20 research outputs found

    Big people, little world: The body influences size perception

    Get PDF
    Previous research has shown that changes to the body can influence the perception of distances in near space (Witt et al, 2005 Journal of Experimental Psychology: Human Perception and Performance 31 880-888). In this paper, we question whether changes to the body can also influence the perception of extents in extrapersonal space, namely the perception of aperture widths. In experiment 1, broad-shouldered participants visually estimated the size of apertures to be smaller than narrow-shouldered participants. In experiment 2, we questioned whether changes to the body, which included holding a large object, wearing a large object, or simply holding out the arms would influence perceived width. Surprisingly, we found that only when participants\u27 hands were widened was extrapersonal space rescaled. In experiment 3, we explored the boundaries of the effect observed in experiment 2 by asking participants to hold their arms at four different positions in order to determine the arm width at which apertures appeared smaller. We found that arm positions that were larger than the shoulder width made apertures appear smaller. The results suggest that dimensions of the body play a role in the scaling of environmental parameters in extrapersonal space

    Relating spatial perspective taking to the perception of other's affordances: providing a foundation for predicting the future behavior of others

    Get PDF
    Understanding what another agent can see relates functionally to the understanding of what they can do. We propose that spatial perspective taking and perceiving other's affordances, while two separate spatial processes, together share the common social function of predicting the behavior of others. Perceiving the action capabilities of others allows for a common understanding of how agents may act together. The ability to take another's perspective focuses an understanding of action goals so that more precise understanding of intentions may result. This review presents an analysis of these complementary abilities, both in terms of the frames of reference and the proposed sensorimotor mechanisms involved. Together, we argue for the importance of reconsidering the role of basic spatial processes to explain more complex behaviors

    Familiarity with teammate's attitudes improves team performance in virtual reality.

    No full text
    Virtual reality (VR) is a potentially challenging social environment for effective communication and collaboration. Thus, we conducted a VR study to determine whether increased familiarity with a teammate would improve performance on a joint decision making task. Specifically, because attitude familiarity, or knowledge of another person's attitudes, has been correlated with better relationship functioning in the past, we anticipated that team performance would improve when teammates were first asked to discuss their task-relevant attitudes with one another. We also hypothesized that increased familiarity would be particularly useful in immersive VR, where typical social and other nonverbal cues were lacking. Twenty pairs recruited from a workplace environment were randomly assigned to either the Familiar or Control condition before completing a joint decision making task both in VR and on desktop monitors. The manipulation of attitude familiarity was successful: pairs in the Familiar condition were significantly more aware of their partners' unique task-relevant attitudes. Results found that in VR, Familiar pairs were more accurate at determining patterns to events. Additionally, for teams less experienced in VR, Familiar pairs were also more accurate at predicting future events. However, there was no meaningful statistical difference in pairs' ability to identify information. Familiar teams also took more time to answer questions, and we found no difference in self-reported communication quality. Overall, this was the first successful manipulation of attitude familiarity and results indicate that such an intervention may prove useful in a collaborative work environment, as Familiar teams demonstrated greater accuracy, especially in VR

    Fear Similarly Alters Perceptual Estimates of and Actions over Gaps.

    No full text
    Previous research has demonstrated an influence of one's emotional state on estimates of spatial layout. For example, estimates of heights are larger when the viewer is someone typically afraid of heights (trait fear) or someone who, in the moment, is experiencing elevated levels of fear (state fear). Embodied perception theories have suggested that such a change in perception occurs in order to alter future actions in a manner that reduces the likelihood of injury. However, other work has argued that when acting, it is important to have access to an accurate perception of space and that a change in conscious perception does not necessitate a change in action. No one has yet investigated emotional state, perceptual estimates, and action performance in a single paradigm. The goal of the current paper was to investigate whether fear influences perceptual estimates and action measures similarly or in a dissociable manner. In the current work, participants either estimated gap widths (Experiment 1) or were asked to step over gaps (Experiment 2) in a virtual environment. To induce fear, the gaps were placed at various heights up to 15 meters. Results showed an increase in gap width estimates as participants indicated experiencing more fear. The increase in gap estimates was mirrored in participants' stepping behavior in Experiment 2; participants stepped over fewer gaps when experiencing higher state and trait fear and, when participants actually stepped, they stepped farther over gap widths when experiencing more fear. The magnitude of the influence of fear on both perception and action were also remarkably similar (5.3 and 3.9 cm, respectively). These results lend support to embodied perception claims by demonstrating an influence on action of a similar magnitude as seen on estimates of gap widths

    Virtual Environment.

    No full text
    <p>Screenshot of the virtual environment viewed from the participant’s standing location and schematic drawing of the estimation task (not-to-scale). Participants began the trials standing on the near brick platform and were tasked with estimating the distance from the edge of the near brick platform to the edge of the far brick platform (a) by adjusting the distance between two cones placed to the right of the participant (b). Participants only stepped across the gap in Experiment 2.</p

    Estimates and Action as a Function of State Fear.

    No full text
    <p>(a) Estimates of gap width from Experiment 1 and (b) margin of error, or how far over the gap people stepped, from Experiment 2 are plotted as a function of state levels of fear (mean, +/1 SD) as measured by the Subjective Units of Distress Scale (SUDS). Both estimates of gap widths and margin of error increased with state fear and by a similar magnitude (5.3 and 3.9 cm, respectively).</p

    Cross-over Points as a Function of Fear.

    No full text
    <p>Cross-over points, or the largest gap at which participants stepped normed to eye-height, is plotted against state levels of fear (mean, +/- 1SD) for three values of trait fear (average, +/-1SD indicates high or low). Higher trait individuals were cautious, opting to step across only relatively smaller gaps. Lower trait fear individuals acted more cautiously when experiencing higher state fear than when experiencing lower state fear.</p

    Body size estimation of self and others in females varying in BMI

    No full text
    <div><p>Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.</p></div
    corecore