39 research outputs found

    R5 Clade C SHIV Strains with Tier 1 or 2 Neutralization Sensitivity: Tools to Dissect Env Evolution and to Develop AIDS Vaccines in Primate Models

    Get PDF
    Background: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. Methodology/Principal Findings: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an “early,” recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a “late” form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to “late” SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+^+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. Conclusions/Significance: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates

    Replication Data for: Ballots and Blackmail: Coercive Diplomacy and the Democratic Peace

    No full text
    Does the restraint that prevents pairs of democracies from fighting large-scale wars also prevent them from coercing one another? While scholars have long drawn a bright line between using force and threatening it, the literature on democratic peace theory overwhelmingly emphasizes the former. Using a dataset uniquely suited for the study of militarized compellent threats, we find that pairs of democracies are significantly less likely to engage in coercive diplomacy than are other types of regimes. We employ a variety of estimators to ensure the robustness of our results; the finding holds in all cases. We also elaborate on several alternative logics that might account for the hypotheses, allowing us to adjudicate between a variety of mechanisms. Our findings reveal that democratic peace theory has broader applicability than even proponents have given it credit for: not only are democracies less likely to fight wars with one another, but they are also less likely to threaten each other with force. This replication folder includes the dataset used in our paper, as well as the do files and documentation necessary to recreate our results

    Ballots and Blackmail: Coercive Diplomacy and the Democratic Peace

    No full text
    Does the restraint that prevents pairs of democracies from fighting large-scale wars also prevent them from coercing one another? While scholars have long drawn a bright line between using force and threatening it, the literature on democratic-peace theory overwhelmingly emphasizes the former. Using a dataset uniquely suited for the study of militarized compellent threats, we find that pairs of democracies are significantly less likely to engage in coercive diplomacy than are other types of regimes. We employ a variety of estimators to ensure the robustness of our results; the finding holds in all cases. We also elaborate on several alternative logics that might account for the hypotheses. This allows us to adjudicate between a variety of mechanisms. Our findings reveal that democratic-peace theory has broader applicability than even proponents give it credit for: not only are democracies less likely to fight wars with one another, but they also prove less likely to threaten each other with force

    X4 Human Immunodeficiency Virus Type 1 gp120 Down-Modulates Expression and Immunogenicity of Codelivered Antigens

    Get PDF
    In order to increase the immune breadth of human immunodeficiency virus (HIV) vaccines, strategies such as immunization with several HIV antigens or centralized immunogens have been examined. HIV-1 gp120 protein is a major immunogen of HIV and has been routinely considered for inclusion in both present and future AIDS vaccines. However, recent studies proposed that gp120 interferes with the generation of immune response to codelivered antigens. Here, we investigate whether coimmunization with plasmid-encoded gp120 alters the immune response to other coadministered plasmid encoded antigens such as luciferase or ovalbumin in a mouse model. We found that the presence of gp120 leads to a significant reduction in the expression level of the codelivered antigen in vivo. Antigen presentation by antigen-presenting cells was also reduced and resulted in the induction of weak antigen-specific cellular and humoral immune responses. Importantly, gp120-mediated immune interference was observed after administration of the plasmids at the same or at distinct locations. To characterize the region in gp120 mediating these effects, we used plasmid constructs encoding gp120 that lacks the V1V2 loops (­ ΔV1V2) or the V3 loop (ΔV3). After immunization, the ΔV1V2, but not the ΔV3 construct, was able to reduce antigen expression, antigen presentation, and subsequently the immunogenicity of the codelivered antigen. The V3 loop dependence of this phenomenon seems to be limited to V3 loops known to interact with the CXCR4 molecule but not with CCR5. Our study presents a novel mechanism by which HIV-1 gp120 interferes with the immune response against coadministered antigen in a polyvalent vaccine preparation

    B cell treatment promotes a neuroprotective microenvironment after traumatic brain injury through reciprocal immunomodulation with infiltrating peripheral myeloid cells

    No full text
    Abstract Traumatic brain injury (TBI) remains a major cause of death and severe disability worldwide. We found previously that treatment with exogenous naïve B cells was associated with structural and functional neuroprotection after TBI. Here, we used a mouse model of unilateral controlled cortical contusion TBI to investigate cellular mechanisms of immunomodulation associated with intraparenchymal delivery of mature naïve B lymphocytes at the time of injury. Exogenous B cells showed a complex time-dependent response in the injury microenvironment, including significantly increased expression of IL-10, IL-35, and TGFβ, but also IL-2, IL-6, and TNFα. After 10 days in situ, B cell subsets expressing IL-10 or TGFβ dominated. Immune infiltration into the injury predominantly comprised myeloid cells, and B cell treatment did not alter overall numbers of infiltrating cells. In the presence of B cells, significantly more infiltrating myeloid cells produced IL-10, TGFβ, and IL-35, and fewer produced TNFα, interferon-γ and IL-6 as compared to controls, up to 2 months post-TBI. B cell treatment significantly increased the proportion of CD206+ infiltrating monocytes/macrophages and reduced the relative proportion of activated microglia starting at 4 days and up to 2 months post-injury. Ablation of peripheral monocytes with clodronate liposomes showed that infiltrating peripheral monocytes/macrophages are required for inducing the regulatory phenotype in exogenous B cells. Reciprocally, B cells specifically reduced the expression of inflammatory cytokines in infiltrating Ly6C+ monocytes/macrophages. These data support the hypothesis that peripheral myeloid cells, particularly infiltrating monocyte/macrophages, are key mediators of the neuroprotective immunomodulatory effects observed after B cell treatment
    corecore