96 research outputs found

    A Polyclonal Immune Function Assay Allows Dose-Dependent Characterization of Immunosuppressive Drug Effects but Has Limited Clinical Utility for Predicting Infection on an Individual Basis

    Get PDF
    Dosage of immunosuppressive drugs after transplantation critically determines rejection and infection episodes. In this study, a global immune function assay was characterized among controls, dialysis-patients, and transplant-recipients to evaluate its utility for pharmacodynamic monitoring of immunosuppressive drugs and for predicting infections. Whole-blood samples were stimulated with anti-CD3/toll-like-receptor (TLR7/8)-agonist in the presence or absence of drugs and IFN-γ secretion was measured by ELISA. Additional stimulation-induced cytokines were characterized among T-, B-, and NK-cells using flow-cytometry. Cytokine-secretion was dominated by IFN-γ, and mainly observed in CD4, CD8, and NK-cells. Intra-assay variability was low (CV = 10.4 ± 6.2%), whereas variability over time was high, even in the absence of clinical events (CV = 65.0 ± 35.7%). Cyclosporine A, tacrolimus and steroids dose-dependently inhibited IFN-γ secretion, and reactivity was further reduced when calcineurin inhibitors were combined with steroids. Moreover, IFN-γ levels significantly differed between controls, dialysis-patients, and transplant-recipients, with lowest IFN-γ levels early after transplantation (p < 0.001). However, a single test had limited ability to predict infectious episodes. In conclusion, the assay may have potential for basic pharmacodynamic characterization of immunosuppressive drugs and their combinations, and for assessing loss of global immunocompetence after transplantation, but its application to guide drug-dosing and to predict infectious on an individual basis is limited

    Should We Perform Old-For-Old Kidney Transplantation during the COVID-19 Pandemic? The Risk for Post-Operative Intensive Stay

    Get PDF
    Health care systems worldwide have been facing major challenges since the outbreak of the SARS-CoV-2 pandemic. Kidney transplantation (KT) has been tremendously affected due to limited personal protective equipment (PPE) and intensive care unit (ICU) capacities. To provide valid information on risk factors for ICU admission in a high-risk cohort of old kidney recipients from old donors in the Eurotransplant Senior Program (ESP), we retrospectively conducted a bi-centric analysis. Overall, 17 (16.2%) patients out of 105 KTs were admitted to the ICU. They had a lower BMI, and both coronary artery disease (CAD) and hypertensive nephropathy were more frequent. A risk model combining BMI, CAD and hypertensive nephropathy gained a sensitivity of 94.1% and a negative predictive value of 97.8%, rendering it a valuable search test, but with low specificity (51.1%). ICU admission also proved to be an excellent parameter identifying patients at risk for short patient and graft survivals. Patients admitted to the ICU had shorter patient (1-year 57% vs. 90%) and graft (5-year 49% vs. 77%) survival. To conclude, potential kidney recipients with a low BMI, CAD and hypertensive nephropathy should only be transplanted in the ESP in times of SARS-CoV-2 pandemic if the local health situation can provide sufficient ICU capacities

    A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets

    Get PDF
    We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of 41 K and 87 Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20–2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    The "Soft" Existing Legal Protection of Software and the Preemption of State Shrink-Wrap License Enforcement Acts

    Get PDF
    This Note presents an overview of the existing legal means of protecting proprietary interests in computer software that are perceived as inadequate by the software industry. An analysis of Vault v. Quaid follows, and this Note concludes that current state-enacted shrink-wrap license enforcement acts that would supplement the existing legal means of protecting software from unauthorized copying are preempted by the federal Copyright Act, and thus software developers are left to rely on the remaining, albeit inadequate, means of protection
    corecore