were chosen to match only the pressure-displacement 
curve for increasing loading. 

Linear Elastic Isotropy. For the linear isotropic models, a 
tangent modulus was calculated at 15 mm Hg, a value that is 
close to the mean for a normal population (Hart, 1992). The 
objective was to generate a load-displacement curve tangent to 
the measured curve at 15 mm Hg (0.002 N/mm^) (Fig. 3). To 
correspond to the measured data, the displacement for the finite 
element generated pressure-displacement curves was defined as 
the y (sagittal) displacement of the node at the apex on the 
anterior surface of the model. Since the linear finite element 
solution takes a different path than the measured displacement, 
the finite element model had to start at a different unloaded 
geometry in order to intersect the nonlinear curve at 15 mm 
Hg. This difference in geometry is shown as A/ / in Fig. 3. 

Corneal 
Apex 

Fig. 2 Axisymmetric finite element mesh used to model the membrane 
inflation experiments. The anterior and posterior surfaces follow concen­
tric circular arcs defined by the radial size of the cornea, R, the apical 
height of the cornea, H, and the corneal thicknesses at the apex, T,, and 
periphery (limbus), Tp. 
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Fig. 3 Method for determining the tangent modulus for the materially 
linear constitutive laws. The modulus for the linear model is chosen 
so that at 15 mm Hg, the linear model's pressure-displacement curve 
intersects the measured curve at that pressure. 

Accordingly, the value of H, as in Fig. 2, for the linear model 
was set to //,„ + AH, where H„, was the measured value of the 
apical height of the cornea. 

Models were constructed with and without geometric nonlin-
earity. For the former, a total Lagrangian formulation with a 
Newton-Raphson solution method was used. Poisson's ratio,!/, 
was set to 0.49 in all cases. The modulus, E, was chosen so 
that the calculated pressure-displacement curve intersected the 
measured one at 15 mm Hg, i.e., so that the displacement at 15 
mm Hg was equal to d* - AH, where d* was the measured 
displacement at 15 mm Hg (Fig. 3) . With geometric nonlinear-
ity, convergence was achieved by varying the modulus ac­
cording to a simple, Unear scaling law: 

£ , „ = EfDJD,,, (1) 

where i represents the current solution step, i + 1 the next step, 
and D the apical displacement in the y direction, so that D,+ i 
is the target displacement, d* - AH. Convergence to within 1 
^m on displacement was typically achieved in less than six 
steps. 

Linear Elastic Transverse hotropy. A common form of an-
isotropy is transverse isotropy, in which there is material sym­
metry about an axis, so that the material behaves isotropically 
in planes normal to that axis. Taking the z axis, normal to the 
corneal surface, as the axis of symmetry, with x and y parallel 
to the corneal lamellae, the stress-strain (material property) 
matrix for transverse isotropy can be written as follows (Boresi 
andChong, 1987): 

E = 

I' 

\ 

En 
En 

En 
En 
£33 (2) 

Symmetric 

£u =E,(l- vlJn)IC 

En = E,{v,y + uljn)IC 

En = EpV^^{l + u^y)/(nC) 

£33 = £p(l -ulyVinC) 

£44 = (£,1 - En)l2 

E55 = Gxz 

and C = \ - vl, - IvlJn - Iv,. '•Jn. Ep is the modulus of 
elasticity in the in-plane {x and 3;) directions, Vjj is the Poisson's 
ratio in the ij plane, relating strain applied in the i direction to 
the resulting strain in the 7 direction, G« is the shear modulus 
in the xz and yz planes, n = E^IE^, and E^ is the modulus 
of elasticity in the transverse direction (normal to the corneal 
surface). 

The transversely isotropic finite element models were defined 
with the following values for these constants: 

« = 10 

= 0.5 (3) 

and 

G„ = 
1 + «(1 + 2M,,) 

The constant «, relating the moduli in the in-plane and trans­
verse directions, was chosen based on the work of Battaglioli 
and Kamm (1984), who measured the transverse modulus for 
the sclera and found it to be at least one order of magnitude 
lower than reported values of the in-plane modulus. 

As with the isotropic models, the in-plane modulus, £,,, was 
chosen so that the finite element pressure-displacement curve 
was tangent to the measured curve at 15 mm Hg. The same 
identification scheme as described above for isotropy was em­
ployed here. All transversely isotropic models included geomet­
ric nonlinearity. 

Nonlinear hotropy. Material nonlinearity was modeled 
with a nonlinear stress-strain relationship that is similar to the 
one employed by Woo et al. (1972) and used more recently by 
Wray etal. (1994): 

a = a{e'' 1) (4) 

in which ê / is effective strain, and a and /3 are the material 
constants. 

Effective strain is defined by COSMOS/M according to an 
equivalence between the strain energy density expressed in 
terms of effective stress and effective strain and the strain en­
ergy density expressed in terms of the individual components 
of stress and strain. For the general 3-D case, the effective strain 
can be expressed as (Chang, 1994) 

1 - V 

(1 + v){\ - 2v) 
( e i + t% + el) + 

1 

2v 

2(1 + u) 

(1 + v)i\ - 2v) 
K^xx^yy •" ^yy^zz "^ ^xx^zz) 

(5) 
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where ly is Poisson's ratio, and y.j are components of the engi­
neering shear strain. 

In the finite element solution, equilibrium is satisfied incre­
mentally (see, for example. Cook, 1981), and the element stiff­
ness matrices are based on the tangent modulus, E, that is 
calculated for the current values of effective strain. 

The material constants a and /3 were chosen to match the 
finite element generated pressure-displacement curve as closely 
as possible to the measured curve, which was accomplished by 
solving the following least-squares optimization problem: 

mm : if(x: (6) 

where 

f (X) = (di - dT, d2 - d'i ^np "• np V, 
di is the calculated displacement at the ith pressure, d'" is the 
measured displacement at the ith pressure, np is the number of 
points along the pressure-displacement curve at which displace­
ments are recorded, and x = (a, PY. 

The optimization process was carried out with a quasi-New-
ton algorithm using BFGS updates (Gill et al., 1981). To enable 
convergence, a and 13 were scaled at each iteration by the aver­
age of the values from the current and previous steps. The 
jacobian matrix, dtjdxj, was approximated using backward 
differences. The process was halted when a and P had con­
verged to within 3 significant figures, which typically required 
10-20 iterations. 

Hyperelasticity. Hyperelastic constitutive laws, such as the 
Mooney-Rivlin law, are commonly used to model elastomers 
(e.g., rubber and rubber-like materials). Another, somewhat 
more general hyperelastic formulation is Ogden's law, which, 
for a first-order model, is defined by a strain-energy density 
function of the form: 

W = ^ ( \ [ + \J + \J 3) (7) 

where the \ , ' s are the principal stretch ratios and /x and y are 
the material constants (COSMOS/M Advanced Modules User 
Guide, 1993). As with the Mooney-Rivlin law, Ogden's law is 
an inherently isotropic formulation. 

Trial and error was used to find values for y and (j, such that 
the finite element response matched the measured pressure-
displacement curve. Specifically, values of y from —1000 to 
10 were tried, where, for each one, the value of p, was varied 
until the endpoint of the calculated curve (the displacement at 
40 mm Hg) matched the measured curve. 

3 Modeling Radial Keratotomy. To compare the capa­
bilities of the different constitutive laws, a four-incision radial 
keratotomy was modeled for a representative cornea as if it 
were clamped on the artificial anterior chamber. The finite ele­
ment mesh was based on the same cross-sectional model geome­
try depicted in Fig. 2, with the parameter values listed in Table 
1. Material properties were based on the average properties 
identified from tiie membrane inflation tests and listed in Table 
2. Because a four-incision surgery was modeled, a three-dimen­
sional finite element model with quarter symmetry was em­
ployed. Eight-node isoparametric (brick) elements were used, 
and the incisions were represented by relaxing the boundary 
conditions of nodes along the two incision surfaces, as has 
been done in previous models of radial keratotomy (Bryant and 
Velinsky, 1991). The model consisted of 960 elements and 
1305 nodes, with four elements through the thickness. The pre­
operative state was obtained from a model without incisions 
but otherwise identical to the incised model. The following 
constitutive laws were compared: linear isotropic with geomet­
ric nonlinearity, linear transversely isotropic with geometric 
nonlinearity, and nonlinear isotropic. 

The objective was to determine the average corneal curvature 
change and its standard deviation based on the material proper­
ties identified from the membrane inflation experiments. For 
the linear isotropic and transversely isotropic laws, results were 
generated at plus and minus one standard deviation of the aver­
age (tangent) moduli measured for the respective constitutive 
laws. Because the tangent moduli were used in these models, 
the value of H was set to H,,, + Aff„vc, where A/fave is the 
average value of A// , calculated over all measured corneas; H„, 
was chosen as shown in Table 1 (1.07 mm) to give a reasonable 
preoperative curvature for the materially nonlinear models. 

The corneal curvature change, k, was calculated by sub­
tracting the curvature of the model with no incisions from the 
curvature of the model with incisions and was calculated at two 
different meridians: along one incision (0 deg), and between 
two incisions (45 deg). The curvature (in diopters) was calcu­
lated according to 337.5/r, where r (mm) is the radius of the 
circle fit to the apical node and the node 1.5 mm from the apex 
on the anterior surface. This is based on an effective index of 
refraction for the cornea (1.3375) and approximates the way in 
which clinical keratometers measure curvature for the central 3 
mm of the cornea. The standard deviation of the corneal curva­
ture change, k, for the materially nonlinear isotropic law was 
calculated in terms of the variances of the parameters a and /5 
by forming a first order Taylor expansion of k{a, 0) about the 
average values of a and 0. 

The mean corneal curvature changes for the three constitutive 
laws were compared using two-tailed t tests in which a P-value 
of 0.05 or less was considered statistically significant. 

Results 

1 Experimental Measurements. Twelve corneas (ages 
20-69) were successfully tested. The probe output remained 
reasonably steady during each test, drifting by no more than 
about 10 percent. The corneal thickness also remained stable, 
typically measuring 401-404 ^m both before and after each 
test. Typical measured pressure-displacement curves are shown 
in Fig. 4. In Fig. 4(a) the results for cornea #2 are shown, 
including the curves for both the increasing and decreasing 
loadings. The considerable nonlinearity in the response suggests 
a stiffening effect with increasing load. The hysteresis revealed 
in this figure was evident in all the samples; however, we did 
not quantify it. The increasing loading portion of the response 
is shown for five representative corneas in Fig. 4b. Interestingly, 
in each case the knee of the curve occurs around normal intraoc­
ular pressure (approximately 12-20 mm Hg). 

2 Finite Element Identification. The identification re­
sults are summarized in Table 2. There was no significant differ­
ence between the in-plane modulus of elasticity for transverse 

Table 1 Parameters for the three-dimensional finite ele­
ment models of radial keratotomy constructed using the 
geometric model depicted in Fig. 2. Models were constructed 
assuming linear elastic isotropy, linear elastic transverse 
isotropy, and materially nonlinear isotropy. 

Parameter 

Corneal radius, R 
Thickness at apex, r^ 
Thickness at limbus, 7], 
Height at apex, 

H,„ 
H,„ + AH,,, 

Number of incisions 
Clear zone size 
Incision depth 
Intraocular pressure 

Value 

5.725 mm 
0.482 mm 
0.65 mm 

1.07 mm (materially nonlinear law) 
1.32 mm (linear isotropic and 

anisotropic laws) 
4 
4 mm 
74% 
15 mm Hg (0.002 N/mm") 
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Table 2 Material properties for twelve human corneas, obtained by applying a finite element identification approach to 
the results of membrane inflation experiments. The first three columns contain the elastic modulus; the last two columns 
contain the constants for the materially nonlinear law shown in (4) 

Cornea 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Average 
Std. dev. 

Isotropic, 
geometric 

nonlinearity, 
£ (N/mm^) 

0.762 
0.592 
0.785 
0.592 
0.674 
0.711 
0.954 
1.37 
0.939 
0.650 
0.630 
0.763 

0.79 
0.22 

Isotropic, 
linear. 

E (N/mm') 

0.806 
0.634 
0.837 
0.637 
0.727 
0.743 
1.02 
1.40 
0.982 
0.683 
0.652 
0.815 

0.83 
0.22 

Transversely 
isotropic. 

E (N/mm^) 

0.763 
0.594 
0.787 
0.592 
0.672 
0.715 
0.955 
1.38 
0.939 
0.652 
0.635 
0.764 

0.79 
0.22 

Isottopic, 
material 

nonlinearity. 
a (N/mm^) 

16.0 X 10-" 
5.20 X 10"" 
8.77 X 10-" 
5.71 X 10-" 
15.0 X 10-" 
14.0 X 10"" 
37.0 X 10-" 
13.3 X 10-" 
23.8 X 10-" 
40.5 X 10-" 
14.2 X 10-" 
16.5 X 10-" 

17.5 X 10-" 
11.1 X 10-" 

Isotropic, 
material 

nonlinearity. 
P 

43.0 
42.6 
54.0 
43.2 
36.7 
40.0 
43.5 
85.7 
73.5 
34.7 
41.3 
41.3 

48.3 
15.6 

isotropy and the modulus of elasticity for linear elastic isotropy 
(both including geometric nonlinearity). However, the modulus 
for isotropic linear elasticity without geometric nonlinearity was 
six percent larger than when geometric nonlinearity was in­
cluded. 

S 

u 
a 

i 
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Fig. 4(8) 

0.8 

In Fig. 5 the finite element pressure-displacement curves for 
linear elastic isotropy with and without geometric nonlinearity 
are shown for cornea #3. As intended, they are tangent to the 
measured curve at 15 min Hg and are very similar, demonstrat­
ing how little the inclusion of geometric nonlinearity contributes 
to the nonlinearity of the cornea's response to increasing pres­
sure. The pressure-displacement curves resulting from the trans­
versely isotropic models were almost identical to those of the 
linear isotropic models. 

Typical nonlinear isotropic model results are shown in Fig. 
6. The stress-strain curve for cornea #11 (Fig. 6(a)) resulting 
from the minimization problem (6) has a shape that is very 
similar to the measured pressure-displacement curve, shown in 
Fig. 6(fc). The finite element generated pressure-displacement 
curve calculated using the stress-strain curve of Fig. 6(fl) fits 
the measured curve very closely, as shown in Fig. €b. 

Ogden's model provided a very poor fit to the data over the 
range of values that were attempted (Fig. 7). As shown in Fig. 
7 for cornea #1, the stiffening effect of the corneal response to 
increasing pressure was not well represented by this model over 
a range of y from -1000 to 10 (/x from -4.1 X IQ-' N/mm^ 
to 0.048 N/mm^), Values of y equal to -10" and -10 ' were 
attempted to improve the fit, but the finite element solution 
failed to converge for these values. Since such a poor fit was 

! 

i 
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0< 

Cornea: 
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6 12 5 4 2 
4} fr ''V 

— — T — 1 

0 0.2 0.4 0.6 0.8 
Displacement (mm) 

Fig. 4(b) 

Fig. 4 Measured pressure-displacement curves, (a) Results for cornea 
#2, demonstrating the hysteresis that was evident in all samples, (b) 
Increasing loading curves for five different samples: cornea #'s 2, 4, S, 
6, and 12. 
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s 
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Apical Displacement (mm) 

Fig. S Finite element identification results for the linear elastic Isotropic 
models with and without geometric nonlinearity for cornea #3, shown 
tangent to the measured curve at 15 mm Hg 
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Fig. 6 Finite element identification results for tiie materially nonlinear 
isotropic model for cornea #11. (a) Exponential stress-strain curve (4) 
Identified from the measured pressure-displacement curve according to 
(7). Stress and strain are effective values, based on (6). {b) Calculated 
pressure-displacement curve, based on the stress-strain curve shown 
in (a). 

obtained for cornea #1, we did not attempt to fit this model to 
any other data. 

3 Radial Keratotomy. The finite element results for the 
models of radial keratotomy are summarized in Fig. 8. As shown 
in the figure, more curvature change resulted from assuming a 
nonlinear modulus than from employing either the linear iso­
tropic or transversely isotropic constitutive laws. This difference 
was statistically significant in both cases and at both 0 deg 
(along an incision) and 45 deg (between two incisions); P < 
0.001 in all cases. The results of the ti'ansversely isotropic model 
were not significantly different from those of the linear isotropic 
model at either 0 deg (P = 0.09) or 45 deg (P = 0.38). Slightly 
more astigmatism—the difference between the curvature 
changes at 0 deg and 45 deg—was predicted by the transversely 
isotropic model, although this difference was not statistically 
significant. 

To illustrate the effect of material nonlinearity, the stresses 
at key points in the cornea were followed from before surgery 
to afterwards. Shown plotted on the stress-strain curve, these 
points indicate how much the modulus of elasticity changes 
during surgery (Fig. 9) . In Fig. 9(a) , points a and b are near 
an incision; point a is near the anterior corner of the incision 
at the edge of the clear zone, while point b lies underneath point 
a, at the posterior cornea of the incision. At point a, the modulus 

u 
a 

u 

B 
03 

JS 

Apical Displacement (mm) 

Fig. 7 Results of fitting Ogden's model (8) to the measured pressure-
displacement results for cornea #1 

increases from 1.32 to 2.33 N/mm^ (76 percent increase) during 
surgery; while at point b, the modulus increases from 0.42 to 
0.75 N/mm^ (80 percent increase). Two points that lie away 
from the incision are shown in Fig. 9(b). Point c is just inside 
the clear zone, at 45 deg to either adjacent incision, and point 
d is along the same meridian but outside the clear zone. At both 
of these points, the effective stress and the modulus decrease 
during surgery. The modulus decreases from 1.32 to 1.18 N/ 
mm^ (10 percent decrease) at point c, and from 0.27 to 0.24 
N/mm^ (10 percent decrease) at point d. 

Discussion 
The material properties of the cornea are usually measured 

either by tensile testing or membrane inflation. The problems 
associated with tensile testing strips of cornea have been well 
documented (e.g., Hoeltzel et al , 1992) and include adequately 
securing the tissue to the clamps, straightening an initially 
curved strip, accurately measuring the cross-sectional area of 
the strip, as well as the problem of basing a three-dimensional 
model of an anisotropic material on the results of a uniaxial 
tensile test. We chose to test intact corneas to avoid these prob­
lems. Woo et al. (1972), in the most complete study of intact 
corneas, used a "flying spot scanner" to measure the horizontal 
displacement at the apex, but this required them to paint the 
entire cornea with ink and place two strips of tape on the cornea 
as targets for the scanner. More recent studies have employed 

a. o 
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0° 45° 0° 45° 0° 45° 

I II III 

Fig. 8 Corneal curvature change after radial keratotomy for three differ­
ent constitutive laws: I—linear elastic isotropy with geometric nonlinear­
ity, II—linear elastic transverse isotropy with geometric nonlinearity, and 
III—materially nonlinear elastic isotropy. A four incision surgery with a 
4 mm clear zone was modeled; curvature changes were computed along 
the incisions (0 deg) and between adjacent incisions (45 deg) 
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Fig. 9 Stress-strain curves during radial keratotomy (RK) surgery show­
ing how the stress at different points changes from before surgery (Pre-
RK) to immediately after surgery (Post-RK). (a) Points a and b lie near 
the central edge of an incision, (b) Points c and d lie at 45 deg to adjacent 
incisions, inside and outside the clear zone, respectively. 

better methods of measuring the corneal displacements (Jue 
and Maurice, 1986; Hjortdal and Koch-Jensen, 1992) without 
emphasizing the identification of material properties. 

Our experimental setup provided us with a number of advan­
tages over other methods. The fiber optic probe enabled noncon-
tact measurement of the cornea, submicron resolution, and the 
use of a fluid bath, which stabilized the cornea's hydration. This 
gave us time to let the cornea creep at each load step while it 
reached most of its steady-state response. Consequently, the 
estimated material properties represent the steady-state behavior 
of the tissue. Because the artificial anterior chamber required 
only a small scleral rim for attachment, the chamber was effec­
tive in isolating the cornea for measurement purposes and sim­
plified the specification of boundary conditions in the finite 
element model. 

The most significant problem with our setup was maintaining 
a flat, mirror-like surface for the probe. The drop of silver paint 
that we applied for this purpose was highly reflective, nearly 
flat, and because of its small size (approximately 1 - 2 mm) and 
its complete lack of penetration into the cornea, probably had 
a negligible effect on the cornea's response. However, it was 
clear that in some cases the paint spot did not remain entirely 
flat, which may be the source of the 10 percent drift in probe 
output measured during the test. Another source of error may 
be the cornea thickness, which we consistently measured to be 
about 20 percent lower than the normal (in vivo) thickness. 
This was probably from using a dextran solution with an inap­

propriately high concentration and may have resulted in an 
overestimation of the elastic modulus. 

The identification process was intended to provide a baseline 
set of corneal material properties for some of the most common 
constitutive laws in a way that would enable comparisons be­
tween the different laws. Probable sources of error in the estima­
tion process include the simplifications of the assumed geometry 
and the assumption of homogeneity of the cornea. In particular, 
the assumption of material homogeneity implies that the identi­
fied properties are average properties for the cornea. Nonethe­
less, because these assumptions were maintained for each con­
stitutive law, they should not affect the comparisons that were 
made among the radial keratotomy results. 

In previous efforts to estimate Young's modulus for the cor­
nea using intact specimens, values have ranged from 0.025 N/ 
mm^ (Sjontoft and Edmund, 1987) to 17 N/mm^ (Hjortdal and 
Koch-Jensen, 1992) at measurement pressures of 10 mm Hg 
and 100 mm Hg, respectively. It is apparent that the identified 
modulus depends on the applied pressure, as suggested by the 
nonlinear stress-strain curves presented here. Our goal for the 
materially linear (isotropic and transversely isotropic) models 
was to generate an estimate of the modulus that was representa­
tive of in vivo conditions by forcing the linear model tangent 
to the measured curve at 15 mm Hg. While our method is only 
approximate, the fact that the linear modulus (0.57-1.01 N/ 
mm^) lies within the range of moduli calculated along the non­
linear stress-strain curve of Fig. 9 (0.27-1.32 N/mm^) suggests 
that this method is reasonable. 

One can also conclude from the identification results that the 
nonlinearity in the cornea's response to increasing pressure is 
due almost entirely to material nonlinearity rather than geomet­
ric nonlinearity. This conclusion is evident from Fig. 5, which 
shows that the model with geometric nonlinearity is almost 
identical to the fully linear model, yet when the modulus is 
allowed to vary, as in the materially nonlinear model of Fig. 6, 
the measured curve is approximated very closely. Furthermore, 
it appears that material nonlinearity may be important in model­
ing radial keratotomy. This is suggested to some extent by 
the fact that significantly more corneal curvature change was 
achieved with the nonlinear model than the linear ones. Further 
evidence is provided by the fact that the nonlinear modulus in 
the radial keratotomy model changed by as much as 80 percent 
from before the introduction of incisions to afterwards. In the 
pressurized but unincised mesh, the tangent modulus was differ­
ent at points c and d (Fig. 9{b)) by almost a factor of five. 
Thus, the range of stresses due to membrane inflation alone is 
considerable. Of course, one would expect that the distribution 
of stresses would be different in a model that represented the 
relaxation of stresses along cut fibrils, and this might result in 
a larger or smaller range of stresses than was evident in the 
isotropic models considered here. 

With only apical displacements available for identifying the 
properties, it was not possible to identify the five constants 
necessary to define a linear, transversely isotropic constitutive 
law. Instead, previous experimental results of Battaglioli and 
Kamm (1984) on human sclera were used to set the transverse 
modulus to ]^th the in-plane value; i.e., n - 10. In the same 
experiment, they also measured one of the Poisson's ratios for 
the sclera, finding that v^ » 0.5. 

To see how these measurements fit within the framework of 
linear transverse isotropy, a relationship among the parameters 
can be derived from the requirement that the material property 
matrix must be positive definite. For a matrix to be positive 
definite all its submatrices must have positive determinants. 
From (2), the requirement that the determinant of the first 
submatrix must be positive leads to the following equation: 

(8) 

0.5, (8) can 

1 - lnv%,{\ + V,,) - vl,-><S 

Assuming Battaglioli and Kamm's value of v, 
be written as 
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n < 2(1 - v%)l{\ + v„) (9) 

which implies that n < 2 for v^ > 0. This contradicts their 
findings for human sclera, in which they concluded « a 10. If 
the cornea has a similar constitutive behavior to the sclera, as 
suggested by the similarity in their microstructures, then this 
implies that linear transverse isotropy is not an adequate repre­
sentation of the cornea's anisotropy. However, that this does 
not demonstrate that a nonlinear, transversely isotropic model 
might not prove to be better suited to the cornea. 

Odgen's model also proved to be inadequate to represent the 
measured corneal response. It should be noted that this form of 
hyperelasticity was chosen over the Mooney-Rivhn law because 
Odgen's law is more versatile. For example, a second-order 
Ogden's law contains the Mooney-Rivlin law as a special case. 
Models employing a two-parameter Mooney-Rivlin law that we 
subsequently analyzed confirmed this view, showing even less 
capacity for modeling the measured corneal response than Og­
den's model. In view of the fact that many elastomers only 
begin to show increasing stiffness after 100 percent strain (see 
Han, 1992, for example), the failure of these hyperelastic mod­
els to adequately model the cornea's increasing stiffness, which 
climbs sharply after less than 10 percent strain, should not be 
surprising. 

Of the models presented above, the materially nonlinear law 
captures the cornea's nonlinearity best. However, the fact that 
the materially nonlinear law works well for membrane inflation 
does not necessarily imply that it will work well for refractive 
surgery. Wray et al. (1994) compared a similar model to the 
clinical results of radial keratotomy reported in the Kansas City 
Study and in the University of Texas Study and found that it 
captures some clinical trends but not all. However, as they 
discuss, there are problems in comparing model results to the 
statistical results of clinical trials. For example, they compared 
the change in corneal curvature of their finite element model to 
the change in spherical equivalent of refraction reported from 
the clinical trials. Corneal curvature is a geometric property of 
the corneal surface, whereas refraction involves not only the 
corneal geometry but the eye's optics, retinal photoreceptor 
orientation, and even the cortical processing of the retinal im­
age. Consequently, although the change in corneal curvature 
and the change in spherical equivalent of refraction typically 
follow the same trend, they are not necessarily the same in 
magnitude and in some cases can differ considerably. While 
this may not change their conclusions, it points out the difficulty 
in retrospectively comparing analytical models to clinical data. 
Another problem inherent in this sort of retrospective validation 
is apparent in the fact that the nearest time point available in 
the Kansas City Study was at three months, where contraction 
of the healing wounds would be expected to cause regression 
of the radial keratotomy effect. Thus, the acute effect being 
modeled is not necessarily represented in the clinical data. As 
noted by Wray et al. in their paper, the problem of comparing 
a "mean value eye" to the mean response of all eyes reported 
in a clinical study is also a concern. 

As demonstrated by Pinsky and Datye (1991), the fibrillar 
microstructure of the cornea implies that considerable inhomo-
geneity in stiffness may result from incisions in the cornea. The 
relaxation in stress along the cut fibrils is not represented in an 
isotropic model and may account for some of the discrepancies 
between the results of Wray et al. and the clinical results they 
compare their model to. It is likely that a more sophisticated 
formulation that takes the cornea's unique lamellar arrangement 
into account, such as Pinsky and Datye's (1994), will be neces­
sary to capture all the clinically significant effects. However, 
until controlled experimental and clinical tests of radial keratot­
omy and other refractive surgeries are performed with the spe­
cific intent of validating these models, it will not be possible to 
determine quantitatively how well any constitutive law or finite 
element formulation predicts the results of refractive surgery. 

Other characteristics of the eye that may need to be consid­
ered to accurately model refractive surgery include the constitu­
tive behavior of the sclera, the boundary conditions on the globe 
(e.g., the extraocular muscles), the effect (if any) of the internal 
structures of the eye (i.e., crystalline lens, ciliary processes, 
iris, choroid, retina), the inhomogeneity of the cornea and 
sclera, and the properties of the other layers of the cornea, such 
as Bowman's layer and Descemet's membrane. 

In future studies, we will employ a computer-assisted video-
keratographer, such as the Topographic Modeling System 
(Computed Anatomy, Inc, New York, NY), which optically 
scans the corneal topography and produces a three-dimensional 
map of the corneal surface. In previous studies, Bryant and 
Velinsky (1991) have shown that the output of this device can 
be used to construct a finite element mesh of the cornea that 
captures the corneal shape in considerable detail. This would 
not only eliminate the limitations of the geometric model as­
sumed in the present study but might allow the material con­
stants for a more sophisticated nonlinear anisotropic constitutive 
law to be identified by recording the corneal topography at 
different pressures. In fact, we propose that it may be possible 
to measure these material properties in vivo by using drugs 
that lower the intraocular pressure, such as beta blockers, in 
conjunction with corneal topographic measurements. This 
would enable biomechanical models of refractive surgery to be 
customized to each patient so that the surgical outcome could 
be more accurately predicted on an individual basis. 
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