2,720 research outputs found

    Roads of blight : solutions to the automobile burden

    Get PDF
    iii, 9 p

    Expected Precision of Higgs Boson Partial Widths within the Standard Model

    Full text link
    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.Comment: 20 pages, 1 figure; v2: minor typo correction

    Fire exclusion forest dynamics and nitrogen cycling in low elevation forests of western Montana

    Get PDF

    Shakedown and limit analysis of 90° pipe bends under internal pressure, cyclic in-plane bending and cyclic thermal loading

    Get PDF
    The Linear Matching Method is used to create the shakedown limit and limit load interaction curves of 90 degree pipe bends for a range of bend factors. Two load cases are considered i) internal pressure and inplane bending (which includes opening, closing and reversed bending) and ii) internal pressure and a cyclic through wall temperature difference giving rise to thermal stresses. The effects of the ratios of bend radius to pipe mean radius (R/r) and mean radius to wall thickness (r/t) on the limit load and shakedown behaviour are presented

    The Running Coupling from SU(3) Gauge Theory

    Full text link
    We present high precision results on the static quark-antiquark-potential on 32^4 and smaller lattices, using the standard Wilson action at BETA = 6.0, 6.2, 6.4, and 6.8 on the Connection Machine CM-2. Within our statistical errors (1%) we did not observe any finite size effects affecting the potential values, on varying the spatial lattice extent from 0.9 fm up to 3.3 fm. We find violations of asymptotic scaling in the bare coupling up to BETA = 6.8. We demonstrate that scaling violations on the string tension can be considerably reduced by introducing effective coupling schemes, which allow for a safer extrapolation of LAMBDA_Lattice to its continuum value. We are also able to see and to quantify the running of the coupling from the interquark force. From this we extract the ratio \sqrt{SIGMA}/LAMBDA_L. Both methods yield consistent values for the LAMBDA-parameter: LAMBDA_MSbar = 0.558(-0.007+0.017)\sqrt{SIGMA} = 246(-3+7) MeV.Comment: (Talk G. Bali at Lattice 92, Amsterdam), 4 Pages, 4 Postscript figures, LaTeX with espcrc2, and epsf style file

    A direct method for the evaluation of lower and upper bound ratchet limits

    Get PDF
    The calculation of the ratchet limit is often vital for the assessment of the design and integrity of components which are subject to cyclic loading. This work describes the addition of a lower bound calculation to the existing Linear Matching Method upper bound ratchet analysis method. This lower bound calculation is based on Melan's theorem, and makes use of the residual and elastic stress fields calculated by the upper bound technique to calculate the lower bound ratchet limit multiplier. By doing this, the method combines the stable convergence of the upper bound method but retains the conservatism offered by the lower bound. These advantages are complemented by the ability of the Linear Matching Method to consider real 3D geometries subject to complex load histories including the effect of temperature dependent yield stress. The convergence properties of this lower bound ratchet limit are investigated through a benchmark problem of a plate with a central hole subject to cyclic thermal and mechanical loads. To demonstrate the effectiveness of the method, the ratchet limit of a thick walled pipe intersection, also subject to cyclic thermal and mechanical loads, is considered. Validation of these results is provided by full elastic-plastic FEA in Abaqus

    Nematic Fermi Fluids in Condensed Matter Physics

    Get PDF
    Correlated electron fluids can exhibit a startling array of complex phases, among which one of the more surprising is the electron nematic, a translationally invariant metallic phase with a spontaneously generated spatial anisotropy. Classical nematics generally occur in liquids of rod-like molecules; given that electrons are point-like, the initial theoretical motivation for contemplating electron nematics came from thinking of the electron fluid as a quantum melted electron crystal, rather than a strongly interacting descendent of a Fermi gas. That such phases exist in nature was established by dramatic transport experiments in ultra-clean quantum Hall systems in 1999 and in Sr3Ru2O7 in a strong magnetic field in 2007. In this paper, we briefly review the theoretical considerations governing nematic order, summarize the quantum Hall and Sr3Ru2O7 experiments that unambiguously establish the existence of this phase, and survey some of the current evidence for such a phase in the cuprate and Fe-based high temperature superconductors.Comment: 30 pages, 7 figures (some in color); to appear in Annual Reviews of Condensed Matter Physics. Edited version
    • …
    corecore