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Adverse loading effects on tribocorrosive
degradation of 28 mm metal-on-metal hip
replacement bearings*

Andrew R Beadling , Michael G. Bryant, Duncan Dowson
and Anne Neville

Abstract
Following the high clinical failure rates of metal-on-metal total hip replacements much work has been undertaken to inves-

tigate their poor performance. So called adverse loading scenarios such as acetabular inclination and microseparation have

been attributed to indicators for failure of the implants. The ISO hip simulation standards (ISO 14242:1) still rely on gravi-

metric and ex situ analysis, considering only the total wear during articulation. Live in situ sensing can provide valuable insight
into the degradation mechanisms of metallic interfaces under such scenarios. Clinical 28 mm diameter metal-on-metal com-

ponents were articulated in a full-ISO hip simulator. The bearings were subjected to increasing angles of acetabular inclination

and retroversion over short-term periods of articulation. Corrosive degradation was monitored during sliding by means of

an in situ three-electrode cell. Changing acetabular inclination from 30° to 50° resulted in greater cathodic shifts in OCP

upon the initiation of sliding; from −50 mV to as much as −150 mV. Under anodic polarisation (0 mV vs. Ag/AgCl) the resul-

tant currents at the initiation of sliding also increased significantly with inclination; from approximately 4–10 µA to over

120 µA. Increased retroversion of 20° also resulted in increased anodic currents of 55–60 µA. Changing the nature of articu-
lation demonstrated increased corrosive material loss compared to a standard ISO 14242 profile. The sole use of gravimetric

assessment to determine a wear rate for hip replacement bearings under simulation can therefore neglect important deg-

radation mechanisms, such as tribocorrosive loss in devices with metal sliding interfaces.
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Introduction

The reintroduction of modern metal-on-metal (MoM) total
hip replacements (THR) in the early 2000’s aimed to
provide longer lasting bearings for younger and more
active patients.1 Knowledge at the time held that the
existing gold-standard metal-on-polymer (MoP) bearings
produced wear debris within a ‘bioactive‘ range (0.1–
1.0 µm).2,3 This debris can go on to illicit an immune
response and cause osteolysis and bone resorption; result-
ing in loosening and failure of the implant. During articula-
tion MoM devices produced wear debris below this range
(< 100 nm) and were thought to be safer.3 In vitro hip simu-
lator studies also demonstrated up to 100-fold reduction in
gravimetric/volumetric wear when compared to MoP bear-
ings.4,5 This impressive wear performance was attributed to
the lubrication regime the bearing interface was designed to
operate under. Lubricant entrainment during articulation
resulted in elastohydrodynamic lubrication (EHL) with a
degree of the load supported by fluid pressure in a thin

film of lubricant. Evidence of complete bearing separation,
and thus no sliding contact, was noted by Dowson et al.6

under in vitro hip simulation. MoM devices were therefore
seen as a promising solution to osteolysis and aseptic loos-
ening; the leading causes of implant failure and main limit-
ing factor on the lifespan of a THR device.

This separation was only observed over portions of
the simulation cycle however, and in ideal laboratory
conditions. Clinically and in vivo MoM hip bearings
still engaged in sliding contact, resulting in wear and
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damage/removal of the passive oxide on the surface of the
alloy.7,8 The biocompatibility of CoCrMo alloy princi-
pally due to the thin (∼ 5–10 nm) surface oxide layer
(95% Cr2O3) which forms spontaneously in air. It‘s
mechanical removal during articulation exposes the bulk
of the metal to corrosion processes.9 Comparisons of the
wear volume from MoM bearings to MoP devices only
considered the total ‘wear‘ volume from the bearing and
did not investigate the effects of corrosive degradation
mechanisms specific to sliding metallic interfaces in
detail. Mechanical loss of the surface passive oxide film
caused higher levels of metallic debris and ions found in
patients.10,11 Registry data, such as the NJR for
England, Wales and Northern Ireland, demonstrated that
particular device designs had substantial early failure
rates.12 Evidence also emerged in the literature that resur-
facing and MoM THR bearings could be sensitive to the
angle of inclination of the acetabular cup.13–15 Higher
inclination may result in edge loading during articulation,
causing higher contact pressures and compromise the load
supporting ability of the lubricant.16 Other studies have
also highlighted a phenomenon termed ‘microseparation‘
whereby the bearing separates during the swing phase of
walking gait.17 This could be as a result of a number of
factors such as joint laxity or component migration and
causes a much more severe contact on the heel-strike of
the next step.18 The resulting impact may also affect the
lubrication regime by interrupting entrainment of synovial
fluid.

Most MoM devices implanted were large diameter
(46–54+mm) implants; both resurfacing and traditional
TJRs. This size range accounted for approximately 80%
of primary procedures in 2014.19 However much of the
literature of recent years investigating such ‘adverse
loading’ scenarios has typically focused on <40 mm bear-
ings. The most popular size in this low diameter, tradi-
tional THR range was 28 mm and accounted for 11% of
MoM prostheses in 2014.19

Several studies have investigated acetabular inclina-
tion and microseparation under hip simulation20–23 and
found increased wear of the bearing surface. This was
coupled with a change in the typical wear scar shape
and location to a stripe across the bearing; termed
‘stipe-wear’ which has been observed clinically in edge-
loading bearings.24 These studies have also driven
changes to the ISO pre-clinical testing standard.25 ISO
14242-4:2018 (Part 4)26 introduces steep cup inclination
angles and dynamic separation to hip simulation
methods in order to assess the severity of edge-loading
contacts. O‘Dwyer Lancaster-Jones et al.27 investigated
36 mm ceramic-on-ceramic (CoC) bearings and found
increased gravimetric wear. The most significant increase
was at 4 mm medial-lateral translational mismatch and
65° acetabular inclination. The standard itself also pre-
sents data for 36 mm diameter metal-on-polymer bearings
again showing increased gravimetric wear at 3 and 4 mm
translational mismatch and high inclination.26 To date the
authors know of no studies which have examined
metal-on-metal bearings to the new ISO 14242 Part 4

standard. Indeed it is unclear if the additions would
have resulted in a clearer understanding of MoM failure
mechanisms during pre-clinical testing.

The additions amount to a much more severe level of
microseparation than used previously (0.8 mm)20,28 and
still rely on gravimetric or volumetric assessment of the
material loss. Previous work has suggested adverse
loading such as microseparation can increase the level
of corrosive degradation from the bearing surface by as
much as an order of magnitude.28 This shifted the import-
ance of corrosive loss to total degradation (17%) as total
gravimetric mass loss was only found to increase by
two to three times. They also only make use of the simpli-
fied twin-peak walking cycle set out in the standard; as
opposed to complex physiological gait and loading.
Little has been added to the pre-clinical analysis of
metal-on-metal bearings that fully elucidates the degrad-
ation mechanisms or goes beyond simple wear compari-
sons to metal-on-polymer bearings.28,29 Doing so will
be critical going forward not only to ensure the degrad-
ation of devices with metallic sliding interfaces are fully
understood, but to inform treatment of patients with
such devices already implanted. This study therefore
aimed to investigate the corrosive degradation of the
bearing surface of metal-on-metal devices under increased
acetabular inclination; a common adverse loading sce-
nario for hip simulation.

Materials and methods

Hip simulation
Clinical 28 mm diameter metal-on-metal components were
placed in a full-ISO electromechanical hip simulator
(ProSim, UK). The bearings comprised of a high-carbon
(HC) cobalt chromium molybdenum alloy (CoCrMo)
femoral head and acetabular liner. The liner was held in
place by a titanium alloy (Ti-6Al-4vs.) acetabular shell
that was cemented into the cup fixture using laboratory
grade poly(methyl methacrylate) (PMMA) bone cement.
The femoral head was held in place using a 316L stainless
steel modular taper adapter. Care was taken to seal this
modular taper connection between the head and the
adapter with silicone sealant. This was done to isolate the
taper interface from the lubricant and thus ensure any elec-
trochemical measurements only concerned the bearing
surface. Polyether ether ketone (PEEK) fixtures were
used to electrochemically isolate the components from
the simulator. The lubricant used was foetal bovine
serum (FBS) diluted to 17 g/L total protein content with
phosphate buffered saline (PBS), as per the qualification
set previously by Hesketh et al..30,31 PBS was used in
order to facilitate the electrochemical measurement.
Sodium Azide (NaN3, 0.03% (w/v)) was also added the
lubricant to retard bacterial growth.

The bearing was articulated to 333,333 cycles at 1 Hz
using the ISO 14242-1:2014 walking gait cycle,25 shown
in Figure 1. This is typically the first serum change point
under an ISO simulation test and was done to begin the
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bedding-in process of the bearing. The serum lubricant
was then refreshed and short-term articulation tests were
commenced. The angle of inclination of the acetabular
cup was varied from 30° to 50° in five degree increments.
All angles were set against the horizontal plane of the
simulator, as set out by ISO 14242-1.25 The axial load
to applied vertically down onto the acetabular cup; per-
pendicular to the horizontal plane. The bearing was then
allowed to stabilize for an hour before the inclination
was adjusted for the next test The maximum achievable
inclination angle was limited to 50° for the 28 mm bear-
ings used in this study by the design of the simulator.
As the head was held in place by means of a vertical
adapter (shown in Figure 2) a higher angle would have
resulted in impingement at the bottom of the cup during
articulation.

Electrochemistry
The simulator was instrumented with a three-electrode
electrochemical cell to facilitate in situ measurements of
corrosive degradation. A working electrode (WE) connec-
tion was taken from both the acetabular shell and 316L
stainless steel adaptor. An illustration of the test cell can
be seen in Figure 2. The working electrode therefore com-
prised of all component surfaces present in the cell which
were exposed to the lubricant. A combination silver/silver
chloride (Ag/AgCl) reference electrode (RE) and plati-
num (Pt) counter electrode (CE) probe completed the
cell. All electrochemical measurements were performed
using a PGSTAT101 Potentiostat (Metrohm Autolab,
Netherlands).

Short-term profile. The bearing was then subjected to a
short-term testing profile as detailed in Figure 3. The

short-term tests consisted of a one hour static period of
no sliding, during which the bearing was allowed to
reach an electrochemical equilibrium. This was followed
by 4000 cycles of ISO 14242 walking gait articulation
and a final rest period. Open Circuit Potential (OCP)
was monitored at 1 Hz continuously during the course
of all tests. OCP gives a qualitative illustration of the elec-
trochemical reactions taking place on the exposed surface
of the working electrode.

Icorr = 1

2.303Rp

[ ]
βaβc

βa + βc

[ ]
(1)

During the static and sliding periods three linear
polarisation resistance (LPR) sweeps were performed
(±25 mV, 1 mV/s) to determine the polarisation resi-
stance (Rp). This was then converted to a corrosion
current (Icorr) for the bearing using the Stern-Geary equa-
tion equation (1) and standard Tafel constants (βa= βc=
120 mV/decade) as set out previously.28–30 The corrosion
current is a direct measure of the loss of metallic ions from
the working electrode as a result of corrosion.

Potentiostatic anodic polarisation (+50 mV vs. OCP)
was also performed during sliding and the resultant
anodic current transient was sampled at 100 Hz. This
current was synced with the point in the cycle by also
sampling a live voltage signal from the axial load cell
on the hip simulator. This transient is a measure of the
depassivation and repassivation kinetics of the protective
oxide taking place at the sample surface. Previously this
method has been used to investigate the links between
lubrication (hmin) over the course of a cycle, and the
depassivation of the metal sliding surface during articula-
tion, with a direct measure of current.29

Figure 1. ISO 14242-1:2014 loading cycle showing axial force, flexion/extension, internal/external rotation and abduction/adduction.
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Initiation of sliding. A second series of tests was performed
to examine the behaviour of the bearing at the start of the
sliding period. A new bearing was articulated for 333,333
cycles and the serum was refreshed (as described in
Section ‘Hip simulation’). The samples were allowed to
stabilize for 3600 s then polarised to +0 mV versus the
Ag/AgCl reference electrode, as opposed to the working
electrode OCP. Sliding was then initiated for 600 cycles
and the resultant anodic current was sampled at 5 Hz.
The experiment was repeated three times in ‘parallel‘
and ‘series’ configurations. Under the parallel configur-
ation three repeats were performed at a given inclination
before the angle was increased in 5° increments. Under
series the angle was increased after each test then reverted
back to 30°.

Finally, under this scenario increased retroversion of
the acetabular cup was also investigated. Retroversion
has been shown to also effect the lubrication and
performance of a device.32,33 The acetabular cup was
reset to 30° inclination and the retroversion was increased
from 0° (coincident with the coronal plane) to 20°, again
in 5° increments.

Results

Short-term profile
Figure 4 shows the evolution of OCP over the course of
articulation for increasing angles of acetabular inclination.
A static OCP of between 0 and +50 mV was established

Figure 2. Schematic illustration of the Hip simulator test cell.

Figure 3. Short-term test profile consisting of a one hour static period, followed by 4000 cycles of articulation and a final static settle

period.
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after 3600 s of stabilization for all angles of inclination.
Upon the initiation of sliding cathodic shifts in OCP
were observed. At 30° and 35° shifts of approximately
−50 and −75 mV were noted respectively. The OCP
also gradually trended more noble during sliding remain-
ing at approximately −50 mV. When articulation was
halted at 7600 s OCP immediately began shifting noble
again towards pre-sliding static values. Greater initial
cathodic shifts were observed at higher angles of inclina-
tion than at the low angles; both 45° and 50° shifted cath-
odically by approximately −150 mV. These initial lower
OCP values quickly ennobled over the first 1000 cycles
of sliding however, reaching values similar to those
observed at 30° for the remainder of the test

The corrosion currents (Icorr) during static and sliding
conditions, determined from the polarisation resistance
(Rp), can be seen in Figure 5. During static periods the
passive corrosion current of the sample was calculated
as approximately 2.0–2.25 µA across all angles of inclina-
tion. During sliding this increased to approximately 3.0–
3.5 µA. There was no observed significant change in cor-
rosion current as a result of increased angle of inclination
(ANOVA, p < 0.05). The lack of any significant effect of
inclination was also mirrored in the anodic polarisation
current transients, shown in Figure 6.

The anodic current transients performed near the
end of the sliding period demonstrated repeating, cyclic
patterns. This was consistent with patterns observed
previously during walking gait hip simulation.29,31 A
twin-peak transient, mimicking the Paul loading profile,
was noted with a primary peak around the heel-strike
load followed by a secondary lower peak. These peaks
have been noted previously to coincide with the lubrica-
tion regime over the course of a cycle.29 As shown in
Figure 6 a general trend of increased anodic current
with higher inclination was observed. This varied cycle

to cycle however, and the peaks were often of a similar
magnitude of between approximately 5 to 8 µA.

Initiation of sliding
The larger cathodic shifts in OCP for higher inclination
angles, shown in Figure 4, indicated different conditions
at the initiation of articulation which normalised before
the first sliding LPR sweep was taken. Therefore in
order to investigate the corrosive degradation during this
period a second series of tests was performed. The
anodic current transients for both parallel and series con-
figurations can be seen Figure 7.

Under both approaches a clear trend of increased
anodic current over the initial cycles as a result of inclina-
tion was observed. In ‘parallel‘ at 30° and 35° inclination
anodic currents of approximately 4–10 µA were noted.
This agreed with the steady-state values demonstrated
both in Figure 6 and as reported previously.28,29 Upon
increasing the inclination to 40° the anodic currents
immediately increased to 20–40 µA and again to 40–
60 µA at 45°. At the final 50° inclination the anodic
current increased to 60–70 µA for the first repeat and con-
tinued to climb to over 120 µA by the third repeat. This
represented over an order of magnitude increase in the
observed anodic current as a result of a 20° increase in
the inclination of the bearing.

Under the ‘series’ configuration a trend was observed
of increased anodic current at lower inclination immedi-
ately following a high inclination test The series tests
were started immediately after the parallel tests and at
30° (following the ‘parallel‘ 50°) a higher anodic
current of approximately 25 µA was observed. As the
inclination was increased the anodic current transient
also increased to approximate averages of 50, 60, 90
and 110 µA. Upon reverting back to 30° even higher

Figure 4. Open circuit potential for a 28 mm MoM bearing ar under an ISO 14242-1 profile for 4000 cycles at varying angles of cup

inclination.
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transients of approximately 50 µA were recorded and this
pattern occurred again for the second and third repeats.

Retroversion
The anodic current transients for increased levels of retro-
version can be seen in Figure 8 and a similar trend of
raised anodic current was observed. At 0° version an
average current of approximately 18 µA was observed,
similar to the 30° inclination scenario run in series.
Upon increasing the retroversion to 5° the current imme-
diately increased to an average of approximately 24 µA.
This trend continued with average currents of approxi-
mately 28, 45 and 55 µA for 10°, 15° and 20° retroversion
respectively.

Discussion

The study of malpositioning of the acetabular cup in THR
has largely focused on hard-on-hard bearings. This is
because such devices rely on the fluid pressure generated
by elastohydrodynamic lubrication to support a degree of
the load and reduce asperity contact during sliding. As
mentioned Dowson et al.6 showed complete separation
of the bearing surfaces during gait cycles in a hip simula-
tor. Myant et al.34,35 demonstrated the load supporting
properties of the fluid pressure and also that it is relatively
easy to interrupt the fluid film. Even single scratches on
the bearing surface can reduce the film thickness substan-
tially.34 With high levels of acetabular inclination the
contact area may be impaired,32 and thus provide an

Figure 5. Corrosion current (Icorr) for a 28 mm MoM bearing under static and sliding conditions at varying angles of cup inclination.

Figure 6. Anodic current transients (+50 mV vs. OCP) for a 28 mm MoM bearing articulating under an ISO 14242-1 profile at varying

angles of cup inclination.
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avenue for this fluid pressure to escape the bearing
entirely. For MoM devices, with sliding metallic bearing
surfaces, loss of lubricant may be particularly devastating.
Hadley et al.36,37 investigated stop-dwell-start testing and
found the wear of MoM devices increased due to the loss
of entrainment after dwell periods. Under these adverse
loading scenarios, the contact and lubrication regime at
the interface change drastically from normal articulation.
It is therefore important to understand the degradation
mechanisms during such events as well as their impact
on total mass loss over long term testing.

In the case of the present study only the effect of 50°
acetabular inclination on the corrosive degradation was
examined. Under these parameters it was unlikely that
the contact area of the 28 mm bearings was fully compro-
mised by 50° inclination. It is possible to estimate the
contact area or half-width (a) using Hertzian contact

theory and an equivalent ball-on-plane model.38

Equations (2) and (3) demonstrate this, where (W) is the
axial load, (R′) is the equivalent radius and (E′) is the
effective Young‘s modulus. It should be noted this esti-
mation only holds where the contact half-width is signifi-
cantly smaller than the bearing radius (<25%).38

a = 3WR′

2E′

( )1/3

(2)

R′ = R1R2

R2 − R1
(3)

Assuming a 100 µm bearing clearance (c) in the calcu-
lation of R‘ the contact half-width varied over the
course of a cycle with the twin-peak loading profile. A
maximum half-width of approximately 3.26 mm was

Figure 7. Anodic current transients (+0 mV vs. Ref.) over the first 600 cycles for a 28 mm MoM bearing articulating under an ISO

14242-1 profile at varying angles of cup inclination increased in (a) parallel and (b) series.

Figure 8. Anodic current transients (+0 mV vs. Ref.) over the first 600 cycles for a 28 mm MoM bearing articulating under an ISO

14242-1 profile at varying angles of cup retroversion.
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determined at the peak loads of 3000 N. This translated to
a contact angle of 13.3° from the vertical which means
even at 50° inclination this still leaves approximately
26.7° of arc, shown in Figure 9. Despite this at the initia-
tion of sliding substantially increased anodic currents
were recorded at increased levels of acetabular inclina-
tion. The fluid-film necessary for mixed and EHL
regimes does not solely exist at the contact area and
may still have been effected by edge-loading effects; as
demonstrated by Williams et al.20 and Al-Hajjar
et al..21,22 High inclination in these devices have been
shown to increase levels of cobalt and chromium ions in
synovial13,14 and as much as a 17× fold increase in hip
simulator wear rates.39 This may be more severe for cup
bearing designs which do not have a full 180° arc and
thus an even higher effective angle of inclination.32

Hip simulation studies, as set out by the ISO standards,
are often ran continuously at 1 Hz under a simplified
loading and gait profile for over 5 million cycles. This
is in part due to practicality as the length of time needed
to run out to such a high number of cycles can take
months of expensive and labour-intensive simulator
time. This is of course not how THR are likely to
operate in vivo as patients will not walk under the same
profile continuously. Hadley et al.36,37 demonstrated that
simply adding dwell periods to the ISO 14242 walking
profile interrupts entrainment and results in the next
cycle operating in a partially starved scenario. Clues of
these differences compared to real world performance
can be determined with in situ electrochemical
measurements.

The increase in anodic current noted at the initiation of
sliding was not observed in the LPR data taken during the
short-term profile tests. As can be seen in Figure 5 there
was no significant increase (ANOVA, p < 0.05) in the esti-
mated corrosion current (Icorr) with higher acetabular
inclination. Currents were higher under sliding, as
expected, but not under the more severe contact condi-
tions. This was not expected as an increase in inclination
was thought to result in a more severe tribological contact

and thus higher corrosive currents. As can be seen from
the OCP data however, electrochemical differences in
levels of inclination were observed and noted to be transi-
ent at start-up. The cathodic shifts observed are typically
associated with depassivation of the protective oxide film
and increased corrosion of the alloy as the bulk material is
exposed to the electrolyte. They were much higher at the
start of each test suggesting a more severe level of depas-
sivation (Figure 4). As noted, the OCP at each level of
inclination did ennoble during sliding and eventually
reached similar levels relatively early. This behaviour is
similar to trends observed previously under standard
gait wherein OCP gradually shifted noble during
sliding.28 This often occurred before the first LPR scan
was taken in the short-term profile. Conditions at the
start of sliding therefore could be very different than
after a period of articulation. Even at the different inclina-
tions studied here, the bearing reached similar operating
conditions such that there were no significant difference
in Icorr (Figure 5) or anodic polarisation (Figure 6). At
the initiation of sliding however we can see notable differ-
ences such as the higher anodic currents noted in Figure 7.
This initiation period would be relatively small during hip
simulation but occur frequently during real-world use of
the devices; such as when a patient changes gait profile
or pauses articulation.

Under normal articulation in vivo the contact area on
the bearing surface will also constantly be changing.
Different areas will undergo sliding and depassivation
as the patient undergoes different activities. As such
there are likely to be several stop-starts and changes in
the gait profile as different activities such as stair-climb
or seating are undertaken. This will include periods of
rest or ‘dwell‘ where no lubricant will be entrained follo-
wed by continued articulation. As we can see from the
‘series’ set of tests in Figure 7 increasing inclination
resulted in increased anodic current. Interestingly
however, when reverting back to lower levels of inclina-
tion the anodic currents were higher than observed pre-
viously. Fresh areas of the bearing surface would have
been exposed to sliding, as would have been the case
during some other change to the articulation profile.
This could have included different gait-patterns as well
as isolated adverse events such as a stumble. This increase
would not have been noted running tests continuously
over the same contact area. Dynamic testing and ‘daily-
living‘ scenarios, as have been suggested by other
studies,40,41 will advance the hip simulation methods sig-
nificantly by more realistically replicating how THR
devices are used.

The present study does have several limitations includ-
ing limited sample numbers. Following recall of MoM
devices from the market it is difficult to obtain clinical
samples for study. Indeed much of the recent literature
investigating MoM devices has focused on lower
diameter bearings (<40 mm)20–22,36,37 despite the
majority of implanted devices being of large diameter
(40–56+mm).19 This may be due to the difficulty in
acquiring test samples following market recall of such

Figure 9. Illustration of the estimated Hertzian contact area

during peak load (3000 N) for 28 mm metal-on-metal bearings.
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devices. The 28 mm diameter bearings investigated in this
study would be expected to largely operate in a
mixed-lubrication regime and not more into EHL lub-
rication, full fluid-film, and separation of the surfaces as
measured in larger devices.6 A greater degree of entrain-
ment and separation of the surfaces may have had large
effects on the measured corrosion currents due to
reduced depassivation of the surface oxide.29 Also, due
to the simulator design and the size of the 28 mm diameter
bearings the maximum inclination was limited to 50°.
Although higher angles would have been interesting,
and have been observed clinically, this comes close to
the maximum of 55° inclination prescribed by the ISO
standard.26 Indeed, the higher angle of 65° examined in
other studies are often adjusted to represent in vivo
angles. This includes a 10° offset to account for the direc-
tion of load on the hip simulators used by those studies
and so is equivalent to 55° to the horizontal.23,27

While care was taken to seal the femoral head taper, the
taper between the acetabular liner and shell was not
sealed. This interface has been of increasing interest in
recent years as a possible source of debris and ions.42–44

While not part of the bearing surface degradation here is
still relevant to device performance. With increased incli-
nation the load vector will have shifted more to one side of
the cup, closer to the vertical, possibly resulting in a more
severe fretting interface.

Choice of lubricant is also critical, with more modern
versions of the ISO standard calling for higher levels of
protein concentration (30 g/L)26 and several studies dem-
onstrating the effect on long-term wear performance
across joint replacements simulator studies with demon-
strated build-up of tribolayers.45–48 The constituent
makeup of the lubricant can also have an impact on the
electrochemical performance. The choice of protein con-
centration in the present study was used previously by
Hesketh et al.30,31 and enabled direct comparison to pre-
vious tests run on the same simulator. More recently
studies have demonstrated the concentration of serum
albumin, presence of hyaluronic acid (HA) and ‘diseased‘
synovial fluid modifiers such as hydrogen peroxide
(H2O2) can all effect the electrochemical response.49,50

Moving to more representative conditions, as would be
found in patients after primary surgery, is important to
accurately determine performance of devices. Whilst
such lubricants are being investigated, they are not cur-
rently validated for pre-clinical assessment. The use of
FBS remains necessary in the relevant joint simulation
standards.26

Metallic sliding interfaces in THR, coupled with
complex lubrication regimes and the biological environ-
ment result in nuanced degradation mechanisms.
Currently pre-clinical testing in hip simulators relies on
post-test and ex situ analysis to determine performance
and material loss. Advancements to the ISO 14242 stan-
dard26 include adverse loading scenarios after evidence
presented in the literature. But these changes do not inves-
tigate performance in situ and as such can neglect import-
ant phenomena occurring during and after adverse events

or changes in articulation. The data presented in this study
suggests that how hip simulation is currently undertaken
can underestimate degradation and neglect important
information in pre-clinical testing relevant to the real-
world performance in vivo.

Conclusion

Changing gait profiles and isolated adverse events should
be considered in pre-clinical testing as part of a realistic
daily-living articulation. This should include in situ ana-
lysis of the sliding interfaces, such as electrochemical
degradation in the case of metallic surfaces. Long term,
1 Hz cyclic articulation followed by bulk gravimetric or
volumetric mass loss measurements can neglect important
degradation processes during adverse loading scenarios.

• Acetabular malpositioning (inclination and retrover-
sion) resulted in significantly higher anodic current
transients over the first 600 cycles of articulation.

• After the first 600 cycles of continuous articulation the
bearing appeared to stabilise electrochemically with an
ennobled OCP and corrosion currents similar to those
observed at low angles.

• Upon increasing inclination and then returning to a
standard 30° higher currents were noted than pre-
viously; suggesting adverse events may increase deg-
radation during subsequent normal articulation.
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