269 research outputs found
NRG Oncology/NSABP B-47 menstrual history study: impact of adjuvant chemotherapy with and without trastuzumab
The NRG Oncology/NSABP B-47 menstrual history (MH) study examined trastuzumab effects on menstrual status and associated circulating reproductive hormones. MH was evaluated by questions related to hysterectomy, oophorectomy, and reported menstrual changes. Pre/perimenopausal women were assessed at entry, 3, 6, 12, 18, 24, 30, and 36 months. Consenting women had estradiol and FSH measurement at entry, 3, 6, 12, 18, and 24 months. Logistic regression determined predictors of amenorrhea and hormone levels at 12, 24, and 36 months. Between 2/8/2011 and 2/10/2015, 3270 women with node-positive/high-risk node-negative HER2-low breast cancer were enrolled. There were 1,458 women enrolled in the MH study; 1231 consented to baseline blood samples. Trastuzumab did not contribute to a higher amenorrhea rate. Amenorrhea predictors were consistent with earlier studies; however, to our knowledge, this is the largest prospective study to include serial reproductive hormone measurements to 24 months and clinical amenorrhea reports to 36 months. These data can help to counsel patients regarding premature menopause risk
Approaching the knee -- balloon-borne observations of cosmic ray composition
Below the knee in the cosmic ray spectrum, balloon and spacecraft experiments
offer the capability of direct composition and energy measurements on the
primary particles. A major difficulty is obtaining enough exposure to extend
the range of direct measurements sufficiently high in energy to permit overlap
with ground-based observations. Presently, balloon and space measurements
extend only up to ~100 TeV, well below the range of ground-based experiments.
The prospect of Ultra-Long Duration Balloon missions offers the promise of
multiple long flights that can build up exposure. The status of balloon
measurements to measure the high energy proton and nuclear composition and
spectrum is reviewed, and the statistical considerations involved in searching
for a steepening in the spectrum are discussed. Given the very steeply falling
spectrum, it appears unlikely that balloon experiments will be able to extend
the range of direct measurements beyond 1000 TeV any time in the near future.
Especially given the recent suggestions from KASCADE that the proton spectrum
steepens only at 4000-5000 TeV, the chance of detecting the knee with direct
measurements of protons to iron on balloons is not likely to occur without
significant increases in the payload and flight duration capabilities of high
altitude balloons.Comment: 10 pages, to be published, J. Phys. Conf. Ser. (Proc. Workshop on
Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, April 2005
Search for Nucleon Decays induced by GUT Magnetic Monopoles with the MACRO Experiment
The interaction of a Grand Unification Magnetic Monopole with a nucleon can
lead to a barion-number violating process in which the nucleon decays into a
lepton and one or more mesons (catalysis of nucleon decay). In this paper we
report an experimental study of the effects of a catalysis process in the MACRO
detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux
upper limits at the level of for
, based on the search for
catalysis events in the MACRO data. We also analyze the dependence of the MM
flux limit on the catalysis cross section.Comment: 12 pages, Latex, 10 figures and 2 Table
The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors
An experimental study of the production of up-going charged particles in
inelastic interactions of down-going underground muons is reported, using data
obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of
12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243
events are observed having an up-going particle associated with a down-going
muon. These events are analysed to determine the range and emission angle
distributions of the up-going particle, corrected for detection and
reconstruction efficiency. Measurements of the muon neutrino flux by
underground detectors are often based on the observation of through-going and
stopping muons produced in interactions in the rock below the
detector. Up-going particles produced by an undetected down-going muon are a
potential background source in these measurements. The implications of this
background for neutrino studies using MACRO are discussed.Comment: 18 pages, 9 figures. Accepted by Astrop. Physic
Search for massive rare particles with MACRO
Massive rare particles have been searched for in the penetrating cosmic
radiation using the MACRO apparatus at the Gran Sasso National Laboratories.
Liquid scintillators, streamer tubes and nuclear track detectors have been used
to search for magnetic monopoles (MMs).
Based on no observation of such signals, stringent flux limits are
established for MMs as slow as a few 10^(-5)c. The methods based on the
scintillator and on the nuclear track subdetectors were also applied to search
for nuclearites. Preliminary results of the searches for charged Q-balls are
also presented.Comment: 20 pages, 9 EPS figures included with epsfi
Final results of magnetic monopole searches with the MACRO experiment
We present the final results obtained by the MACRO experiment in the search
for GUT magnetic monopoles in the penetrating cosmic radiation, for the range
. Several searches with all the MACRO sub-detectors
(i.e. scintillation counters, limited streamer tubes and nuclear track
detectors) were performed, both in stand alone and combined ways. No candidates
were detected and a 90% Confidence Level (C.L.) upper limit to the local
magnetic monopole flux was set at the level of cm
s sr. This result is the first experimental limit obtained in
direct searches which is well below the Parker bound in the whole range
in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table
A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
We describe a search method for fast moving ()
magnetic monopoles using simultaneously the scintillator, streamer tube and
track-etch subdetectors of the MACRO apparatus. The first two subdetectors are
used primarily for the identification of candidates while the track-etch one is
used as the final tool for their rejection or confirmation. Using this
technique, a first sample of more than two years of data has been analyzed
without any evidence of a magnetic monopole. We set a 90% CL upper limit to the
local monopole flux of in the
velocity range and for nucleon decay
catalysis cross section smaller than .Comment: 29 pages (12 figures). Accepted by Astroparticle Physic
Nuclearite search with the MACRO detector at Gran Sasso
In this paper we present the results of a search for nuclearites in the
penetrating cosmic radiation using the scintillator and track-etch subdetectors
of the MACRO apparatus. The analyses cover the beta =v/c range at the detector
depth (3700 hg/cm^2) 10^-5 < beta < 1; for beta = 2 x 10^-3 the flux limit is
2.7 x 10^-16 cm^-2 s^-1 sr^-1 for an isotropic flux of nuclearites, and twice
this value for a flux of downgoing nuclearites.Comment: 16 pages, 4 Encapsulated Postscript figures, uses article.sty.
Submitted to The European Physical Journal
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
Limits on dark matter WIMPs using upward-going muons in the MACRO detector
We perform an indirect search for Weakly Interacting Massive Particles
(WIMPs) using the MACRO detector to look for neutrino-induced upward-going
muons resulting from the annihilation of WIMPs trapped in the Sun and Earth.
The search is conducted in various angular cones centered on the Sun and Earth
to accommodate a range of WIMP masses. No significant excess over the
background from atmospheric neutrinos is seen and limits are placed on the
upward-going muon fluxes from Sun and Earth. These limits are used to constrain
neutralino particle parameters from supersymmetric theory, including those
suggested by recent results from DAMA/NaI.Comment: 14 pages, 7 figures, submitted to Phys. Rev.
- …