1,409 research outputs found

    Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    Get PDF
    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations

    X-34 Experimental Aeroheating at Mach 6 and 10

    Get PDF
    Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle

    Fractal Noise in Quantum Ballistic and Diffusive Lattice Systems

    Full text link
    We demonstrate fractal noise in the quantum evolution of wave packets moving either ballistically or diffusively in periodic and quasiperiodic tight-binding lattices, respectively. For the ballistic case with various initial superpositions we obtain a space-time self-affine fractal Ψ(x,t)\Psi(x,t) which verify the predictions by Berry for "a particle in a box", in addition to quantum revivals. For the diffusive case self-similar fractal evolution is also obtained. These universal fractal features of quantum theory might be useful in the field of quantum information, for creating efficient quantum algorithms, and can possibly be detectable in scattering from nanostructures.Comment: 9 pages, 8 postscript figure

    Modelling the behaviour of the bonding of fibre reinforced concrete at the plate end

    Get PDF
    Comunicação apresentada em International Symposium Polymers in Concrete (ISPIC 2006), Guimarães, 2006In this paper, the finite element method is used to analyse the behaviour of concrete externally strengthened by fibre reinforced polymers (FRP). This model aims to analyse the stress distribution in the FRP-concrete interface at the plate end of a bending beam. The behaviour of the concrete-poxy-FRP arrangement is modelled with interface elements with initial zero thickness, using a discrete crack approach. A localized damage model is adopted for the interface and a parametric study is performed to approximate the material parameters adopted. The importance of each parameter is assessed. This model is subsequently verified using experimental data collected from the literature. Finally, a proposal is made concerning the adoption of a relation GF II/GF for the interface behaviour. Mention is also made to some of the main mathematical models found in the literature, which are compared to the present approach

    Hypothesis: The electrochemical regulation of metabolism

    Get PDF
    Abstract -An Electrochemical model of metabolism is described that takes account of a variety of metabolic phenomena observed in our laboratory. These include a utilisation by hepatocytes of oxygen, substantially in excess of ATP requirements; energydependence of the [lactate~[pyruvate] ratio; non-equilibrium behaviour of the components of the lactate dehydrogenase reaction during ethanol oxidation, and linear relationships between cellular potentials and metabolic fluxes. In the light of these findings, we propose as an extension of the Mitchell chemiosmotic hypothesis, that metabolic pathways are under the control of opposing far-from-equilibrium chemical and electrical forces that poise the pathways in a balanced state of apparent equilibrium, allowing flux to be regulated by changes in the magnitude of cellular potentials

    Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows

    Get PDF
    peer-reviewedInternational interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1 kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n = 709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n = 709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with superior energy conversion efficiency (ECE, i.e., NEL divided by NEI; ECE = 0.55) compared with the least efficient 10% of test-day records (ECE = 0.33). Moreover, REI was positively correlated with energy balance, implying that more negative REI animals (i.e., deemed more efficient) are expected to be, on average, in greater negative energy balance. Many of the correlations among the 14 defined efficiency traits differed from unity, implying that each trait is measuring a different aspect of efficiency.The authors gratefully acknowledge funding from the Irish Department of Agriculture, Food and Marine (Dublin, Ireland) Research Stimulus Fund project GENCOST, and funding from the Marie Curie project International Research Staff Exchange Scheme SEQSE

    Perovskite-Related Oxide Fluorides: The Use of Mössbauer Spectroscopy in the Investigation of Magnetic Properties

    Get PDF
    We review here some of our recent work on the synthesis and characterisation of new perovskite-related oxide fluorides. We demonstrate the use of low temperature fluorination methods for the preparation of new phases with high fluorine contents. We also show how fluorine can be accommodated in different sites according to the structural details of the initial oxide and the fluorine content. Importantly, we describe how Mössbauer spectroscopy is a powerful technique for monitoring changes in cation oxidation state as a result of fluorination and for examining the complex magnetic interactions which result from the accommodation of fluorine within the structures and how these can be related to structural properties and changes to the superexchange pathways

    Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection

    Get PDF
    peer-reviewedThe objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NEI) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NEI. Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NEI but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health.Funding from the Irish Department of Agriculture, Food and Marine (Dublin, Ireland) Research Stimulus Fund project Genetics of cost production traits (GENCOST), and funding from the Horizon 2020 Marie Curie project International Research Staff Exchange Scheme Global cooperation to develop next generation whole genome sequence selection tools for novel traits (SEQSEL) are greatly appreciated

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio
    corecore