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ABSTRACT

MacKenzie, M.Derek, Ph.D., April 2004 Forestry

Fire Exclusion, Forest Dynamics and Nitrogen Cycling in Low Elevation Forests of 
Western Montana

Chair: Thomas H. DeLuca

Co-chair: Anna Sala fVS

Little is known about the effects o f fire exclusion on forest dynamics and nutrient 
cycling in the dry inland Northwest. Historically, low elevation forests of western 
Montana burned more frequently and with a lower severity than today. I established a 
chronosequence of sites in western Montana, from 2 to 130 years since fire to look at the 
long-term effects of fire exclusion and performed experiments to determine the 
mechanism of change. Research objectives included an analysis of: 1) forest dynamics 
and diversity; 2) forest floor nitrogen (N) mineralization; 3) mineral soil N 
mineralization and microbial activity; 4) seasonal N mineralization and microbial 
activity with increasing time since fire; and experiments to determine 1 ) the plant- 
specific effects on N mineralization and microbial activity; and 2) the influence of fire 
produced charcoal on N cycling. Stand basal area increased primarily as a result of 
increasing Douglas-fir establishment and growth. Understory composition shifted from 
grass and forb dominated, to a mixed understory of grasses, forbs and shrubs. Increases 
in above ground biomass resulted in an increased forest floor thickness, with higher 
contents of total carbon (C), total N, potentially mineralizable N (PMN) and total 
phenols. Biodiversity increased rapidly and then plateaus 25 years after fire. Mineral 
soil N decreased rapidly and also plateaus between 25 and 50 years since fire. Together 
these results appear to be evidence for the ecological 'foot-prinf of the natural 
disturbance regime. The rate of decomposition decreased the metabolic quotient 
increased indicating microbial stress. Total phenols may interfere with organic matter 
mineralization either directly, by inhibiting microbes or indirectly, by precipitating 
humic compounds and slowing the N cycle. Total phenols increased in the forest floor 
and were negatively correlated with nitrification in the mineral soil suggesting 
ecosystem allelopathy. Experimental analysis of different plants indicated that ericoid 
shrubs had a negative influence on N cyeling, but charcoal additions offset the effect. In 
summary, this work suggests that fire drives N cycling for approximately 25 years in 
this ecosystem, as mitigated by the influence of charcoal. After this period, it seems that 
woody plants begin to drive N cycling with allelochemicals.
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INTRODUCTION

Little is known about the effect of fire exclusion on forest dynamics and 

subsurface processes in the dry inland Northwest. Fire has been excluded from much of 

this region during the last 100 years due to Euro-American settlement. Historically, 

ponderosa pine {Pinusponderosa P.&C. Lawson) forests appeared to experience low 

severity fires with a return interval o f 20 to 50 years. Low severity fire regimes promoted 

open stands of mature ponderosa pine with an understory o f grass and forb species.

Today, many ponderosa pine stands around westem Montana have not burned for over 

130 years and the visual evidence based on historic photograph collections is impressive. 

Photographic evidence suggests that ponderosa pine forests are being encroached on a 

large scale by Douglas-fir {Pseudotsuga menziesii [Biessn.] Franco) in the overstory, and 

by woody shrub species in the understory. Fire exclusion may have caused these forests 

to miss 3 to 4 disturbance events that would have effectively re-set forest successional 

“clocks”.

Fire exclusion raises several questions about the way ecosystem function may be 

changing in ponderosa pine stands in the dry inland Northwest. The focus o f my 

dissertation is to address several specific research objectives related to fire exclusion in 

low elevation forests o f westem Montana. These objectives include analyzing the effect 

o f fire exclusion on: 1) forest dynamics and diversity; 2) forest floor N mineralization; 3) 

mineral soil N mineralization and microbial activity; 4) seasonal N mineralization and 

microbial activity; 5) plant type specific effects on sub-surface processes and 6 ) the effect 

o f fire deposited charcoal on N tumover and microbial activity.
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Dissertation Overview

This dissertation was written in partial fulfillment of the Ph.D. requirements at the 

University of Montana and is comprised of the usual accompanying material, a review 

paper and four research papers that address the objectives above. The title o f each paper 

is given below with a brief overview of its continents.

Paper 1; Forest fire exclusion and potential modifications to forest dynamics and 
nitrogen cycling in the dry interior Northwest.

This paper provides the basic background and perspective for the research. It 

reviews the current understanding o f the N cycle and recent developments, including 

recent evidence that some plants have the ability to access organic N, or to produce 

allelopathic chemicals, both of which indicate that plants are not just passively involved 

in N acquisition. It also examines the evidence for forest dynamics both pre- and post- 

Euro-American settlement, and the effect o f fire as a vector of natural disturbance. In the 

context of these two driving factors, fire exclusion has the potential to change N 

mineralization by allowing post-disturbance plant communities to take a more active role 

in the N cycle.

Paper 2: Forest structure and organic horizon analysis along a fire chronosequence 
in the low elevation forests of western Montana.

For this paper, a chronosequence of time since fire was established using 25 

different poderosa pine/Douglas-fir sites in westem Montana, located at various positions 

on the landscape. The forest floor is a integral part of forest nutrient cycling, but one that 

is commonly missed. The organic horizon is also significantly reduced after fire and yet 

N mineralization has been measured to be high after fire. Vegetation structure and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



composition, and forest floor biochemistry were studied to examine whether and how 

stand dynamics and organic horizon nutrient cycling change with time since fire. This 

paper was submitted for publication to the Journal o f Forest Ecology and Management 

January 10*, 2004.

Paper 3: Fire exclusion, nitrogen mineralization and biodiversity in low elevation 
forests of western Montana.

As a continuation of the research addressed above, a sub-set o f fire 

chronosequence sites, with similar environmental characteristics (slope, aspect and 

elevation), were identified and analyzed for plant divertiy and mineral soil nutrient 

cycling. Mineral soil biochemistry was analyzed to determine if the hypothesized 

reduction of available N with increasing time sinee fire occurs and whether this reduction 

can be correlated to microbial activity and increases in alleochemicals on site. Plant 

diversity was measured to examine whether shifts in plant community composition are 

related to or responsible for the expeeted changes in N cycling. This paper was submitted 

for publication to the Journal of Eeological Applications May 10* , 2004.

Paper 4: Seasonal Nitrogen Availability and Microbial Activity in Fire Excluded 
Low Elevation Forests of Western Montana.

The same sub-set o f fire chronosequence sites was examined for seasonal levels 

o f inorganic N, ninhydrin reactive N, anthrone reactive C and soluble phenols. These 

compounds were extracted from ionic and non-ionic resin capsules installed at three 

different times during the year and left to incubate for several months. Ninhydrin
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reactive N, anthrone reactive C and soluble phenols all represent indicators o f microbial 

activity. Analyzing these compounds with resin capsules is a novel technique in soil 

science representing in-situ incubations. As a novel techinique in forest soil research it 

merits further investigation.

Paper 5: Comparing litter quality and N mineralization in the understory of 
Ponderosa pine/Douglas-fir forests.

Two different plant types (Artostphylos uva-ursi and Carex spp.) were selected 

to assess biochemical microsite differences created by plants. Leaf extract allelopathy 

was analyzed in a bioassay of seed germination {Populus tremuloides). Factorial 

combinations o f glycine (labile organic N source) and charcoal were applied to 

greenhouse and field incubations o f litter and mineral soil samples from the two plant 

types. These treatments were designed to determine if  the rate o f mineralization is 

substrate limited or inhibited by the production of allelochemicals. It was also designed 

to examine how different plant functional groups affect N mineralization.
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Forest fire exclusion and potential modifications to forest dynamics and nitrogen

cycling in the dry interior Northwest

M.D. MacKenzie

Department of Ecosystem and Conservation Science, College of Forestry and 

Conservation, The University o f Montana, Missoula, MX, 59812

Abstract: The exclusion of fire over the last 100 years has changed forest dynamics in 

the inland dry Northwest. Low elevation forests used to be maintained by a low severity 

fire regime with a return interval of 10 to 50 years. Fire is known to promote N 

mineralization and modify plant community dynamics in the short-term, but the effect on 

o f excluding fire from ecosystem processes, well beyond natural successional trends, is 

completely unknown in this ecosystem. This paper attempts to synthesize what is known 

currently about ecosystem function from this ecosystem and others, and to produce 

hypotheses for the effects of fire exclusion that can be tested by observations and 

experiments. To this end, three subjects are reviewed in detail, including: the N cycle, 

fire exclusion in low elevation forests and the potential for allelopathic interactions on 

fire excluded sites. Fire exclusion is believed to increase woody plant dominance on 

these sites and decrease N availability. However, very few data exist from natural 

systems and the mechanisms by which fire exclusion may reduce N availabiltiy including 

allelopathic interactions are poorly understood.

Keywords: Fire history, N fixation. Allelopathy, Furo-American settlement. Fire regime. 

Microbial uptake. Organic N uptake
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INTRODUCTION

Fire is a significant natural disturbance in most western ecosystems including that 

o f the dry inland Northwest. Fire exists on the landscape in many different forms, 

including high severity fires that kill all plants on site at one end o f the spectrum and low 

severity fires that kill the understory, but maintain the mature trees at the other end of the 

spectrum. Low elevation forests o f the inland Northwest were characterized by frequent 

low severity fires until approximatly 100 years ago during settlement. The potential for 

fire exclusion to affect forest dynamics and sub-surface processes is great, but has only 

been studied in the short-term to date. Fire acts to shape forest structure and nutrient 

cycling, two important components of ecosystem function. As a disturbance regime, fire 

acts to re-set successional clocks and drives forest structure based on the intensity of 

disturbance. Ecosystems tend to adapt to the most prevalent disturbance regime and 

reflect the disturbance type in their species composition and diversity. Therefore, 

removing disturbance has the potential to change successional pathwasy by allowing 

plant communities to develop beyond disturbance regulated parameters. This is also true 

of sub-surface processes including microbial activity and nutrient tum-over. Specific 

types o f disturbance have different effects on sub-surface processes, but in general 

stimulate nutrient mineralization by adding organic matter, increasing light interception 

and increasing water resources. In the absence o f disturbance, sub-surface processes may 

decline for a number o f different reasons including allelopathic interactions between 

plant communities, litter quality and the microbial community. The potential for 

allelopathic properties to develop in ecosystems pushed beyond their disturbance-
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maintained equilibrium has been documented in other ecosystems and will also be 

reviewed here.

This review is organized into three parts, each based on one o f the three main 

objectives. The objectives of this review include: 1) outlining the N cycle; 2) 

summarizing forest dynamics and fire exclusion in the ponderosa pine-Douglas-fir forests 

of westem Montana; and 3) reviewing allelopathy and its potential to affect ecosystem 

function in fire excluded sites.

THE NITROGEN CYCLE

Nitrogen Fixation

Nitrogen is an important plant nutrient and one of the most limiting in terrestrial 

ecosystems (Vitousek and Howarth 1991). It is abundant in the atmosphere, where N 2 

gas represents 78% of atmospheric gases, however in this form it is unavailable to plants 

and first must be fixed to a bioavailable form (Vitousek and Howarth 1991). Nitrogen- 

fixation is carried out by several different abiotic processes (lightning, chemical), but of 

specific interest to this paper are the biological processes (Fig. 1). Several different 

genera of symbiotic and free-living micro-organisms are capable o f fixing N (Paul and 

Clark 1996), including 40 genera o f Cyanobacteria and 4-5 genera o f Rhizobia. The 

process requires large amounts of energy to break the triple covalent bonds between the 

two N atoms of atmospheric N 2 gas (Stevenson and Cole 1999). This energy is delivered 

from plants to symbiotic N-fixers in the form of reduced C compounds; in the case o f 

free-living N-fixers, reduced C is produced by decomposition of labile C pools from soil 

organic matter (SOM). The process is limited by the availability o f the key enzyme
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nitrogenase and, as it is energy costly, N-fixation is very efficient. Nitrogen fixation is 

potentially the most important life maintaining biological process next to photosynthesis 

(Stevenson and Cole 1999). Reduced atmospheric N is generally not lost from the site of 

fixation, but rather immobilized by microbes and made available to host plants only 

slowly (Sculten and Schitzer 1998). Non-symbiotic plants can only obtain fixed N that 

has entered the N cycle at some point and become available through N mineralization 

(Fig. 1).

Nitrogen Mineralization

Heterotrophic soil microbes mineralize soil organinic matter (SOM) as a source of 

energy, to secure C skeletons for building biomass and to access NHU*̂  for metabolic 

purposes (Stevenson and Cole 1999). Any N that is in excess of demand is released into 

the soil medium. Plants have access to the N that is in excess of microbial requirements 

for growth. As an average, soil microbes require 1 N for every 6 C that they assimilate 

into biomass (4:1 bacteria and 8:1 fungi) (Paul and Clark 1996). However, the energy to 

produce heterotrophic microbial biomass comes from SOM oxidation, where C is 

respired three times as fast as it is assimilated. Therefore the average microbial 

requirement o f C and N is more like 18 to 1 (12:1 bacteria and 24:1 fungi) (Sculten and 

Schitzer 1998, Stevenson and Cole 1999). In soils with a ratio o f less than 18:1 there 

should be net mineralization o f N which could be available to plants for uptake. In soils 

with a C to N ratio more than 30:1 net immobilization o f N by the microbial community 

will limit plant available N.
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Organic N is mineralized by the microbial community to form many different 

inorganic ions, but many o f these represent losses o f N by denitrification and will not be 

discussed here. There are 3 inorganic N ions that important for plant nutrition. These 

ions are mineralized in succession and include: ammonium (NH4 ’*'), nitrite (NO2 ') and 

nitrate (NO3 ') (Stevenson and Cole 1999). Ammonification is the process by which 

organic N is mineralized to NH4 "̂ which can be used by plants or microbes, as mentioned 

above. Ammonium in excess o f plant and microbe nutritional requirements may be 

oxidized as a source of energy by a specific group of microbes (chemo-autotrophs) in a 

process called nitrification. Nitrite is produced first by a genera o f bacteria called 

Nitrosomonas and rapidly converted to NO 3 ' by a genera o f bacteria called Nitrobacter 

(Paul and Clark 1996, Stevenson and Cole 1999). Heterotrophic nitrification may also 

occur, but at this time its ecological significance is not well understood (Stevenson and 

Cole 1999). Nitrite is toxic to most organisms because it is a strong oxidant and 

interferes with the transfer o f electrons. It is rapidly oxidized to NO 3 ' by the microbial 

community, therefore only NH4 '̂  and NO 3 ' accumulate in most soils and are the 

predominant forms of inorganic N used by plants (Raven 1992). This overall process is 

called mineralization and results in the release of inorganic N, while the same reactions in 

the reverse direction are called immobilization and result in the conversion of inorganic 

N into organic N by plants and microbes (Brady and Weil 1999).

Plant Uptake -  Inorganic N

Nitrogen is the most important macronutrient after C, H, and O. It is used in 

many biochemical processes at the cellular level and is a key constituent of amino acids.
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DNA, RNA, chlorophyll and hormones to name a few (Stevenson and Cole 1999). The 

accepted doctrine in plant biology today is that plants must rely on soil micro-organisms 

to release inorganic N through the mineralization of SOM (Keiland 1994, Lipson et al. 

1999, Hodge et al. 2000). Plant uptake o f inorganic N is then dependant on the ratio o f C 

to N, where only N in excess of microbial demand is available. Ammonium is the 

preferred form of N uptake in most ecosystems based on availability, but in some cases 

NO 3 ' is preferred (Stevenson and Cole 1999). Nitrate in the plant must be converted to 

NH4 '̂  before it can be incorporated into plant biomass in the form of glutamine. This is 

an energy expensive process called assimilatory NO3' reduction and is catalyzed by three 

different enzyme systems, the first o f which, nitrate reductase is the rate limiting step 

(Stevenson and Cole 1999). As such, NOs’ has a metabolic cost associated with it that 

N H / does not.

As an anion, NOs' is not part of the cation exchange capacity (CEC) o f soils and 

is subject to loses by leaching (Fig. 1). Another significant loss of N 0 3 ‘ occurs in 

saturated soils where the NO3 ' ion is used as an electron acceptor in the absence of 

oxygen. This process is called dissimilatory NOs' reduction or denitrification (Stevenson 

and Cole 1999)(Fig. 1). For these two reasons, N 0 3 'm ay be considered a liability in the 

context of N-fixation, a high energy consuming process.

When measured in soil, the pools of NH 4  ̂and N 0 3 ‘ are very small and transient 

and do not tell us much about the internal and extemal N cycle (Fig. 1). The difference 

between gross and net N mineralization gives a better estimate of mineralization, 

immobilization and tumover (Hart et al. 1994, Stark and Hart 1997), but in some 

ecosystems gross N mineralized still does not account for the total plant biomass being
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produced (Keiland 1994). Many studies in ecology have shown that net N 

mineralization, as measured in-situ, is not enough to account for the biomass 

accumulating on certain sites (Keiland 1994, Nasholm et al. 1998, Lipson et al. 1999, 

Lipson and Nasholm 2001, DeLuca et al. 2002). The conventional model does not seem 

to account for N turnover and this evidence seems to suggest that something between the 

internal and extemal N cycle is being short-circuited. Recent findings suggest that plants 

have evolved a means o f accessing organic N reserves in SOM (Keiland 1994, Nasholm 

et al. 1998, Lipson et al. 1999, Lipson and Nasholm 2001).

Organic N in Mineral Soil

As we have seen from the previous sections, the most important reactions for N, 

in terms of bioavailability, are fixation, mineralization and immobilization. Nitrogenase 

is the enzyme that catalyzes the fixation reaction among symbiotic and free-living micro

organisms and has been called the most important biochemical after chlorophyll (Brady 

and Weil 1999). Mineralization o f SOM makes N available to plants and microbes as 

inorganic N. It is immobilization o f N, however, that reduces N to organic forms and 

removes it from labile pools.

The composition o f N compounds in the soil are on average 80% organic, being 

made up of proteinacious material (40%), amino sugars (6 %) and heterocyclic N (35%), 

while the remaining N is inorganic and mostly found as NH3 (19%) (Sculten and Schitzer 

1998). These different compounds are determined by different techniques o f analysis on 

the hydrolyzable and non-hydrolyzable portions o f SOM. While neither o f these pools 

are bioavailable they do shed light on the nature of the SOM as it relates to the internal N
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cycle (Fig. 1). These pools also indicate that all forms of organic N are available to 

mineralization, but cycle through at different rates due to molecular complexity (Sculten 

and Schitzer 1998). Heterocyclic N, representing the old and stabilized SOM, is far less 

available than NH4 '̂  or labile pools o f amino sugars (Fig.l). The question is ‘What is the 

availability of proteinacious material that represents 40% of SOM?’. Proteins and amino 

acids (AA) dominate organic N sources and are affected by three processes in the soil: 

proteolysis or the enzymatic decomposition of proteins to constituent AA, reactions that 

bind proteins and AA to the soil matrix and competition between plants and microbes 

(Lipson and Nasholm 2001). Therefore some proteinacious material is tied up in the 

stabilized SOM, but proteolysis makes some available to microbes for mineralization. Is 

it available to plants?

Plant Uptake - Organic N

Recent work has confirmed that many plants can take up organic N (Hodge 2000; 

Lipson and Nasholm 2001). These findings put conventional thinking into contention. If 

plants can access organic N then they can short circuit the N mineralization process.

Most terrestrial ecosystems can be thought of as overflowing with organic N and 

therefore should not be N limited. However, most organisms are still limited by N 

availability and o f the extent to which plants take up organic N, may explain why N 

limitations still exist.

Keiland (1994) determined that N mineralization in arctic environments was not 

sufficient to account for the amount o f biomass produced, but that organic N was 

plentiful. Therefore, he measured the uptake of three amino acids with labeled

12
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substrate and compared it to ammonium uptake as labeled methyl amine. The results 

showed that various different types of plants including grasses, forbs, deciduous and 

evergreen shrubs all took up amino acids, but only glycine was taken up in the same 

quantity as ammonium. There were also some differences between plant functional 

groups where deciduous shrubs took up more organic N than evergreen shrubs.

Some problems exist with the methods o f this study. The use o f labeled C to 

identify amino acid uptake may underestimate the total amount due to root respiration, 

because the carboxyl group is more readily cleaved off than the other C bonds (Nasholm 

et al. 1998). Also, the method must be performed in the lab due to radioactivity and 

therefore is partially removed from the reality o f field interactions. Last, the use of 

methyl amine as a surrogates for is inappropriate as some degree of mineralization 

will have to occur and therefore uptake rates will not be similar. It would be better to 

label the N and use NH4  ̂directly. Still, the work served to inspire more work into plant 

uptake of organic N as a potentially important ecological process and created much 

debate.

The problem with using a N labeled substrate alone is that it would not be 

possible to differentiate between N taken up as amino acids or as ammonium in the plant 

(Nasholm et al. 1998). By using a double labeled amino acid and looking for both C and 

N signatures in the plant we can tell if  the organic molecule was taken up whole or as 

mineralized N. In a recent study, Nasholm et al. (1998) used double labeled C and N to 

measure amino acid uptake as compared to ammonium uptake in Boreal forests. By 

looking at the excess amounts o f these isotopes in plants they found significant 

differences and concluded that organic N uptake can be a significant part o f plant N
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nutrition in Boreal forests. Again, glycine was found to be used by plants directly, 

instead of first passing through the N cycle. However, a large portion (64%) of the added 

substrate was in SOM compared to the 27% taken up by plants indicating high microbial 

competition. Microbial competition is one o f the headline debates in current plant 

organic N use studies. Another is the microbial mediated transfer o f nutrients to plants.

Interactions Between Plants and Microbes

Symbiosis with N-fixing species o f bacteria is obviously a evolutionary 

adaptation that plants and microbes have developed to gain access to N, where some of 

the N is delivered to plants in an organic form and so outside o f conventional wisdom on 

plant available N. Some researchers have suggested that plants gain organic nutrients 

from other microbial associations and many studies have looked at the acquisition of 

organic nitrogen by mycorrhiza (Abuzinadah and Read 1986, Keller 1996, Hodge et al. 

2000, Emmerton et al. 2001). Mycorrhiza are a symbiotic association between plants and 

fungi, similar to the symbiotic relationships between N-fixing bacteria and plants, but 

where plants exchange sugars for nutrients and water (Paul and Clark 1996). The 

mycorrhizal association developed through evolutionary feedbacks that give plants a 

competitive advantage in nutrient acquisition as facilitated by the fimgi (Paul and Clark

1996). Mycorrhizal fungi occur ubiquitously in nature and have several different growth 

forms usually associated with different plant functional groups.

Ectomycorrhiza penetrate plant cells and have been shown to take up organic 

nitrogen very efficiently (Keller 1996). Ericoid mycorrhiza, associated with the family 

Ericaceae, also penetrate plant cells and have been shown to take up organic N
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effectively (Emmerton et al. 2001). The debate is whether or not plants are gaining 

organic N intracellularly delivered directly by the fungi and therefore avoiding the 

problem of active transport across the cell membrane of a large molecule, or is N being 

delivered to plants in an inorganic form, already mineralized by the fungi (Abuzinadah 

and Read 1986, Nasholm et al. 1998). Delivery as an inorganic source would explain the 

existence of a N  tracer by itself in plants, but recent work shows that plants seem to be 

acquiring the intact organic N molecule (Nasholm et al. 1998), most likely from the 

fungi. It has also been shown that endomycorrhiza and non-mycorrhizal species take up 

organic N suggesting that some plants are taking organic N from the soil and have the 

ability to transport these larger molecules across membranes (Nasholm et al. 1998).

In summary, many interactions among the biotic and abiotic factors o f the N cycle 

make it very complex. Nitrogen has many valence states making it attractive two many 

different types of organisms, it is an essential nutrient and is required in high 

concentrations. Nitrogen is also the catalyst for many inter-trophic interactions between 

plants and microbes. In the following sections I will examine how fire exclusion may 

affect N cycling in the low elevation forest o f western Montana and whether or not 

allelopathy may play a role in N mineralization in these systems.

FIRE EXCLUSION

Historic Fire Regime

Before Euro-American settlement (-1900), the return interval for low intensity 

fires in the ponderosa pine-Douglas-fir ecosystems of the dry inland Northwest was on 

the order of 10-50 years (Amo et al. 1995, Amo et al. 1997, Barrett et al. 1997). These
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low intensity fires were characterized by understory burning that removed most o f the 

competing grasses, shrubs, smaller trees and some of the larger trees. Ponderosa pine is a 

shade intolerant, early serai species that has high fire resistance due to very thick bark. It 

can co-dominate with Douglas-fir, a more shade tolerant, late serai species with low fire 

resistance. There is good evidence to suggest that the frequent occurrence o f low 

intensity fires in the understory o f these forests allowed ponderosa pine to maintain 

dominance in the canopy (Amo et al. 1995, Amo et al. 1997, Barrett et al. 1997). It is 

believed that the forest stmcture o f pre-settlement times consisted o f an open parkway 

with widely spaced, uneven-aged ponderosa pine trees in the canopy and a mixture of 

forbs, grasses, shmbs and seedlings o f both ponderosa pine and Douglas-fir, recovering 

from the last fire event, in the understory.

During post Euro-American settlement (1900 to present) the stmcture of 

ponderosa pine-Douglas-fir forests has been changing due to forest harvesting techniques 

and the exclusion of low intensity fires (Brown et al. 1994, Amo et al. 1995, Amo et al. 

1997, Barrett et al. 1997). Lower elevation forests represent an easily accessible resource 

that was exploited thoroughly in westem Montana. It is difficult to find any old-growth 

Ponderosa pine forests that have not experienced some level o f anthropogenic 

disturbance (Amo et al. 1995, Amo et al. 1997). These studies indicate that harvesting 

the largest pine trees accelerates forest succession towards Douglas-fir dominated forests. 

Fire exclusion is also having a negative effect on the dominance o f Ponderosa pine in 

these lower elevation forests. Brown et al. (1994) calculated that fire is almost three 

times less common on the northem Rocky Mountain landscape than it was in pre

settlement times, and that the ratio o f low intensity fires to stand replacing fires has
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changed from 100:0 in pre-settlement times to 20:80 today. The resulting stand structure 

found in many low elevation forest is comprised of closed canopy conditions where 

Ponderosa pine and Douglas-fir are co-dominants and there has been a shift in imderstory 

species to more shade tolerant shrubs (Amo et al. 1995, Amo et al. 1997, Naumburg and 

DeWald 1999).

Computer simulations have shown that a fire retum interval o f 20 years restricts 

Douglas-fir from the canopy, while simulations o f fire exclusion show that by 100 years 

since fire, Douglas-fir enters the canopy and by 200 years, has out-competed Ponderosa 

pine for canopy dominance (Keane et al. 1990). Post-fire exclusion stand stmcture has 

resulted in increases in basal area (BA) and understory biomass, and is thought to have 

decreased in nutrient availability (Amo et al. 1995, Amo et al. 1997, Barrett et al. 1997). 

These changes are thought to have a long-term negative effect on overall stand 

productivity (Covington and Sackett 1992, DeLuca and Zouhar 2000) and ecological 

function, however no studies have attempted to quantify long-term understory differences 

and sub-surface processes with increasing time since fire for low elevation forests o f the 

dry inland Northwest.

Forest Dvnamics

Short-term changes in stand stmcture with fire exclusion can affect ecosystem 

functioning in Ponderosa pine/Douglas-fir forests (Busse et al. 1996, Naumburg and 

DeWald 1999, Newland and DeLuca 2000). As time since fire increases, overstory 

density increases and these forests move from an open to a closed canopy. The overstory
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changes have an affect on understory structure and composition, resulting in different 

ecophysiology.

Naumburg and DeWald (1999) showed that a reduction of light in the understory 

had a negative effect on graminoid species presence and abundance. Graminoid 

distribution is directly influenced by two factors, tree density and seasonal distribution o f 

direct sun. With increases in tree density and decreases in direct sun, graminoid presence 

and abundance decreased with time since fire. Newland and DeLuca (2000) have also 

shown decreases in the number o f species and abundance of N-fixers with increasing 

time since fire. N-fixing plants may have an important role in N availability after fire and 

may have an effect on long-term productivity, but need disturbance and open space to 

establish. Changes in the amount o f forest floor litter, which increase with time since fire 

(DeLuca et al., 2002), and the loss o f seed banks and microbial communities may affect 

the colonization rate o f N-fixers even if  fire is re-introduced. Busse et al. (1996) studied 

site productivity in Ponderosa pine forests when understory vegetation was removed for a 

35 year period. They showed that the presence o f understory vegetation affected both N 

and water availability and found that understory removal treatments increased BA and 

growth rates for the first 2 0  years, but that the last 15 years o f study showed no difference 

between treatments, with the overall growth rate o f all treatments declining in the last 5 

years o f study. These results have significant implications for long-term productivity.

Nutrient availability, particularly N availability, and soil water availability have 

been identified as being key factors for long-term stand productivity (Pritchett and 

Fischer 1987). Current results on soil N will be considered in the context o f overstory
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and understory changes caused by fire and fire exclusion in the Ponderosa pine-Douglas- 

fir system.

Forest Soil Nitrogen

Ponderosa pine-Douglas-fir forests have low N mineralization and low inorganic 

N accumulation and are gennerally N limited (DeLuca and Zouhar 2000). The short-term 

effects of fire on soil N include: increased N mineralization, increased nitrification and 

increased microbial activity (Wells et al. 1979, Pritchett and Fischer 1987, Neary et al.

1999). However, other studies indicate that the effect of fire on soil N cycling may be 

limited to a very short time after burning (Covington and Sackett 1992, DeLuca and 

Zouhar 2000, Newland and DeLuca 2000) and some of the long-term results on N 

availability and productivity may have been overestimated (Stark and Hart 1997). Fire 

exclusion is speculated to change soil N availability by increasing the amount of forest 

litter towards high C:N ratios, increasing terpenoid concentrations and increasing the 

amount of microbial immobilization (Covington and Sackett 1992, DeLuca and Zouhar

2000).

Changes in the labile N pool, both before and after fire, have been the focus of 

many contemporary studies. Covington and Sackett (1992) found that soil inorganic N 

pools increased after burning and that this increase was positively correlated to pine 

establishment and growth, as well as herb growth. They assessed soil concentrations of 

NH;'^ and NO 3 ' before and after burning, and one year later. They found that increases in 

NH4  ̂were positively correlated to the amount o f forest floor consumed. Ammonium 

concentrations which were initially high, decreased after one year, while NO 3 '
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concentrations lagged behind and were still elevated after one year. Increased rates of 

nitrification in the short-term may have implications for long-term net ecosystem 

production as nitrate may be lost through leaching and dinitrification. DeLuca and 

Zouhar (2000) investigated the effect o f prescribed fire on soil N availability and found 

that it was initially high following fire. They also found increasing nitrification and 

microbial immobilization, and decreasing potentially mineralizable N. However, after 

two years of study, they found no detectable differences in N availability between pre- 

and post-bum site conditions. It is not well understood if  these results will continue to 

affect the future productivity o f these stands, but it is hypothesized from data collected 1 2  

years after fire that decreases in substrate quality and decreases in N mineralization may 

cause substantial decreases in productivity (Monleon et al. 1997).

High rates o f gross nitrification have been measured in a variety o f westem forest 

ecosystems and suggest that microbial immobilization o f labile N may be severly 

underestimated (Stark and Hart 1997). Nitrate assimilation by microbes was thought to 

be minimal in mature, undisturbed conifer forests, but Stark and Hart (1997) showed that 

microbial biomass is a net sink for NO 3 ' and promotes N retention in mature ecosystems. 

Rapid microbial immobilization of inorganic N may cause the over-all organic N pool to 

grow, but the N may be only slowly available to plants. The questions that arise from 

this finding include; 1 ) is gross nitrification high followed by rapid immobilization in the 

ponderosa pine/douglas-fir ecosystem, or as an alternative, 2 ) is nitrfcation being 

inhibited by poor substrate quality and allelochemicals. There is evidence for some plant 

initiated allelopathic effects on N cycling and the microbial community when the natural 

fire regime is excluded.
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ALLELOPATHY

Allelopathic Potential

Different types o f plant mediated interference on nutrient cycling and plant 

development echanisms have been observed and tested in many ecosystems. These 

interference mechanisms are generally referred to as allelopathy and have involved 

everything from constitutive chemical defenses that interfere with herbivory, to root 

exudates that interfere with alternate species root development, to allechemicals produced 

by leaf litter that interfere with microbial activity (Wardle et al. 1998). Allelopathy has 

been examined at the population level by examining the interactions o f one plant species 

on another species of plant or animal, however the causal relationship o f these 

interactions have been difficult to prove. Wardle et al. (1998) suggests that the theory of 

allelopathy is more suited to application at the ecosystem level where different species 

may exercise similar characteristies and thus have an effect on the overall ecosystem 

function.

Ecosvstem Function

Many studies have examined allelopathic interactions between plants and 

ecosystem function presumably mediated by the production o f secondary metabolites 

(Northup et al. 1995, Jaderlund et al. 1997, Wardle et al. 1998, Hattenschwiler and 

Vitousek 2000). Secondary metabolites are produced from the products of 

photosynthesis, but are not used in the synthesis o f biomass or for energy transfer, which 

represent primary metabolism (Raven 1992). Plants produce many different kinds of 

secondary metabolites which vary from simple storage compounds to constitutive or
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inducible defense compounds. Phenolic compounds constitute a specific type of 

secondary metabolite produced in the shikimic aeid pathway and have often been linked 

to allelopathic interference (Hattenschwiler and Vitousek 2000). Phenols are a large 

group of compounds that in some combinations have an aromatic ring with a hydroxyl 

substitution. Phenols may include various other substitutions and can be further 

elassified as polyphenols (multiple rings), low molecular weight eompounds and high 

molecular weight compounds or condensed tannins (Hattensehwiler and Vitousek 2000). 

These compounds have been documented to effect the N eycle in different ways.

Effect on the N evele

Many studies suggest that phenolie compounds reduce litter quality and are 

involved in humus formation, both making decomposition o f organic substrates harder 

(Northup et al. 1995, Jaderlund et al. 1997, Northup et al. 1998). In general, a negative 

correlation exists between organie N eoncentrations and inorganic N concentrations for 

various different ecosystems ranging from pygmy pine to boreal forests. This phenol- 

induced relationship has been discovered for both forest floor extracts and leaf extracts 

from certain understory species and is thought to be a sueeessional feature which causes 

the replacement o f one species by another with increasing time since disturbance and 

potentially as an anthropogenic feature caused by fire suppression in the boreal forest 

(Jaderlund et al. 1997). It is also possible that phenol-induced decreases in available N 

represent a means by which fixed N is retained in forest ecosystems, as SOM. Another 

possibility is that the production of phenols may have developed as an evolutionary drive 

toward the inhibition of nitrification, where NO 3 ' leaching or denitrification is prevented.
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Some studies have speculated that forest ecosystems may inhibit nitrification as a means 

o f avoiding the energy required to reduce nitrate in the plant (Stevenson and Cole 1999). 

The reduction ofNOa' occurs in leaf chloroplasts and is limited by the availability of the 

enzyme complex NO3' reductase which can be measured as an estimate of the costs 

involved with nitrate uptake from the soil (Raven 1992). Maintaining organic N on a site 

would become its own evolutionary force towards organic N uptake. One last possibility 

exists. If  some plants can sense different volatile compounds as a means o f inter 

communication in the face of herbivory (Shonle and Bergelson 1995), maybe plants can 

also sense different N oxides as they are released by nitrification (leaky pipe theory) or as 

the products o f denitrification (Stevenson and Cole 1999). An ability to sense these 

losses and the cost involved with N fixation would lead to adaptations that reduce the 

occurrence of N losses.

CONCLUSION

Fire and macro-climate are major drivers o f plant eommunity dynamics and sub

surface processes and therefore have a top down effect (Fig.2). If the natural fire regime 

is left intact, these factors should remain the dominant drivers o f ecosystem function. 

However, secondary or response factors, such as plant succession, litter quality and N 

mineralization have the potential to directly or indirectly influence ecosystem processes 

in the face o f fire exclusion (Fig. 2). Although fire exclusion is a top down factor at the 

landscape level, it will stimulate changes that initiate bottom up effects at the stand and 

microsite level where the most drastic outcome of fire exclusion are registered as changes 

to litter quality and N cycling.
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One last question remains, ‘is N availability greater with frequent low intensity 

fires even though the total N pool is smaller due to frequent volatilization?’ Fire clearly 

influences short-term changes in plant communities and sub-surface processes. However, 

no studies exist to date that examine these changes in the long-term. Therefore, scientific 

study is required to analyze the time frame in which these potentially drastic and 

significant changes occur in the inland forests o f the dry Northwest.
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Figure 1: Systems diagnostic diagram for the internal and extemal N cycle (adapted from 

White, 1996).

Figure 2: Systems diagnostic diagram for the effect of fire form the landscape scale to 

the microsite scale.
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Forest structure and organic horizon analysis along a fire chronosequence in the low

elevation forests of western Montana
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Abstract: Although fire consumes much o f the forest floor, few studies have examined 

the change in forest floor characteristics with increasing time since fire. Mixed forests of 

ponderosa pine {Pinus ponderosa Doug. Ex. laws) and Douglas-fir {Pseudotsuga mensizii 

(Mirb.) Franco) in the inland Northwest once bumed with greater frequency than today. 

Fire exclusion over the last 100 years is believed to have caused a shift in forest structure, 

forest floor decomposition and nitrogen availability. However, no research has clearly 

demonstrated this in forests o f the dry inland Northwest. The objective o f this study was 

to determine how fire exclusion has shaped forest structure and understory composition 

in ponderosa pine/Douglas-fir forests and how these changes have altered forest floor 

mineralization. Stand level and understory vegetation characteristics, organic horizon 

depth and biochemistry were analyzed along a 132 year chronosequence at 25 sites in 

second growth forests o f Westem Montana. Principle components analysis confirmed 

that time since fire was significantly correlated to most biotic variables, including 

nutrient availability and indicating that the disturbance regime is tightly coupled to 

ecosystem function. Douglas-fir basal area, total shrubs and forest floor thickness were
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observed to increase with time since fire. Graminoids and forbs did not change 

significantly with time since fire. There was a significant increase in the content o f total 

C, total N, NH4^ and potential mineralizable N (PM N) in the forest floor, while N O s' 

content decreased significantly with time since fire. Total phenols increased significantly 

and were positively correlated with forest floor thickness, total shrub cover, PM N and 

NH4’*', but not correlated with NO3' content, suggesting that phenolic compounds 

accumulate with time and may affect N transformations.

Keywords: Fire chronosequence, fire exclusion, forest structure, secondary succession, 

forest floor chemistry, phenolic compounds, principle components analysis

INTRODUCTION

There is little known regarding the effect of fire exclusion on plant communities, 

forest floor decomposition and nutrient dynamics in the inland Northwest. A wealth of 

evidence indicates that low elevation ponderosa pine {Pinus ponderosa Doug. Ex. laws) 

and Douglas-fir {Pseudotsuga mensizii (Mirb.) Franco) forests bumed more frequently 

than they do presently (Amo et al., 1995; Amo et al., 1997; Barrett et al., 1997; Brown et 

al., 1994). Fire exclusion over the last 100 years is believed to have caused a shift in 

forest structure, including increases in forest density by the recmitment of Douglas-fir 

into the canopy and changes in understory composition (Barrett et al., 1997; Brown et al., 

1994; Keane et al., 1990; Keane et al., 1996). In spite of the importance of ponderosa 

pine forests o f the Northwest, little research has examined the effects o f fire exclusion on 

forest stmcture and nutrient cycling in these forests. In ponderosa pine forests o f the
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Southwest, fire maintained, grass dominated understories are replaced by pine needles 

and bare ground when fire is excluded (Covington and Sackett, 1986; Covington and 

Sackett, 1992). We believe that an alternate succession takes place in the inland 

Northwest where grass dominated, fire dependent understories are replaced by shrubs 

with increasing time since disturbance (Amo and Allison-Bunnell, 2002; Amo et ah, 

1995; Amo et ah, 1997; Newland and DeLuca, 2000). Studies to date in the inland 

Northwest have shown that the introduction o f fire promotes grasses and forbs in the 

short-term (Choromanska and DeLuca, 2001; Naumburg and DeWald, 1999: DeLuca, 

2000 #157; Newland and DeLuca, 2000). However, few studies have quantified changes 

in understory species that occur with time when fire is excluded. Changes in overstory 

and understory species composition due to fire exclusion are likely associated with 

changes in forest floor properties, which in tum affect N cycling in the mineral soil 

(Pritchett and Fischer, 1987; Stevenson and Cole, 1999).

A change in fire frequency would have a significant effect on N cycling (Neary et 

ah, 1999). Many studies have documented short-term (1 to 15 years) changes in nitrogen 

cycling in the mineral soil after fire (Choromanska and DeLuca, 2001; Covington and 

Sackett, 1992; DeLuca and Zouhar, 2000; Hart et ah, 1994; Newland and DeLuca, 2000). 

Overall these studies suggest that fire causes a thermal ammonification of organic N in 

mineral soil that persists for 2 to 5 years and results in a large measurable pulse o f NH*^ 

in excess of biological needs. As the pH is also raised temporarily by ash deposits, the 

excess N H / is quickly nitrified. However, after approximately 5 years, NHj"  ̂ and NO 3 ' 

concentrations are no longer elevated, but rather near or below pre-fire levels. The retum 

to pre-fire levels are likely associated with increased plant uptake, microbial
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immobilization and potentially with increased N retention in the forest floor. Forest floor 

thickness is expected to increase, while it’s quality should decrease with time since fire 

(Prescott et al., 2000; Wardle et al., 2003; White, 1994; Zackrisson et al., 1997). 

Increases in lignified materials, phenolic compounds and tannins should reduce forest 

floor mineralization and result in decreased N availability. These changes to forest floor 

quality may have a significant affect on N availability in mineral soil. Although forest 

floor properties are expected to experience substantial changes with time since fire and to 

have a major influence on mineral soil N cycling few studies have documented such 

changes.

Here, we studied changes in forest structure and forest floor properties from a 

chronosequence of low elevation, second growth ponderosa pine-Douglas-fir forests in 

westem Montana. Physical and chemical analyses of the organic horizon were made in 

an effort to establish how fire exclusion changes the decomposable substrate and nutrient 

potential. Our specific objectives were to: 1 ) quantify changes in basal area and 

understory vegetation with increasing time since fire; and 2 ) quantify changes in forest 

floor thickness and biochemistry with increasing time since fire.

MATERIALS AND METHODS

Studv Sites

A chronosequence of 25 sites with increasing time since fire were selected from 

GIS fire history maps of Lolo National Forest (LNF) and Bitterroot National Forest 

(BNF) in westem Montana. These maps were produced by the regional Forest Service 

offices and were characterized by different themes including fire polygons marking the
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perimeter and date of historical fires. The maps document fire locations dating back to 

1880 (LNF) and 1870 (BNF) that were selected as the oldest fire dates for this study.

Topographic maps overlaid with fire polygons and forest types were used to 

identify potential low elevation sites with ponderosa pine and Douglas-fir as the 

dominant species. GPS coordinates at the center o f the polygons were recorded to locate 

stands in the field and minimize the chance o f surveying outside the bumed area. 

Selected potential sites on the map were ground-tmthed and either accepted or rejected 

based on species composition, evidence o f burning and amount o f harvesting. Sites 

where ponderosa pine/Douglas-fir were not a dominant component (greater than 80% of 

overstory species), with no evidence o f buming or with excessive harvesting (more than 

5% tree removal) were rejected. Fire dates and harvesting activity were corroborated 

from local Forest Service officers and from visual estimates of cut stumps, charred trees 

and presence of charcoal in the soil.

In order to increase the number of sampled sites, we did not discard sites based on 

aspect, slope and elevation (within the ponderosa pine/Douglas-fir elevation range). We 

were able to identify 14 stands with fire dates greater than 1900 in 11 geographical areas 

in westem Montana (Table 1). In each area we also sampled an adjacent site not bumed 

since 1900, resulting in a total o f 25 sites. By selecting at least one recent fire (> 1900) 

and one old fire (> 1900) within each general area we intended to eliminate any potential 

environmental bias o f sampled sites (e.g. old fires located in distinctly different areas 

than more recent fires).
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Vegetation and Forest Floor Sampling

Two 100 m long transects separated by 50 m were established parallel to each 

other at a random location near the center o f each fire polygon. With a stratified random 

sampling system, eighteen 0.5 m^ rectangular quadrats were located along each transect 

to study understory vegetation. Plots were located by selecting two numbers between 1 

and 10 for each 10 m section o f transect. The first number determined the distance along 

the transect and the second number determined the distance perpendicular to the transect 

(alternating above and below). Vegetation was recorded in each quadrat by ocular 

estimation of percent cover by functional groups. The functional groups included: 

graminoids, forbs, ericoid shrubs, deciduous shrubs, evergreen shrubs, non-vascular 

plants, bare ground and woody debris. At every third vegetation plot we collected data 

on basal area (BA, total for all sites and by species for a subset of sites), forest floor 

thickness, slope, aspect and elevation. We obtained point estimates of BA using a 10 

factor prism (Barnes et al., 1988). Forest floor thickness was measured by removing a 

portion of the forest floor to mineral soil which was kept for chemical analysis.

Chemical Analvsis

Total carbon (C), total nitrogen (N), total phenols and inorganic N were analyzed 

for the forest floor by different methods. Forest floor samples were air dried and ground 

using a shatter box to pass a 0.01 mesh for total C and total N analysis. Total C and total 

N were measured from forest floor material as indicators o f potential N availability and 

changes in litter quality over time. Content was calculated by multiplying the 

concentration data by an aerial factor, calculated as forest floor thickness times an
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average forest floor density of 0.16 g.cm'^, which is representative for forests in this area. 

Total C and total N analyses were performed on a Fissions Elemental Analyzer (Milan, 

Italy). Air-dried forest floor samples were used to analyze total phenols by the Prussian 

blue method (Stem et al., 1996). Total phenols were extracted from the forest floor 

material by shaking 25 g o f forest floor with 50 ml o f 50% methanol for 16 hours. 

Extracts were then filtered on a vacuum manifold with Whatman 42 filter papers and 

analyzed by spectrophotometry with (-t-)-catechin as the standard. Air-dried forest floor 

samples were also used to analyze inorganic N in the O horizon. Because the forest floor 

samples were air dried, we performed an aerobic incubation to measure the amount o f 

ammonification and nitrification. We also performed an anaerobic incubation to 

determine the potential mineralizable N (PMN) as an index of N availability over time. 

Samples were incubated for ten days at 60% water holding capacity (WHC) to re

establish mineralization but to avoid analyzing the N spike that would result from the 

consumption o f labile organic matter that results from drying and storing the samples. 

Twenty five grams o f sample were placed in a 250 ml French square bottle, wet down 

with 13 ml of water and incubated at 25 °C for 10 days for available N analysis. Five 

grams o f sample were placed in a centrifuge tube and wet down with 3 ml o f water and 

incubated at 25 °C for ten days for PMN analysis. After 10 days, we added 15 ml of 

water to the PMN samples and replaced the headspace with N 2 gas to create anaerobic 

conditions and re-incubated the samples for 14 days at 25 °C. Samples were shaken for 

30 m in. and filtered on a vacuum extraction manifold with Whatman 42 filter papers. The 

extracts were analyzed for NH4 "̂ and NOa' by segmented flow colorimetry with a Bran- 

Luebbe Auto Analyzer 111 (Chicago, IE).
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Statistical Analvsis

Principle components analysis allowed us to reduce a very large multi-variate data 

set to a group of factors influenced by the correlation of data points to different 

components (Wilkinson, 1997). Each factor explains a certain percentage o f the variation 

within the whole data set. Pearson correlation with uncorrected probabilities were also 

calculated to show which variables significantly influenced these factors (Wilkinson, 

1997).

Vegetation data were normalized to the amount of bare ground per plot and 

averaged per site because we were specifically interested in the relative changes of 

functional groups with time since fire. By normalizing the vegetation data, we were able 

account for some o f the moisture differences between sites in terms of vegetation 

potential. Basal area, forest floor and biochemical data were also averaged per site. 

Linear regression analysis was applied to average values for understory functional 

groups, BA, forest floor thickness and biochemistry with time since fire. Because we had 

some replicated fire ages (Table 1) we averaged the corresponding site values and show 

error bars representing the standard error of the mean. In all cases, the assumptions for 

linear regression were tested, including normality, constant variance and independence 

(Wilkinson, 1997).

Pearson correlations with uncorrected probabilities (Wilkinson, 1997) were 

performed for certain variables. Correlations were used to measure the relationship 

between variables where the causality o f the interaction was unknown. Total phenols 

were correlated to total shrubs, forest floor thickness and biochemistry data. In all cases
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where probability data are reported in this study we used an alpha of 0.100 to determine 

significant relationships.

RESULTS AND DISCUSSION

Ecosystem Analvsis

Results from principle components analysis revealed strong correlation’s between 

most biotic variables and time since fire indicating that fire exclusion affects ecosystem 

function. Principle components axis 1 (PCA 1) accounted for 41.8 % of the variation, 

while PCA 2 accounted for 20.6 % of the variation (Fig. 1). Those variables circled by 

the vertical ellipse vary significantly with PCA 1 and those circled by the horizontal 

ellipse vary significantly with PCA 2 at the 95% confidence interval based on 

uncorrected Pearson correlation probabilities (Wilkinson, 1999). Variables that are 

significantly correlated to PCA 1 include: BA, forest floor thickness, total C, total N, total 

phenols, total shrub, and available N.

PCA 1 was strongly related to time since fire, while PCA 2 was strongly related to 

the other abiotic variables including: elevation, slope and aspect as shown by regression 

analysis (data not shown). Ericoid and deciduous shrubs varied significantly with PCA 2, 

evergreen shrubs did not vary significantly with either PCA, while total shrubs varied 

significantly with PCA 1. These results suggest that, unlike Boreal systems, where 

ericaceae shrubs are driving ecosystem function (DeLuca et al., 2002; Zackrisson et al.,

1997), it is likely that in this ecosystem all woody growth (shrubs and trees) are affecting 

ecosystem function. Total phenols, total C, total N and PMN were clumped together and 

significantly correlated to PCA 1 at the opposite end from total shrubs. Perhaps this
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implies a connection between the overall accumulation o f organic chemistry and woody 

growth, but it is difficult to say with out further investigation.

Forest floor N H /  and NOs’ contents were correlated to PCA 1 indicating that 

available N in the forest floor is a function o f time since fire. However, the mechanism 

shaping the availability of NH^”̂ and NOs' seems to be opposed, as N H / is positively 

correlated and NO3' negatively. Vervaet et al. (2002) found that N mineralization rates 

were well correlated with total N and the C/N ratio from forest floor samples analyzed 

with PCA, but they did not include differences in environmental characteristics within 

their PCA. By including large scale temporal and spatial heterogeneity we have 

addressed which factors vary with fire exclusion at the landscape level in the dry inland 

Northwest. As the variability o f these factors depends on TSF we performed linear 

regression analysis to determine the strength of each relationship.

Overstorv structure

We found that fire exclusion had dramatic effects on forest structure regardless of 

the substantial variability in our data set created by the large differences in aspect, slope 

and elevation. Total BA increased with increasing time since fire (Fig. 2), as is to be 

expected of forest dynamics in second growth forests (Barnes et al., 1988). Most o f the 

increase in total BA was due to a significant increase in Douglas-fir BA (Fig. 2), while 

ponderosa pine BA did not vary with increasing time since fire (data not shown). The 

trends for both total BA and Douglas-fir BA area exhibit log-linear increases with the 

curve flattening between 20 to 30 years after disturbance. This probably represents the 

period of canopy closure from which subsequent increases in basal area over time occur

41

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



at a slower rate and which is known to affect other ecosystem properties (Barnes et al., 

1988). Therefore, this 20 to 30 year period may be o f significance in other data sets.

Increases in BA were due to increases Douglas-fir growth in these inland forests 

(Fig. 2). Frequent low intensity fire preferentially kills thin barked, fire sensitive 

Douglas-fir and maintains open ponderosa pine forests. The fact that ponderosa pine BA 

did not increase with time is probably because the high light requirements o f this species 

are not compatible with the low light environment in denser canopies that develop with 

the absence o f fire. As a typical shade tolerant species, ponderosa pine has a low 

proportion of foliage relative to sapwood and requires high light to compensate for 

respiratory loses and sustain positive growth. Douglas-fir on the other hand is more 

shade tolerant, has a much larger proportion o f leafs relative to sapwood and can tolerate 

lower light intensities (Callaway et al., 2000; Wagner, 1986). Further, increases in BA 

and tree density due to fire exclusion in the inland NW have been shown to decrease soil 

moisture availability during the summer (A. Sala unpublished data) and exacerbate water 

stress. As opposed to the drought tolerator strategy o f Douglas-fir (Stout and Sala, 2003), 

drought avoidance in ponderosa pine involves some significant costs including strong 

stomatal closure, large amounts o f sapwood relative to foliage as a water storage system 

and thick bark (Pinol and Sala, 2000; Stout and Sala, 2003). When fire is excluded, 

ponderosa pine loses competitive advantage relative to Douglas-fir. Open stands o f 

ponderosa pine are created by two things; a lack o f sufficient water for other species to 

survive or frequent fire ignitions, be they human or natural in origin.
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Understorv Cover

Fire exclusion also had some effects on understory cover as shown by the percent 

cover o f four different functional groups with increasing time since fire (Fig. 3). There is 

a negative trend for grasses or forbs, but the slope was not significantly different from 

zero in either case. Total shrub cover and ericaceous shrub cover however, increased 

significantly with time since fire (Fig. 3). These data show a shift from dominance by 

grasses and forbs to co-dominance between grasses, forbs and shrubs very quickly post

disturbance. It does not represent a successional replacement o f herbaceous species by 

woody species, as shrubs are present immediately after disturbance, regaining ground 

cover from intact root balls (Amo and Allison-Bunnell, 2002). All four functional groups 

considered here have the ability to maintain co-dominance in the forest understory. 

Grasses and forbs have rapid growth and nutrient turnover (Kaye and Hart, 1998; 

Naumburg and DeWald, 1999; White et al., 1991) and shrubs potentially alter their 

environment to maintain co-dominance. Ericaceous shrubs were singled out because they 

have been implicated in shaping environmental function through allelopathic interactions 

(Hattenschwiler and Vitousek, 2000; Nilsson et al., 2000; Northup et al., 1998; Wardle et 

al., 1998). The presence o f allelochemicals and their correlation with forest floor 

biochemical properties are addressed in section 3.6.

Understory recmitment after frequent low severity fire in Southwestern ponderosa 

pine forests has been shown to consist predominantly of bunch grasses (Covington and 

Sackett, 1992; White, 1985; White et al., 1991). This is also the common perception held 

for ponderosa pine forests o f the dry inland northwest. However, this presumption is 

errant due to the distinctly different climate, fire frequency and species composition of
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inland NW forests (Agee, 1993; Amo and Allison-Bunnell, 2002) as well as the data 

presented here. Forests o f the inland Northwest that have enough moisture to support 

Douglas-fir growth, characteristically have more woody shrub cover in the understory 

(Agee, 1993; Amo and Allison-Burmell, 2002). Understory vegetation is consumed by 

low severity fires, but the nature o f this fire regime causes consumption to be patchy at 

best (Amo and Allison-Bunnell, 2002). As grasses and forbs typically grow and senesce 

faster than shade tolerant shmbs, it seems obvious that differences in cover should change 

with time since fire, but the length of this succession is not known or well understood for 

the dry inland northwest. This data set shows that the length of time required to reach co

dominance is short and that the competitive exclusion o f grasses and forbs by shmbs does 

not happen in this time frame.

Forest Floor Properties

Forest floor thickness increased significantly with time since fire (Fig. 4). It 

should be noted that the total forest floor thickness that accumulated over this 

chronosequence is still quite shallow (average 6-6.5 cm) compared to other ecosystems. 

The forest floor o f these sites was mostly characterized by undecomposed material (Oj/e) 

and very little (< 10 %) humic material (Oa). The shallow forest floor thickness, even 

after 130 years o f fire exclusion, is representative of the extremely dry climate in westem 

Montana, with only 20 inches o f rain annually in low elevation forests, mostly falling as 

snow (Nimlos, 1986). The predominance o f Oi/e material justifies the use o f 0.16 g cm'^ 

for forest floor density and results from this study indicate that forest floor density does 

not change significantly with time since fire (data not shown). The increase in forest

44

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



floor thickness exhibits a log-linear relationship similar to the one for total BA and 

Douglas-fir BA, however the forest floor curve flattens farther along the chronosequence, 

somewhere between 25 and 50 years. This suggests that the accumulation of organic 

material on the forest floor is related to something other than canopy closure and will be 

discussed further in the following sections.

Both total C and total N content (kg ha'^) increase slightly with time since fire 

(Fig. 5). However, total C and total N concentrations (g kg"') do not exhibit a significant 

increase with inereasing time since fire (Fig. 5). Given that fire consumes a portion of 

the forest floor and that through time organic material accumulates, as shown by Figure 

4, it is not surprising that the overall nutrient content also increases. With increasing 

content, but no change in concentration o f these two nutrients, we have evidence to 

suggest that the type of litter inputs to the system do not change drastically over this time 

period. This was unexpected as we recorded signifieant increases in shrub cover and 

therefore expeeted changes to C and N concentrations and litter quality. A basic result of 

the total C and N data is to calculate the C to N ratio as a means o f addressing litter 

quality. The C to N ratio exhibited a significant trend with time since fire, inereasing 

from 20:1 after fire, to 30:1 with 130 years o f fire exclusion (data not shown). This 

suggests a decline in litter quality and a reduction in available N as speculated, but as the 

ratio remained between 20:1 and 30:1 the data provides only weak evidence as such. 

Therefore, a more direct analysis of N availability was examined on re-incubated forest 

floor samples.
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Nitrogen Availability

Fire exclusion was found to have a significant effect on N availability. Forest 

floor N content was measured after a 10 day aerobic incubation and NO3') ,and

again after a 14 day anaerobic incubation (PMN). The NH4  ̂ and PMN contents 

increased significantly with time since fire, however, NO3' content was found to decrease 

significantly with time since fire (Fig. 6 ).

The significant increase in NfLj^ accumulation (during a 10-d aerobic incubation) with 

time since fire was not expected. The data suggest that a surplus of moderately labile 

organic matter develops above the major plant rooting zone and probably accumulates 

during the dry summer and winter months, only to be rapidly mineralized to NlLt'^ in 

times o f snow melt and spring rain. This may explain why grasses and forbs are able to 

maintain their presence with increasing time since fire. They are adapted to pulses of 

increased nutrient availability and take full advantage o f the post thaw spring pulse, dying 

out later in summer and fall (DeLuca et al., 1992; Fierer and Schimel, 2002). Shrubs and 

trees on the other hand do not rely on pulses o f nutrients and instead acclimatize to the 

overall low nutrient availability that predominates in this ecosystem (Choromanska and 

DeLuca, 2001; DeLuca and Zouhar, 2000; Newland and DeLuca, 2000). There is also 

evidence that woody species can exist on NH 4 ’̂  alone, whereas grasses prefer NOs' and 

may experience NH4 *̂ toxicity (Persson et al. 2003). As it seems that none o f this NH4  ̂

reaches the soil, as indicated by studies showing pre-fire NHj"  ̂levels within 5 years post

disturbance (Covington and Sackett, 1992; DeLuca and Zouhar, 2000; Hart et al., 1994), 

perhaps the increase ofN H 4 ’̂ in the forest floor is evidence o f a plant mediated shift in N 

cycling.
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The decrease in NOb' with time since fire indicates that something is interfering 

with nitrification as the stands continues into late secondary succession. This is a 

common phenomena in many forest ecosystems as they progress into late secondary 

succession (DeLuca et ah, 2002; Hattenschwiler and Vitousek, 2000; Northup et ah, 

1998; Stark and Hart, 1997), but the mechanism by which nitrification appears to almost 

cease with increasing time since disturbance is not commonly agreed upon. Reduced 

nitrification may be a function of rapid turnover of NO3 ' (Stark and Hart, 1997), or 

possibly inhibition o f nitrification by allelopathic chemistry (Northup et ah, 1998). 

However, it is not clear whether allelopathic chemistry directly affects the microbial 

community or increases the humification process, and the source o f allelochemicals is not 

clear; are they plant derived of products of decomposition. This last question will be 

addressed in the next section.

The fact that NO3' decreases with time suggests that this is not a relic o f the 

incubation process which would have resulted in increased NO3'. It is possible that 

dissimilatory NO3' reduction resulted in the formation of NlLi^, but that would account 

for less than 10% of the ammonification recorded. While nitrification has been shown to 

decrease in late secondary succession forest soils (Hattenschwiler and Vitousek, 2000; 

Northup et al., 1998), little data are available for forest floor mineralization. The increase 

in PMN with time since fire corroborates the findings for NH4 ”̂ accumulation with time 

since fire.

The magnitude o f the N H / and PMN data are similar, but are notably greater 

than values reported for mineral soil in this region (e.g. DeLuca and Zouhar). The 

extreme values may be representative of forest floor mineralization that have riot been
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previously reported for this ecosystem or this time sequence. Mineralizable N is a factor 

related to accumulation o f organic matter and the curves o f both N H /  and PMN mimic 

the forest floor thickness curve. Therefore, it is possible that the increases in N 

availability simply represent the post-disturbance system coming to equilibrium with leaf 

litter an decomposition. However, the change in PMN with time since fire indicates that 

early sites mineralize more N than later sites when compared to the data. The early 

sites experience a 50% increase in PMN-N while the later sites experience only a 20 % 

increase in PMN-n when compared to NH 4 ^-N on average. This may suggest that there is 

a shift in the chemical composition o f the organic horizon that alters N mineralization 

dynamics with increasing time since fire.

Both ammonification and nitrification exhibit weak log-linear trends that flatten 

somewhere between 25 and 50 years (Figure 6 ). It is interesting to note that the historic 

fire return interval for these forests was on the order o f 25 to 50 years. This is good 

evidence that the disturbance regime is tightly coupled to ecological function. The 

amount of time required before nutrient availability begins to plateau is perhaps a 

universal trend related to time since fire. DeLuca et al. (2002) presented chronosequence 

data for northern Sweden in which nitrification decreased significantly with increasing 

time since fire. The relationship also produced a log-linear trend, but the curve flattened 

farther out along the time since fire axis, somewhere between 80 and 120 years. This 

time frame is similar to the historic fire regime of Boreal forests. Again, this is good 

evidence that ecological function is tightly coupled to the disturbance regime and differs 

from one regime to another. One possible mechanism for the tight coupling of ecosystem
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function to the disturbance regime is the production and maintenance o f allelopathic 

chemistry.

Allelochemicals

Phenols have been identified as allelochemicals capable o f interfering with the 

digestive tracts o f herbivores, inhibition o f seed germination in grasses and forbs, and as 

inhibitors of nitrification in forest soils (Hattenschwiler and Vitousek, 2000). Total 

phenols were measured on forest floor samples and increased significantly with time 

since fire (Fig. 7). With significantly decreasing NOa' contents in the forest floor it 

seems possible that phenols may be interfering with nitrification in this ecosystem as 

well. Total phenols also exhibited a log-linear trend with the curve flattening between 25 

and 50 years suggesting a relationship between forest floor decomposition, N availability 

and phenol content.

At this point it is not clear if  the accumulation o f phenols is a selectively adapted 

feature of the plant community or a secondary function of woody decomposition. 

Phenols are produced as secondary metabolites by the shikimic acid pathway in plants, 

but can also be synthesized de novo as a by product o f decomposition (Hattenschwiler 

and Vitousek, 2000). Ericoid plants have been shown to produce large quantities of 

phenols in some ecosystems (Choromanska and DeLuca, 2001; DeLuca et al., 2002; 

Wardle and Nilsson, 1997; Zackrisson et al., 1997), but whether or not they represent a 

large enough percent o f the understory vegetation to drive ecosystem function in this 

ecosystem is beyond the scope of this paper. Total shrub cover increases significantly 

and could be driving the accumulation of phenols in this ecosystem.
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In an effort to show whether total phenols were plant-mediated allelochemicals or 

a by-product o f woody decomposition total phenols were correlated with total shrub 

cover and forest floor thickness (Table 2). Both Forest thickness and total shrub cover 

were significant and positively correlated to total phenol content. There is, however, an 

element of auto-eorrelation with forest floor thickness and total phenol content, as 

thickness was used to convert phenol concentration to content. However, a strong 

correlation exists between forest floor thickness and total phenol concentration as well 

(data not shown). It is not clear from these correlation’s whether or not shrubs are 

increasing total phenols and forest floor thickness or vice versa. Therefore, these results 

do not help to determine the origin o f phenols in the forest floor and more experiments 

will have to be performed.

The N availability data suggested that there may have been some chemical 

interference with N mineralization. Total phenols were significantly correlated with 

PMN, weakly correlated with NH4 ’*’ and not well correlated with NOs' (Table 2). It is 

possible that the positive correlation reflects the increasing organic matter accumulation 

on these sites. Low molecular weight phenols have been identified as potential food 

sources for microbes (Hattenschwiler and Vitousek, 2000; Northup et al., 1998) and may 

simply reflect metabolic currency for both aerobic and anaerobic conditions. This does 

not readily explain why NO3' decreases with time since fire, but could be a function o f 

either inhibition or immobilization. Regardless, it is clear that there are dramatically 

different mechanisms responsible for the NH4  ̂and NO3' trends.
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CONCLUSION

By exploring forest floor properties and N mineralization in the context of 

ecosystem function we have addressed an overlooked topic in forest soil science today. 

Many studies have characterized forest floor physical parameters with increasing 

secondary succession, but few have studied the biochemical nature o f the organic 

horizon. Both PCA analysis and regression analysis imply that time since fire is having 

the greatest impact on forest structure and nutrient cycling for these sites even though 

there is large divergence in other environmental characteristics such as slope, aspect and 

elevation. With increases in BA and understory cover it is not surprising to find an 

increase in the forest floor thickness. While the quantity of the forest floor increases and 

therefore total C and N contents, the quality appears to decrease. Several lines of 

evidence support this idea: 1) a slight but significant decrease o f the C/N ratio over time; 

2) an increase o f phenolic compounds; and 3) a decrease o f NO 3 ' after aerobic incubation. 

The increase o f NHU"̂  seems counter intuitive but might indicate that a proportionally 

larger fraction of less labile N accumulates in the forest floor over time, which is released 

only after an incubation period. In nature such incubation periods may be equivalent of 

wet warm spring conditions which may create pulses o f N to mineral soil that maintain 

grasses (Fierer and Schimel, 2002). Decreasing nitrification and increasing phenol could 

be related to increased immobilization of NO3' or to some form of chemical interference 

o f nitrification. The effect high levels of NHU"̂  and total phenols in the forest floor needs 

further investigation on mineral soil properties.

This ecosystem is somewhat unique in that it was shaped historically by frequent 

low severity fire. These low severity disturbances acted to maintain ponderosa
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pine/Douglas-fir forests in a perennial state o f rejuvenation. The data from this study 

indicate a tight coupling of ecological function to the historic disturbance regime as 

shown by the repetition o f a log-linear trend which begins to flatten between 25 and 50 

years, similar to the historic fire return interval. These results are another example of 

how ecosystem properties have ’after-life’ characteristics created by the disturbance 

regime that has maintained the ecosystem (Nilsson et al., 2000; Zackrisson et al., 1996). 

These ’after-life’ properties have different phenology at different sites, as was shown by 

the Boreal forest example of DeLuca et al. (2002) and represent real properties of forest 

systems.

Management o f these second growth ponderosa pine/Douglas-fir forests should 

include some component of the natural disturbance regime to maintain forest health. 

Selective harvesting with low severity understory burning would likely promote rapid 

nutrient turnover (DeLuca and Zouhar, 2000) and increased tree growth (Amo and 

Allison-Branell, 2002). In this way, a natural mosaic of stands in different stages of 

recovery would be established and promote forest health and biodiversity (Bames et al., 

1988). There is also mounting evidence that landscape heterogeneity will promote 

resistance to premature disturbance and disease (Pickett and Cadenasso, 1995).
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Table 1: Chronosequence sites found in Westem Motanta with fire year, time since fire 
(TSF) and environmental factors including, aspect, slope and elevation.

Site Fire year TSF Slope
n

Aspect Elevation
(m)

Soil
Taxonomy

Alberton 1988 14 29.2 S 1339.4 Xeric Dystrocryepts
1880 122 22.8 SE 1520.8

Blodett Canyon 2000 2 8.3 S 1047.8 Lithic Dystmsepts
1988 14 14.0 s 1456.2
1988 14 5.0 s 1409.6
1870 132 11.7 s 1295.0

Clearwater 1988 14 5.0 s 1248.9 Typic Dystrocryepts
1880 122 11.0 SE 1299.1

Lake Como 1975 27 14.3 E 1407.1 Typic Dystrocryepts
1870 132 16.7 E 1404.0

Lick Creek 1993 9 12.3 NE 1264.6 Typic Dystmsepts
1870 132 21.7 E 1266.7

Lake Como N 1924 78 28.3 NW 1288.0 Typie Dystrocryepts
1870 132 13.8 NW 1222.1

Lake Como S 1924 78 19.5 E 1516.4 Typic Dystrocryepts
1870 132 15.3 NE 1500.8

Lost Horse 1915 87 12.7 SE 1273.8 Typic Dystrocryepts
1870 132 11.3 SW 1246.2

Miller Creek 1959 43 28.2 s w 1175.5 Typic Dystmsepts
1880 122 26.0 SW 1205.9

Nine Mile 2000 2 13.7 S 1056.4 Typie Dystrocryepts
1910 92 10.3 SE 1089.6
1880 122 16.8 S 1137.5

Willow Creek 1996 6 33.3 s 1590.6 Lithic Dystmsepts
1870 132 33.7 s 1668.4
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Table 2: Pearson correlation analysis with uncorrected probabilities. 
Total Phenols (pg capsule' ’) in forest floor material were correlated to 
the variables listed below.

Variable r ' p-value

Forest Floor Depth (cm) 0.674 0 . 0 0 2

Total Shrubs (% cover) 0.626 0.003
N H / (ug capsule “') 0.304 0.099
NOs' (ug capsule ’ )̂ -0.243 0.148
PMN (ug capsule '^) 0.655 0.005
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List o f Figures

Figure 1: Principle component analysis was applied to biotic factors o f the fire

chronosequence data set. These include: graminoids cover (G), forbs (F), deciduous 

shrub cover (DS), evergreen shrub cover (ES), erricaceae shrub cover (E), total shrub 

cover (TS), basal area (BA), forest floor depth (LFH), total C (TC), total N (TN), C to N 

ratio (C/N), ammonium (NILt" )̂ and nitrate (NO3 '). PCA 1 is related to TSF and PCA 2 

is related to environmental parameters. The bi-directional elipses show factors that were 

significantly (p<0.05) related to each axis by Pearson correlation and the bi-directional 

rectangles show factors that were significant at p< 0 .1 0 0 .

Figure 2: Change in basal area (m^ ha'') with time since fire for both the total BA of all 

canopy species together (a) and Douglas-fir BA (b) as measured on fire chronosequence 

sites in westem Montana.

Figure 3: Changes in graminoid (a), forb (b), ericaeceous shrubs (c) and total shrubs (d) 

with time since fire for the chronosequence sites in westem Montana.

Figure 4: Change in depth of organic horizon with time since fire for the chronosequence 

sites in westem Montana.

Figure 5: Change in total carbon (a) and total nitrogen (b) content (kg ha''), and 

concentrations (g kg '') o f total C (c) and total N (d) with increasing time since fire in 

westem Montana.

Figure 6 : Ten day aerobic incubations of forest floor material were analyzed for NH '̂^ (a) 

and NO3' (b) contents based o f forest floor densities (ug cm'^) and forest floor PMN (c) as 

determined by using a 14-d anaerobic incubation for the chronosequence sites in westem 

Montana.
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Figure 7: Change in total phenols extracted from forest floor material using 50 %

aqueous methanol (mg cm'^) with time since fire for the chronosequence sites in westem 

Montana.
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Fire exclusion and nitrogen mineralization in low elevation forests of western

Montana

M. D. M acKenzie\ T. H. DeLuca* and A. Sala^

^Department o f Ecosystem and Conservation Science, College of Forestry and 

Conservation, The University o f Montana, Missoula, MT, 59812 

^Organismal Biology and Ecology, Division o f Biological Sciences, The University o f

Montana, Missoula, MT, 59812

Abstract: Little is known about fire exclusion effects on N cycling in the low elevation 

forests o f western Montana. Ponderosa pine forests are thought to have been maintained 

historically by frequent low-intensity wildfires resulting in open, uneven aged stands of 

grass dominated understory. One hundred years fire exclusion has apparently caused a 

shift in forest structure toward greater domination by shade tolerant plants including 

Douglas-fir and various shrubs. To date it is not clear how this long-term change in fire 

frequency has influenced ecosystem function in terms of N availability and plant-soil- 

microbe interactions. A fire chronosequence approach was used to study how fire 

exclusion shapes soil processes and plant diversity. A total of ten sites with increasing 

time since fire were examined for soil biochemical properties including decomposition, 

available N, microbial biomass and respiration, and total phenols. Tongue depressors and 

cotton strips were installed to estimate cellulosic and ligno-cellulosic decomposition rates 

over an 18 month period. The sites were also monitored for a two month period with 

ionic and non-ionic resin capsules for net N mineralization and labile C pools. Tongue 

depressors and cotton strips were found to have reduced rates o f decomposition with
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increasing time since fire. Mineral soil NH 4 "̂ and NO 3 ' did not change significantly with 

time since fire. However, mineral soil mineralizable N, as estimated by anaerobic 

incubation and resin sorbed NH4 '̂  and NO 3 ' decreased signifieantly with time since fire. 

An increase in the metabolic quotient and a decrease in labile C pools suggested an 

increasingly difficult substrate for microbial decomposition. Total phenols showed no 

significant trend in the mineral soil, but were negatively related to net nitrification in a 

highly significant correlation. These results imply that microbes are being inhibited by 

both the availability o f labile substrate, as well as by some chemical factor on site which 

may be mediated by vegetation. Biodiversity initially increased with the recovery o f 

shrubs, but then remained constant with time. Our results point to an important role of 

shrubs as drivers o f decreasing N turnover with increasing time since fire and suggest that 

the alteration o f fire regimes in ponderosa pine ecosystems have substantial consequences 

on the N cycle via changes in vegetation.

Kevwords: Chronosequence, nitrogen cycle, allelopathy, secondary succession, soluble 

sugars, resin capsules, metabolic quotient, total phenols, decomposition, biodiversity

INTRODUCTION

There is currently little known regarding the influence of time since fire on 

nitrogen (N) cycling and the factors that affect N cycling in low elevation forests o f the 

dry inland Northwest. Recently the interior Northwest has experienced several years of 

catastrophic forest fire. In 2003 more than 300 thousand hectares bum in western 

Montana alone and in 2000 a similar area burned in westem Montana and northem Idaho.
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Fire exclusion is blamed for the large number o f high severity fires that have begun to 

occur nearly every summer in this region. Vegetation shifts towards late secondary 

succession increases fuel loading, causing forests to become more susceptible to high 

severity fire and is the explanation given for the apparent increase in forest burning (Amo 

et al. 1995). This has lead to management strategies that propose to reduce live and dead 

fuel loading. However, late secondary succession also causes changes to nutrient 

availability (Oliver 1981, Vitousek and Howarth 1991, Callaway et al. 2000). To date 

little emphasis has been placed on quantifying long-term changes in nutrient availability 

with increasing time since fire. Many studies show that litter quality decreases with late 

secondary succession (Zackrisson et al. 1997, Nilsson et al. 2000) and it is possible that 

the allelopathic properties or ’after-life’o f plant litter reduces nutrient availability for 

some time (Northup et al. 1998, Hattenschwiler and Vitousek 2000). The question 

remains whether major attributes o f ecosystem function, including nutrient availability, 

allelopathic interactions and plant diversity are well coupled to the disturbance regime in 

the dry interior Northwest

Historic evidence from westem Montana suggests that ponderosa pines were 

maintained by frequent low severity fires that burned every 10-50 years (Amo et al. 1995, 

Amo et al. 1997, Barrett et al. 1997). Many forests in the area have not experienced fire 

for over 130 years providing an excellent opportunity to study the effects o f fire 

exclusion on N cycling. In a recent chronosequence study in westem Montana 

(MacKenzie et al. in press), we showed that concurrent with increases in basal area, 

shrubs re-establish to co-dominance with grasses and forbs shortly after fire and 132 

years is apparently not sufficient time for successional exclusion o f herbaceous plants
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from these sites. These results contrast those of Southwestern ponderosa pine forests 

where fire maintained, grass-dominated understories are eventually replaced by pine 

needles and bare ground in the absence o f fire (White 1985, Covington and Sackett 1986, 

White et al. 1991, Kaye and Hart 1998). We also showed that forest floor properties 

change dramatically with increasing time since fire, with increases in total C and total N, 

but decreases in available N and litter quality. We concluded that shrubs have the 

potential to drive nitrogen cycling in the absence of fire, through plant chemistry. In the 

context of plant community ecology, the potential for biodiversity to increase with 

increasing time since fire is high due to lower resource availability (Tilman 1987). 

However, in the context of ecosystem function, the shift from a disturbance controlled 

nutrient cycle to a vegetation controlled nutrient cycle, may be detrimental to 

productivity and biodiversity in the long-term.

The purpose of this study was to examine how fire exclusion has modified 

decomposition rates, N cycling, secondary metabolites in the mineral soil and plant 

diversity. The specific research objectives included: 1) to quantify the rates of 

decomposition; 2) to quantify N availability with time since fire; 3) to determine if 

differences in N availability are a function of microbial immobilization or phyto-toxic 

inhibition o f microbial activity; and 4) to quantify how plant diversity is related to 

increasing time since fire. By looking at these characteristics we hope to determine how 

tightly forest N cycling and vegetation patterns in low elevation forests of the dry interior 

Northwest are coupled to the historic disturbance regime.
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MATERIALS AND METHODS

Study Sites

Studies were conducted at 10 sites in westem Montana of varied time since fire 

(2, 24, 45, 78, 87, 92, 122, 132 years since fire). Sites were selected from a previous 

chronosequence study (MacKenzie et al. in press) that had similar environmental 

characteristics including; slope, aspect, elevation, and soils at the sub-group level (Table 

1). All sites were located in the Bitterroot National Forest, the Lolo National Forest, and 

the Blackfoot Clearwater Game Reserve (Fig. 1). Fire dates were determined by the 

Forest Service (data not published) and ground truthed by visual evidence of burning 

when possible. At each site, 100 m transects were laid out for sampling, perpendicular 

the main slope. Within each 10 m section o f transect, two random numbers were drawn, 

the first number representing the distance along the transect and the second number 

representing the distance to a point, alternating above and below the transect, from which 

samples were collected. These sampling locations were marked for future reference.

Decomposition Analysis

To measure the rate o f cellulose and ligno-cellulose decomposition, one tongue 

depressor and one cotton strip were installed at the forest floor/soil interface and left to 

decompose for 18 months at 10 sampling points per site. Cotton strips are primarily 

made-up of cellulose, while tongue depressors are made-up o f both cellulose and lignin.

It takes only one enzyme complex to decompose eotton strips making them more labile, 

whereas it takes a suite o f enzyme systems to decompose tongue depressors, making 

them less labile (Paul and Clark 1996, Stevenson and Cole 1999). Therefore, cellulosic
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materials (cotton strips) should decompose far more rapidly than lignified material 

(tongue depressors) and perhaps decompose at different rates if  the microbial community 

shifts to favor decomposers of high lignin, low cellulose material. Alternatively, change 

in the rate of decomposition will be the same for both materials if  the soil environment 

becomes loaded with allelochemicals (Paul and Clark 1996, Zackrisson et al. 1996). Loss 

o f mass from the tongue depressors was determined gravimetrieally by the difference 

between the initial and final oven dried weights (60 " C for 24 h.). However it was not 

possible to determine the final oven dried weight o f the cotton strips as decomposition of 

the cloth made it difficult to effectively clean the strips of soil and fungal matter. Cotton 

strips were placed on a template o f their original size with a grid pattern dividing the 

template into 10% sections and a visual estimate o f the percent lost was calculated. This 

value was then converted to mass lost from the initial oven dried weights. The rate o f 

decomposition was calculated by diving the mass lost by the amount o f time and was 

reported as g per year.

Soil Sampling

In March o f 2002, approximately ten soil samples were composited from the 0-10 

cm depth at each o f the ten sampling points for each site. Samples were collected with a 

standard, 2.5 cm diameter soil sampling probe and chilled on ice until they could be 

processed in the lab, usually the day after sampling. Sub-samples were weighed out for 

different analyses including, field moisture, pH, total carbon (C), total nitrogen (N), 

available N, potential mineralizable N (PMN), microbial biomass, microbial respiration 

and total phenols. Ionic and non-ionic resins were installed to monitor and NO3'
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mineralization over a 2 month period (Kjonaas 1999, Morse et al. 2000). Polyester 

capsules containing 10 ml (approximately Ig dry weight) of mixed bed ionic resins (PST- 

2, Unibest, Bozeman, MT) were installed just below the forest floor/soil interface at each 

of the ten sampling points per transect for analysis o f amino-N, NHU  ̂and NO 3 ' (Keeney 

and Nelson 1982). Capsules were covered with 1 to 2 cm of soil to secure them in place. 

Fishing line and flagging tape were attached to each capsule to aid in recovery. Non

ionic resin capsules (Unibest, Bozeman, MT) filled with approximately one gram dry 

weight (about 1100 m^ o f surface area) o f XAD-7 resin (Rohm and Hass Inc., 

Philadelphia, PA) were installed the same way, adjacent to the ionic resin capsules, for 

analysis of anthrone reactive carbon (ARC) (Morse et al. 2000) and soluble phenols 

(Stem et al. 1996). In May o f 2002, the resin capsules were removed and frozen until 

they could be analyzed.

Soil Chemical Analysis

Oven dried weight was determined by placing 30 g sub-samples in a forced air 

oven at 105 ° C for 24 hours. The difference between the field moist value and oven 

dried value were used to determine a moisture factor that would allow us to report 

chemical data on a per gram dry soil basis. Soil pH was determined in a 2:1 soil slurry 

with 0.01 M CaCB (McLean 1982). A sub-set of soil samples were air dried and ground 

to pass a 0.01 mm mesh for total C and N analysis. Total C and N were determined by 

dry combustion and analyzed on a Fissions Analyzer (EA 1100, Milan, Italy). The C/N 

ratio was determined from this data by dividing the total amount o f C by the total amount 

ofN .
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Total phenols were measured from air-dried samples by the Prussian Blue method 

(Stem et al. 1996). Twenty-five grams of air dried sample was extraeted with 50 % 

methanol for 24 h. These samples were filtered with Whatman 42 filter paper, biichner 

funnels and a vacuum manifold. The extracts were then analyzed at 720 nm against a 

(-i-)-catechin standard.

Extractable NH 4  ̂and NO3' were removed by shaking 30 g field moist soil in 50 

ml o f 2 M KCl for 30 min and filtering with Whatman 42 filter papers, buehner funnels 

and a vacuum manifold. The extracts were analyzed for NH4^-N and N O s'-N  on a 

segmented flow Auto Analyzer 3 (Bran and Luebbe, Chicago, IL). We used the 

salicilate-nitroprusside method for NH4 '̂  and the cadmium reduction method for NO3 ' 

(Keeney 1982). These extracts were also used to determine the amount of amino N, as 

estimated by the ninhydrin reactive N (NR-N) method (Moore 1968) less the NKU' -̂N 

concentration for comparison with the fumigation results. To determine PMN, 5 g of 

field moist soil was immersed in 10 ml of deionized water in a 50 ml centrifuge tube.

The head space was displaced with N 2 gas, the tubes sealed and incubated at 25 °C for 14 

days. After 14 days, 10 ml of 4 M KCl was added to bring the total volume o f extractant 

to 20 ml with a molarity o f 2, shaken for 30 min. and filtered in the same manner as the 

other soil extracts. The extract was analyzed on a Technicon II autoanalyzer for 

ammonium with the same method as above. The unicubated ammonium data was 

subtracted from the incubated ammonium data to give the PMN per gram dry soil.

Microbial biomass was measured by the fumigation extraction method (Amato 

and Ladd 1988). Briefly, 30 g. of soil were fumigated with chlorophyll in an air-tight 

bell jar for 24 hrs. Fumigated samples were extracted in 50 ml o f 2 M KCl with the same
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method as above and extracts were analyzed for Amino N by NR-N method (Moore 

1968). Unfumigated data was subtracted from fumigated data to give organic N 

concentrations which were multiplied by 3.2 for Biomass N or 22 for biomass C (Amato 

and Ladd 1988). Microbial respiration was measured by the alkali trap/HCl titration 

method (Fierer and Schimel 2002). We used 50 g. of field moist soil, sieved to 4 mm to 

remove roots and allowed to respire in a mason jar for 3 days. Scintillation vials with 20 

ml of 1 M NaOH were placed in the jars to trap CO2 evolved. After 3 days, the traps 

were removed and the solution transferred to 250 ml Erlenmyer flasks containing 30 ml 

o f 2 M BaCE and a few drops o f phenathalien. Titration to neutrality with 1 M HCl was 

performed and the volume of HCl used recorded. From this data the concentration of 

CO2 evolved per g dry soil was calculated.

Resin Capsule Analysis

Ionic resins were extracted by 3 successive 10 ml rinses o f 2 M KCl, each shaken 

for 30 min (Kjonaas 1999, Morse et al. 2000). Extracts form the three successive rinses 

were mixed and centrifuged at 3000 RPM for 10 min to remove soil particles, and NEE"̂ , 

NO3' and NR-N analyzed as outlined above. Non-ionic resins were extracted with two 

different extractants in succession. Resin capsules were placed on top of 200 ml French 

square bottles under a partitioning pump that delivered 1 ml o f extractant per minute for 

30 minutes. The first extractant was distilled water for determination o f ARC (Morse et 

al. 2000) and the second extractant was 50% methanol for analysis o f soluble phenol 

(Stem et al. 1996). Studies have shown that distilled water does not remove phenols
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while 50 % methanol removes up to 95 % of the phenols sorbed (DeLuca, unpublished 

data).

Vegetation Survey

Understory vegetation was surveyed with 0.5 m^ quadrats placed at 10 sampling 

points per transect. Each species was identified and the number of individuals recorded 

from within the quadrat. This included all grasses, forbs and woody species. Another 0.5 

m^ quadrat per sample was placed adjacent to the initial quadrat to pick up rare species of 

forbs. Woody species and trees were quantified in 10 additional 5 m radius plots. Again, 

species were identified and the number o f individuals recorded. Vegetation data from 

both quadrat sizes was converted to number o f individuals per m^, per species. The 

Shannon index o f biodiversity was calculated as:

H"=Y^piln{pi) (1)
i=0

where H ’is the Sharmon index number and p i  the proportion o f individuals o f each 

species to the entire number of individuals (Raven 1992).

Statistical Analysis

Systat 9.0 was used to perform statistical analysis o f data sets collected from this 

study (Wilkinson 1999). Linear and log-linear regression analyses were performed to 

examine the relationship between biochemistry variables and time since time. In all cases 

tests were performed to ensure that the assumptions of regression analysis were met, 

including that the error terms were normally distributed, had constant variance and were 

independent o f each other (Wilkinson 1999).
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RESULTS AND DISCUSSION

Decomposition Analysis

Fire exclusion clearly influences biochemical processes including decomposition. 

The rate o f decomposition decreased significantly for tongue depressors and cotton strips 

with increasing time since fire (Fig. 2). Both tongue depressor and cotton strip data 

exhibited linear decreases with time, however mass loss over time was greater for cotton 

strips than for tongue depressors (data not shown). It appears that the less recalcitrant 

substrate represented by cotton strips (ligno-cellulose) was mineralized to a greater extent 

than the recalcitrant material represented by tongue depressors (lignin). These data 

suggest that the shift in decomposition is due to an accumulation o f recalcitrant and 

potentially inhibitory compounds rather than a shift in the microbial community as 

outlined earlier. In other words, the microbial community does not become better 

adapted to decompose the organic substrate, which is evidence for substrate limitation. 

This suggests that the amount o f material the microbial community can mineralize is 

being inhibited by allelochemicals that most likely accumulate as the forest floor 

degrades. These results are in line with our previous study, which showed that total 

phenols in the forest floor were well correlated with forest floor thickness (MacKenzie et 

al. in press).

Nitrogen Availability

Fire exclusion showed dramatic effects on N mineralization when measured in- 

situ with ionic resin capsules. All forms o f N measured, including NR-N, NH4 ^ and NO3' 

decreased significantly with increasing time since fire (Fig. 3). Ninhydrin reactive N is a
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measure of amino N, but not cyclic or polycyclic N and although a small fraction o f the 

total dissolved organic N (DON) pool, NR-N represents the highly labile organic N 

(Moore 1968, DeLuca et al. 1992, Jones et al. 2004). Ninhydrin reactive N decreases 

with time since fire (Fig. 3 a) and is a solid indication of a shift in chemical nature of the 

products of decomposition. Available N also decreases with time since fire as shown by 

the very tight trends for N H / and NO 3 ' (Fig. 3, b and c). Both o f these trends followed 

log-linear decreases with inflexion point centered somewhere between 20 and 50 years 

since fire. As this time period reflects the historic fire return interval, we interpret this 

trend to be the result of a tight coupling of ecosystem function with the dominant 

disturbance regime. DeLuca et al. (2002) have shown similar log-linear decreases in 

nutrient availability with increasing time since fire in Boreal ecosystems. In this fire 

chronosequence however, their data showed that the inflexion point o f the curve for 

decreasing resin collected NOs’ concentrations occurs later, between 80 and 1 2 0  years 

since fire, which reflects the natural disturbance regime o f Boreal forests (DeLuca et al. 

2 0 0 2 ).

Figure 3 also shows that the amount o f NO 3 ' that accumulates on resin capsules is 

similar in magnitude to the amount of NIHÛ . It is often assumed that nitrification is 

reduced as systems move into late secondary succession (Rice and Pancholy 1972, White 

1988). Recent evidence suggests that a tight coupling exists in mature forest ecosystems 

where nitrification and NO 3 ' uptake occur rapidly to reduce N loses (Stark and Hart

1997). There has also been a long debate about increasing allelopathic interference of 

nitrification with increasing time since disturbance (White 1988, McCarty and Bremner 

1989, Northup et al. 1998, Hattenschwiler and Vitousek 2000). However, our data show

80

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



that a significant amount of nitrification occurs immediately after fire and decreases at a 

similar rate as that ofNHU^. It is difficult to say if  the resin data shows inhibition of 

nitrifieation which may be related to the pool sampled by resin capsules. Resin capsules 

represent a unique measure between gross and net N mineralization. This is because 

available N flows or diffuses into resin capsules from the soil solution where it adsorbs to 

resin beads and is no longer readily available for uptake. By removing some o f the 

inorganie N, we short-circuit N turnover, there-by making it difficult to say exactly what 

portion of the available pool we have sampled. It is also impossible to estimate the 

volume of soil sampled by these small diameter capsules, therefore the values are 

reported as N per capsule. The benefits o f using resin capsules include ’real time’ 

measurements o f N availability, instead of ’point in time’ measurements, and minimal 

disturbance to the soil environment during installation and removal (Kjonaas 1999).

Interestingly, soil grab samples did not exhibit any significant trends for either 

NH4 "̂ or NOs' with increasing time since fire (Fig. 4). This is not surprising given that 

soil grab samples are a poor surrogate o f N mineralization in forest environments where 

the rate of turnover can be rapid and the competition for N intense (Kronzucker 1997, 

Stark and Hart 1997). Soil PMN decreased significantly with increasing time since fire 

(Fig. 4), based on a 14 day anaerobie incubation. This gives an index of the amount of 

labile N that can be mineralized given optimal conditions, but reduces the amount of 

uptake and oxidation o f N by other microbes (Keeney 1982). A decrease in PMN with 

increasing time since fire indicates that the amount of labile N that is easily mineralized 

by the microbial community o f these sites is decreasing and is good evidence that the 

forest floor quality is changing and subsequently affecting nutrient turnover in the soil.
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This finding is in contrast to reports from other ponderosa pine systems, where re- 

introduction o f fire decreased the amount of PMN (Covington and Saekett 1992, Hart et 

al. 1994, DeLuea and Zouhar 2000, Newland and DeLuca 2000, Choromanska and 

DeLuca 2001). This discrepancy is difficult to reconcile, but may be a function o f the 

nature o f controlled fire vs. wildfire. Most o f the studies cited above involve treatments 

o f controlled burning, in some cases with multiple burning cycles, whereas the sites from 

this study were burned by wildfire and have only burned onee in the last 130 years. 

Furthermore, Southwestern forests have very different understory vegetation, fire return 

interval and soil dynamics (White 1985, White et al. 1991, Hart et al. 1994). Another 

explanation is that the sites examined in this study have very few N-fixing species present 

and some cutting history. Fire exclusion has been shown to reduce the number o f N- 

fixers (Newland and DeLuca 2000) and it is possible that removal o f biomass from these 

sites in the past has reduced total N reserves in the soil.

Total C and N concentration (g kg'^) in mineral soil, and the C to N ratio did not 

change significantly with increasing time since fire (Fig. 5). Fire eonsumes some 

portion of the forest floor and through the annual deposition o f litter, an aceumulation of 

organic material develops on the surface. The thickness of the forest floor and content 

(kg ha’ )̂ of total C and N increased signifieantly with time since fire (MacKenzie et al. in 

press). However, the concentration o f total C and N in the mineral soil of these sites did 

not ehange with time since fire. The heat from a low severity fire does not penetrate soil 

to depth (Neary et al. 1999) so organie matter is not heated to the point of volatilization 

and therefore total C and N do not change from a fire perspective. However, long-term 

accumulation o f organic matter should lead to higher concentrations o f total C and N in
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the soil. Although a significant increase, the C to N ratio some o f the older sites is 

around 30:1 which is high and likely leads to increased N immobilization (Stevenson and 

Cole 1999). Together, these results begin to indicate a transformation in the nature and 

structure of organic constituents. These changes may be directly influencing soil N 

cycling by influencing the microbial community.

The resin capsule N data clearly show that mineralization decreases with time 

since fire. Several possibilities exist to explain this phenomenon. First, rapid microbial 

immobilization of available C and N results in limited net mineralization (Bemston and 

Aber 2000, Vance and Chapin 2001). However, this would imply an increase in 

microbial biomass over time (see next section) Second, phenolic compounds created as 

secondary metabolites in plants may cause allelopathic interference in the microbial 

community resulting in reduced gross mineralization (Northup et al. 1998,

Hattenschwiler and Vitousek 2000). In this scenario, phenolics would increase over time, 

which a previous study found to be the case in the forest floor (MacKenzie et al. in 

press). A combination o f immobilization and inhibition exists, where phenolic 

compounds act as the pre-cursor to humus formation (Hattenschwiler and Vitousek 2000) 

and sorb proteinacious material, creating polyphenol protein complexes (PPC). This 

inhibits the microbial community by immobilizing available C and N. Evidence for this 

last possibility would be reduced decomposition of the same materials across all sites 

which we have shown with the decomposition results.
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Microbial Activity and Soluble Organic Materials

Several indices o f microbial activity were calculated from soil grab samples. 

Regression analysis showed that basal respiration rates (data not shown) and microbial 

biomass C had no relationship with time since fire, while the microbial metabolic 

quotient increased significantly with time since fire (Fig. 6 ). The metabolic quotient (Fig. 

6  b) is calculated as biomass C divided by CO2 respired per hour. Given that the size of 

the microbial community is not changing with time, these results indicate that the organic 

substrate is becoming more difficult to decompose. However, based on the biomass and 

respiration data, it is still not possible to say whether or not microbes are being directly of 

indirectly inhibited by the organic substrate. This indicates that the overall size of the 

microbial community is not changing through time and essentially discounts the theory 

that increasing microbial immobilization is responsible for the decrease in available N at 

these sites.

We used non-ionic resin capsules to assess bioavailable C by measuring ARC 

(Morse et al. 2000). The concentration o f ARC that accumulates on the non-ionic resins 

decreased significantly with time since fire (Fig. 7 a). Soluble ARC represents free 

hexose sugars that are left behind by microbial digestion o f organic matter and are 

positively correlated with microbial biomass and respiration (DeLuca 1998). This 

indicates a declining pool of highly labile C which can be thought o f as a surrogate for 

microbial activity (DeLuca 1998) and suggests that microbes are being indirectly 

inhibited. Given that microbial biomass does not change, while the metabolic quotient 

increases and ARC decreases we can say that microbes are being indirectly inhibited by 

some organic constituent o f the organic substrate. We also used non-ionic resin capsules
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to measure soluble phenols. Soluble phenols represent the low molecular weight 

eategory of phenols, which are most likely a microbial food source rather than 

allelochemicals (Hattenschwiler and Vitousek 2000). As such they might be used as 

another index of microbial activity, again measured in-situ. However, soluble phenols 

showed no significant relationship with time since fire (Fig. 7 b).

Ecosvstem Allelopathy

In the strietest sense, allelopathy refers to plant-plant interference mechanisms 

that shape community dynamics, but recent arguments indicate that it is more 

appropriately applied to interference mechanisms at the ecosystem level (Wardle et al.

1998). These interference mechanisms are mitigated by the production of 

allelochemicals. Much evidence indicates that some phenolic compounds, produced as 

secondary metabolites by plants, are allelochemicals (Nilsson et al. 1998, Northup et al. 

1998, Hattenschwiler and Vitousek 2000, Souto et al. 2000). We analyzed concentrations 

o f total phenols from mineral soil samples and compared them to concentrations o f forest 

floor total phenols from a previous study (MaeKenzie et al. in press). Total phenols from 

the forest floor increase significantly with increasing time since fire, while total phenols 

from mineral soil did not (Fig. 8 ). However, total phenols from the forest floor follow a 

log-linear increase similar to the N availability data, with inflexion point between 20 and 

50 years. We found total phenols in the forest floor to be positively correlated with a 

decrease in litter quality as mentioned previously (MacKenzie et al. in press). In this 

study, we found that mineral soil total phenols were negatively correlated (p = 0 .0 0 ) to 

net nitrification as measured by ionic resin capsules (Fig. 9). This suggests that phenolic
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compounds are tightly coupled to the disturbance regime and interfering with N 

transformations in the absence o f fire.

Although microbial biomass and respiration show no significant increase or 

decrease with time since fire, the metabolic quotient increased and ARC decreased, 

indicating microbial stress. Along with the decrease in decomposition, we have evidence 

that an increase in forest floor phenolic compounds results in a reduction in the rate of 

decomposition by hindering the activity of the microbial community. It is not clear 

whether this interference mechanism is through direct allelopathic inhibition o f the 

microbial community or through indirect inhibition. Indirect inhibition may be the result 

o f polyphenol protein complexes (PPC) (Hattenschwiler and Vitousek 2000), which sorb 

labile N compounds and may change the C to N ratio of the soil solution. We need to 

further investigate the explanation that polyphenolic compounds are sorbing 

proteinacious material and reducing N availability resulting in a reduction o f microbial 

activity. It is also not clear from this data whether or not phenolic compounds are being 

produced directly by plants or by de novo synthesis in the forest floor as a by-product of 

lignin decomposition (Hattenschwiler and Vitousek 2000). To examine the impact of 

decreasing N availability and the potentially plant mediated accumulation o f phenolic 

compounds we analyzed plant community composition to assess biodiversity on these 

sites.

Biodiversity

Existing literature suggests that a decrease in resource availability should result in 

an increase in plant diversity (Tilman 1987, Nilsson et al. 1999, Reich et al. 2001, Zak et
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al. 2003). However, it is not clear whether or not the plant community is driving resource 

availability or vice versa. We used the Shannon index (H’) to calculate species diversity. 

The Shannon index sums the number o f individuals as a proportion of the total so that 

rare species are not underestimated (Raven 1992). Table 2 shows that the youngest site, 2 

years since fire, has the lowest H ’ with a value o f 1.875 while the next site, 24 years since 

fire, has a value of 2.577. All other sites also have an H ’ above 2.0. Lower diversity 

immediately after fire when N availability is highest is in-line with current plant 

community theory (Tilman 1987). The lower diversity is primarily due to a higher 

proportion of graminoids immediately after fire, but the diversity shifts rapidly with the 

recovery o f woody shrubs and plateaus after roughly 25 years when N availability also 

begins to plateau. Again, this is remarkably similar to the log-linear decrease o f available 

N and the log-linear increase o f total phenols. It constitutes further evidence that the 

recovery of woody shrubs may be driving N cycling on these sites. However, this 

evidence is indirect and requires further study to isolate the exact mechanism responsible 

for post-fire ecosystem function. Direct measurements o f shrub produced secondary 

metabolites are needed for species in this area to determine if  polyphenol production is an 

adapted trait or merely a biological mediated result. Evidence from Boreal systems 

indicates that polyphenol production may be an adapted trait in woody species of the 

ericaeceous family (Nilsson et al. 1998, Nilsson et al. 1999) and this family is of 

moderate importance in ponderosa pine forests o f the dry inland Northwest as well 

(MacKenzie et al. in press).
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CONCLUSIONS

The analysis o f fire exclusion, set in the context of a fire chronosequence 

demonstrated a drastic decrease in N mineralization that plateaus with approximately 25 

years since fire. The microbial community experiences increasing stress as indicated by 

decreasing indices o f microbial activity and a reduction in the decomposition of cotton 

strips and tongue depressors (cellulose and ligno-cellulose respectively). These may be 

the result o f increasing concentrations o f phenolic compounds in the forest floor, 

although phenols did not increase in mineral soil. It is not possible to say whether or not 

phenolic compounds were acting as allelopathic agents, directly interfering with microbes 

or immobilizing labile organic N as polyphenol protein complexes and indirectly 

interfering with microbial decomposition. A question also remains about the origin of 

phenolic compounds in this environment, but the biodiversity data in context with 

previously collected data provides further evidence that they are most likely related to the 

recovery of shrubs on these sites.

Our previous study (MacKenzie et al. in press) showed that understory vegetation 

shifts towards co-dominance between herbaceous and woody plants. These results are 

paralleled here by the diversity data which indicates that biodiversity increases with 

decreasing resource availability, but remains constant with approximately 25 years since 

fire. Given the similar time frame for changing N availability and plant diversity, we can 

assume a tight relationship between plant/soil interactions. It is unlikely that one species 

of plant is driving the shift in chemical ecology, but rather a functional group, such as 

woody shrubs. Together, these data indicate that woody shrubs are potentially driving N 

cycling on these sites and that fire exclusion is changing the way this ecosystem functions
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by extending the successional sequence past the natural equilibrium evolved to over the

last 1 0  0 0 0  years.
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Table 1: Fire chronosequence site despcriptions for 10 sites at 4 locations
around westem Montana including: time since fire (TSF-sampled in 2002), 
position on the landscape, pH, texture and soil classification. Landscape 
variables are the avaerage of 6  samples along two different transects, pH is the 
average of 1 0  samples along one transect and soil classification is from one soil 
pit per site.

Site name Bum
year

TSF
(years)

Slope
(°)

Aspect
(O)

Elevation
(m.)

pH Texture

Ninemile 1880 1 2 2 10.3 137.0 1218.6 4.36 SL
1910 92 16.8 175.3 1272.2 4.28 L
2 0 0 0 2 13.7 187.0 1181.5 4.85 SL

Clearwater 1880 1 2 2 1 1 . 0 141.3 1452.9 4.72 SL
1957 45 8 . 8 163.1 1457.1 4.78 SL
1988 24 5.0 172.7 1396.8 4.55 SL

Lost Horse 1870 132 11.3 207.0 1393.8 4.22 SL
1915 87 12.7 143.8 1390.6 4.35 SL

Lake Como 1870 132 15.3 40.7 1678.5 4.27 SL
1924 78 19.5 106.7 1696.0 4.26 SL
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Table 2: Biodiversity for fire chronosequence sites in westem Montana including: 
time since fire (TSF), species richness, density o f individuals and Shanon index.

Site TSF
(years)

Species Richness 
(# of species)

Density 
(idividuals m'^)

Shannon Index
m

NMl 2 2 2 641.6 1.875
CWl 24 29 541.1 2.577
CW2 45 29 459.5 2.191
LC 78 2 1 322.0 2.383
LH 87 28 402.3 2.425
NM2 92 31 340.4 2.704
CWUB 1 2 2 31 524.9 2.384
NMUB 1 2 2 31 652.5 2.241
LHUB 132 34 445.6 2.352
LCUB 132 36 322.0 2.295

97

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



List of Figures

Figure 1: Map of sampling locations around westem Montana from which 10 fire 

chronosequence sites were found in the Bitterroott National Forest, Lolo National Forest 

and Clear Water Game Reserve.

Figure 2: Rate o f decoposition (g year'^) was measured by regression analysis with time 

since fire (years) for cotton strips (a) and tongue depressors (b) from a fire 

chronosequence in westem Montana.

Figure 3: Ionic resin capsules were used to measure N mineralization in-situ at the 

plant/soil interface from a fire chronosequence in westem Montana. Regression analysis 

is reported for three indicators of N availability including: NRN (a), N H /-N  (b) and 

NOs'-N (c) in concentration (pg capsule*') vesus time since fire (years).

Figure 4: Regression analysis was performed on NH4 *̂ -N (a), NOs’-N (b) and PMN (c) 

concentrations (pg g*’) versus time since fire (years) for mineral soil samples (0 - 1 0  cm 

layer) from a fire chronosequence in westem Montana.

Figure 5: Regression analysis for total C (a) and total N (b) concentrations (g kg*'), and 

C/N ratio (c) o f mineral soil samples (0-10 cm layer) from a fire chronosequence in 

westem Montana.

Figure 6 : Several microbial indices were measured or calculated for mineral soil samples 

from a fire chronosequence in westem Montana including: microbial biomass C (mg g*') 

and the metabolic quotient (mg mg*' h*'). Regression analysis is shown for microbial 

biomass C (a) and metabolic quotient (b) with increasing time since fire (years).
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Figure 7: Sorption o f free sugars (ARC, jag capsule"') and soluble phenols (mg capsule"') 

to non-ionic resins were measured on a fire chronosequence in westem Montana. 

Regression analysis is reported for ARC (a) and soluble phenols (b) with time since fire 

(years).

Figure 8 : Total phenol concentration (mg g"’) in forest floor (a) and mineral soil (b) 

samples from a fire chronosequence in westem Montana and regression analysis was 

performed with time since fire (years).

Figure 9: Net nitrification (ug capsule"' month"') as measured by ionic resin capsules was 

compared to mineral soil total phenol concentration (mg g"') by uncorrected Pearson 

correlation for a fire chronosequence in westem Montana.
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Seasonal Nitrogen Availability and Microbial Activity in Fire Excluded Low 

Elevation Forests of Western Montana

M. D. M acKenzie\ and T. H. DeLuca'

'Department o f Ecosystem and Conservation Science, College o f Forestry and 

Conservation, The University o f Montana, Missoula, MT, 59812

Abstract: Fire exclusion often results in decreased N mineralization due to poor litter 

quality and microbial stress. However, N mineralization is also affected by fluctuations 

in temperature and moisture. The objective o f this study was to determine the 

simultaneous effect o f time since fire and season on N mineralization and microbial 

indices. We installed ionic and non-ionic resin capsules along a fire chronosequence to 

measure N availability and microbial activity at three different times between November 

2001 and August 2002. Ionic resin extracts were analyzed for NFU'^, NOs' and 

ninhydrin reactive N (NRN - amino N), a measure of microbial activity. Non-ionic 

capsules were analyzed for anthrone reactive C (ARC - hexose sugars), a measure o f 

microbial activivty and soluble phenols (SP), a potential microbial food source. Repeated 

measures ANOVA indicated that all o f these soil properties were significantly different 

during the measurement period, however regression analysis revealed that only certain 

variables showed a significant trend during specific seasons with increasing time since 

fire. All N measurements decreased significantly with time since fire during winter and 

spring sampling and were non-significant during summer sampling. Unlike summer 

concentrations ofNIUt"^ and NO.T, NRN concentrations were highest in the summer, 

possibly due to disruption of microbial cells. Analysis of ARC indicated a similar trend
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for microbial activity, increasing over winter and spring, and crashing in the summer with 

the onset of hot, droughty weather. Soluble phenol data exhibited a peak in the spring 

sites of low and moderate time since fire, but is more difficult to interpret than ARC.

Both ARC and SP need more study to determine how these variable correlate with the 

microbial community when collected on resin capsules. None of the biochemical 

variables analyzed here exhibited a significant trend during the summer sampling period 

indicating the effect o f drought on this ecosystem and the importance o f sampling time.

Kevwords: Fire exclusion, N mineralization, microbial biomass, microbial respiration, 

seasonal N availability, dry inland Northwest, ponderosa pine, Douglas-fir

INTRODUCTION

Little is known about how N mineralization and microbial activity fluctuate with 

changing season and increasing time since fire in the dry inland Northwest. Fire 

exclusion in the ponderosa pine/Douglas-fir ecosystems o f the dry inland Northwest has 

recently been shown to affect N mineralization adversely (MacKenzie et al. in press, in 

review) as hypothesized by Covington and Sackett (1992). Historically, these forests 

burned every 10 to 50 years with a low severity fire regime (Amo et al. 1995, Barrett et 

al. 1997, Amo and Allison-Bunnell 2002). This fire regime promoted an open canopy of 

ponderosa pine with an understory o f grasses and forbs. Fire has been shown to promote 

N mineralization in the short-term (White et al. 1991, Kaye and Hart 1998, Newland and 

DeLuca 2000). However, Euro-American settlement of the west has drastically altered 

the natural fire return interval and many forests in this area have not bumed for over 130
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years. MacKenzie et al. (in review) showed that the extended absence o f fire has caused 

N mineralization to asymtote at low concentrations due to poor litter quality and stressed 

microbes.

Ponderosa pine/Douglas-fir ecosystems o f the inland Northwest receive most 

precipitation in the winter which becomes available during spring melt periods (Nimlos 

1986). Nitrogen mineralization is influenced to a great extent by periods o f wetting- 

drying and by cycles o f freeze-thaw (DeLuca et al. 1992, Fierer and Schimel 2002).

These phenomena influence N cycling primarily through their effects on microbial 

activity. Microbial cells are disrupted during cycles o f freeze-thaw or wetting-drying 

which increases inorganic N availability and the amino N pool, represented by changes in 

ninhydrin reactive N (NRN) concentrations (DeLuca et al. 1992).

The objective o f this study was to show how N mineralization and microbial 

activity were affected by the simultaneous effects o f time since fire and season. To do 

this we used ionic and non-ionic resin capsules to study in-situ mineralization and 

biological activity. Ten field sites in westem Montana, representing a chronosequence o f 

time since last fire, had resin capsules installed at three different times o f year. The 

specific research objectives were; 1) to analyze how inorganic N changes with season and 

time since fire and 2 ) to analyze how microbial activity changes with season and time 

since fire by examining different microbial indices including NRN, soluble anthrone 

reactive C (ARC) and soluble phenols (SP). We looked at microbial activity by 

measuring biologically available C as ARC and SP from non-ionic resin extracts. ARC 

has been shown to vary with microbial respiration and biomass (DeLuca 1998) and SP 

are low molecular weight C compounds that are most likely a microbial food source
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(Hattenschwiler and Vitousek 2000). We hypothesize that the seasonal availability of 

inorganic N will decrease from winter to summer due to the on-set o f hot, dry weather, as 

well as with increasing time since fire as indicated by our previous work (MacKenzie et 

al. in review). This study also showed decreasing NRN concentration with increasing 

TSF, indicating reduced labile substrate. However, NRN is also an index o f microbial 

activity and it is possible that concentrations will increase with season as a function o f the 

disruption of microbial cells, again as a result o f the on-set o f hot, dry weather. The other 

microbial indices considered here are ARC and SP which are both expected to decrease 

with time since fire as indicated by earlier work (MacKenzie et al. in review) and with 

season, as microbial activity ceases during hot, dry periods.

M ATERIALS AND METHODS

Study Sites

Seasonal soil chemistry measurements were examined at 10 sites in western 

Montana of varied time since fire (2, 24, 45, 78, 87, 92,122, 132 years since fire). These 

were the same sites used for intensive study of mineral soil properties and are described 

in more detail in MacKenzie et al (in review). All sites had similar slope (10-15 °), 

aspect (S to SE) and elevation (1200 -1350 m), and were within the Typic Dystrocrepts 

soil sub-group (Staff 1999) with silt to silty loam texture (Table 1).

At each site, a 100 m transect was laid out for sampling running perpendicular to 

the main slope. Within each 10 m section o f transect, two random numbers were drawn, 

the first number representing the distance along the transect and the second number 

representing the distance to a point alternating above and below the transect, from which

1 1 2

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



samples were collected. These sampling locations were marked for seasonal resin 

capsule installation and removal.

Macro-climate data was collected for western Montana (Montana region 01) for 

the year long period from November 2001 to November of 2002 (NO A A, 2004). Mean 

monthly precipitation (cm) and temperature (“C) data were collected for this period (Fig. 

1). The climate of western Montana is characterized by hot summers with little 

precipitation, cold winters with moderate precipitation and wet springs with rapid 

warming. The seasons measured for this study were well within these parameters.

Seasonal Measurements

Ionic and non-ionic resin capsules were installed at the forest floor/mineral soil 

interface, left to incubate for several months, and removed for analysis at three different 

times from November 2001 to August o f 2002. The winter sampling period was from 

November 1®*, 2001 to May 1®', 2002, the spring sampling period was from Mayl®*, 2002 

to Julyl®*, 2002 and the summer sampling period was from July 1®*, 2002 to August 

2002. Mixed bed ionic resin capsules were made of a polyester mesh material and 

contained 10 ml (approximately Ig dry weight) o f resin (PST-2, Unibest, Bozeman, MT). 

Non-ionic resins were incased in the same polyester capsule (Unibest, Bozeman, MT), 

but filled with approximately one gram dry weight (about 1 1 0 0  m^ o f surface area) o f 

XAD-7 resin (Rohm and Hass Inc., Philadelphia, PA). Fishing line and flagging tape 

were attached to each capsule to aid in recovery.
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Chemical Analysis

Ionic resins were extracted by 3 successive 10 ml rinses and 30 min of shaking 

with 2 M KCl (Kjonaas 1999). After each rinse the KCl was decanted into a centrifuge 

tube and after all 3 rinses the extractant was centrifuged at 3000 RPM for 10 min to 

remove soil particles. Ammonium, NO 3 ' and NRN were analyzed on the extracts as 

outlined below. Non-ionic resins were extracted drop wise using eluents (H2 O and 50% 

MeOH) in succession (Morse et al. 2000). Resin capsules were seated on the openings of 

200 ml French square bottles and placed under a 2mm nozzle coimected by silicone 

tubing to a surplus partitioning pump that delivered 0 . 8  ml of extractant per minute for 35 

minutes. The first extractant was distilled water and the second extractant was 50% 

methanol. We have found that distilled water removes few polyphenolic compounds 

while 50 % methanol removes up to 95 % of the phenols adsorbed (DeLuca, unpublished 

data).

Ionic resin extracts were analyzed for NH4^ and NO3' on a Technicon III auto 

analyzer (Bruam-Luebbe, Chicago, IL) using the salicilate-nitroprusside method for NHLt̂  

and the NH4 C1-Cd reduction method for NO3' (Keeney 1982). These extracts were also 

used to detennine the amount of amino N by the ninhydrin reactive N (NRN) method 

(Moore 1968). Analysis o f non-ionic resins included anthrone reactive carbon (ARC) 

(Morse et al. 2000) on the water extracts and soluble phenols (Stem et al. 1996) on the 

50% methanol extracts.
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Statistical Analysis

To analyze differences between sites (time since fire) and sampling time (season), 

we used the repeated measures analysis of variance (ANOVA) module in SYSTAT 9.0 

(Wilkinson 1999). Repeated measures ANOVA was useful because it gave us the ability 

to compare multiple temporal samples for the same variable along our chronosequence of 

time since fire. Repeated measures ANOVA does this by contrasting variation in the 

between subject factors, in this case TSF, by the within subject factors, in this case season 

and the interaction between season and TSF (Underwood 1997, Wilkinson 1999). We 

also calculated R^ and associated p-values by regression analysis to compare trends for 

individual season and TSF. This was performed as a means o f post-hoe comparisons for 

the significant repeated measures test. In all cases assumptions o f normality, constant 

variance and error independence were tested and met for both the repeated measures 

ANOVA and regression analysis (Wilkinson 1999). The significance o f each case was 

assesed with an alpha of less than or equal to 0 .1 0 0 .

Contour plots are 2D graphs of three variables and were produced by Sigma Plot 

8.0 (SPSS 2002) to demonstrate how different soil biochemical variables interact with 

seasonal data and TSF. Contour lines are produced to best represent the changes 

between data points and spatial or temporal factors (Lodewick and Whittle 1970). In this 

case, biochemistry variables were plotted against TSF and season. These plots enabled 

us to present a graphic extrapolation of how the biochemistry data might fluctuate as the 

year progressed and are meant to be a visual accompaniment to the repeated measures 

ANOVA and regression analysis.

115

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



RESULTS AND DISCUSSION

Nitrogen availability

Resin extracted NH4 '^-N and NOs'-N varied significantly with both time since fire 

and season (Table 2). Overall, both variables decreased from winter to summer and with 

time since fire (Fig. 2). Furthermore, there was a significant time since fire by season 

interaction reflecting the fact that trends with time since fire varied depending on season. 

The contour plot shows that NH4 '^concentration is greatest after the winter measurement 

on the recently burned sites and decreased with both time since fire and season (Fig. 2). 

Regression analysis indicated that both winter and spring inorganic N concentrations 

decrease significantly with time since fire, but the summer measurement does not (Table 

3). The contour plot for NO3 ' is similar to that for NfL'^, with highest concentrations 

after the winter measurement on the most recently bumed site and decreasing with both 

time since fire and season (Fig. 3). However, there is a NO 3 ' concentration peak around 

24 years since fire for the spring measurement, which may indicate a lag period between 

the highest rates o f ammonification and nitrification. Regression analysis also showed 

that both the winter and spring measurements o f NO3' decreased significantly with time 

since fire, but this trend does not appear during the summer measurement (Table 3).

The inorganic N flush that occurs during winter and spring seasons is substantial 

and likely represents the majority o f plant available N for the entire year. The climate 

data for the area (Nimlos 1986) indicates that these seasons have the highest amount o f 

precipitation which is most likely driving microbial mineralization. Our results are 

consistent with our initial hypothesis and the rported releases of inorganic N during 

cycles of freeze-thaw and wetting-drying (DeLuca et al. 1992, Fierer and Schimel 2002,
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Jones et al. 2004). It is interesting to note that although the spring period has more 

moisture and warmer temperatures than the winter, it has less available inorganic N. This 

must be a result of increased plant uptake and microbial turn-over (Aber et al. 1991).

Both winter and spring N mineralization also decreased significantly with time since fire, 

further indicating the effect on N cycling of departing from the natural disturbance 

regime, as fire interval increases in these stands. Several studies have shown that litter 

quality and mineral soil organic matter quality decrease with increasing time since fire 

(DeLuca et al. 2002, MacKenzie et al. in press, in review). We can also say that there is a 

collective effect o f season and time since fire on N mineralization.

Ninhydrin reactive N is a measure of amino acids and represents a significant 

portion o f the DON pool (Sculten and Schitzer 1998, Jones et al. 2004). NRN varied 

significantly with time since fire and season, and there was also significant time since fire 

by season interaction (Table 2). Winter and spring concentrations ofNRN exhibited 

significantly decreasing trends with time since fire (Table 3). However, in contrast to 

N H / and NO3 ' concentrations, they increased with season (Fig. 4).

Ninhydrin reactive N also decreased significantly with TSF for both the winter 

and spring seasons. However, the results were different form the inorganic N data in that 

the amount of NRN increased significantly by season, from winter to summer. The 

contour plots suggest that the decrease o f inorganic N is in-line with the increase in NRN. 

Again, this is what we expected as the seasons progress towards summer and there is a 

significant decrease in precipitation and increase in temperature (Fig.l). The microbial 

community is experiencing stress by drying out and therefore less able to mineralize N. 

This accounts for the lower availability of inorganic N. The increase in NRN must be
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due disruption of microbial cells and the release of amino N into the soil matrix (Amato 

and Ladd 1988, DeLuca et al. 1992), also due to changing micro-climate. This is a 

different interpretation o f resin collected NRN than in our previous study (MacKenzie et 

al. in review), where decreasing NRN with time since fire was seen as an indication of 

less labile substrate. However, this decrease may also be interpreted as a decrease in 

microbial activity, as it microbes that turnover the labile pools o f N. In this data set we 

will interpret an increase in NRN with season is an indication of microbial activity that 

can be compared to resin collected ARC and SP concentrations.

Both inorganic N data and NRN data implicate winter and spring as the most 

important seasons for soil N measurements in this ecosystem. This is because time since 

fire trends are obscured during the summer sampling period when N mineralization 

essentially ceases due to a lack o f moisture. We expect N mineralization to increase with 

the on-set o f fall and winter precipitation, but did not mmeasure this period.

Microbial activity

Anthrone reactive C positively correlates with microbial biomass and respiration 

(DeLuca 1998), and as such represents a good surrogate measure for microbial activity.

A benefit o f this index is that it can be assessed by field incubation with non-ionic resin 

capsules. Anthrone reactive C varied significantly with time since fire and season, and 

had a significant time since fire by season interaction (Table 2). The contour plot shows 

that ARC concentrations increase with season (Fig. 5) similar to the NRN data. In 

contrast to our initial hypothesis ARC concentrations were overall higherin the summer, 

although there were winter peaks in 60 to 80 year old stands (Fig. 5). While ARC varied
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significantly with time since fire such variation was not linear and peaks of higher ARC 

concentrations occurred at intermediate times since disturbance.

If we compare the contour plots for NRN and ARC we see two distinct overlaps 

o f high concentration during the summer measurements centered on 24 and 92 years 

since fire sites. These overlaps are difficult to explain if  we believe that increased NRN 

indicates a disruption in microbial biomass and that increased ARC indicates an increase 

in microbial activity. However, it is possible that these two trends are both indicating 

declining microbial activity with season as indicated by the N mineralization data. 

Nitrogen mineralization drops in the summer months, while NRN and ARC accumulate. 

This may indicate either a disruption o f microbial cells, spilling both amino N groups and 

hexose sugars into the soil medium or a lag between enzyme release and microbial death. 

The opposite seems to be true if  we compare the winter measurements where there is an 

overlap of extremely high ARC concentration with low NRN concentration centered 

around the 87 years since fire site. In this case, high ARC with rapid microbial activity, 

suggested by low NRN and high inorganic N availability, indicates enzyme-released 

sugars. Whereas in the summer season, high ARC concentration with dormant microbes 

and consent plants indicates the release o f non-structural carbohydrates (DeLuca 1998).

ARC will not he a very good surrogate measure for microbial activity if it has 

high concentrations during periods o f both fast and slow microbial turn-over. As these 

data were generated with resin capsules, which lock compounds away from microbial 

turnover, unlike mineral soil, more analyses o f the relationship between resin capsule 

ARC and microbial activity are needed. This study suggests that in conjunction with 

resin collected inorganic N and NRN, ARC measurements may be very useful for
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determining the prevalence and seasonality o f hexose sugars and non-structural 

carbohydrates.

Soluble phenols varied significantly with season and time since fire, and there 

was a significant season by time since fire interaction (Table 2). However, SP did not 

vary linearly with time since fire in any season (Table 3). Soluble phenols concentrations 

peaked in the spring with highest values on the most recently bumed sites (Fig. 6) with a 

second peak at the 78 years since fire site.

These results suggest that SP accumulate from winter to spring, when they are 

subsequently consumed (Hattenschwiler and Vitousek 2000) or adsorbed to hydrophobic 

surfaces (Piccolo et al. 1999). The NRN data seems to suggest that microbial activity 

declines in summer, therefore we expected SP to accumulate, but they did not. During 

this drying period, it is possible that SP consolidate to form insoluble high molecular 

weight polyphenols (Piccolo et al. 1999, Hattenschwiler and Vitousek 2000). However, 

it seems obvious that, along with resin analysis o f ARC, resin analysis o f SP needs more 

study to determine its relevance to microbial activity.

CONCLUSION

Inorganic N concentrations and NRN concentrations all varied significantly with 

season, time since fire, their interaction, and decreased linearly with time since fire for 

both the winter and spring seasons. By the summer season, these trends had become non- 

significantly different from each other for season or time since fire. This indicates that it 

is of paramount importance to make soil biochemical measurements that capture the 

period o f greatest activity, early in the season o f this ecosystem. Samples taken during
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the dry summer months will likely produce uninteresting results o f questionable 

ecological relevance.

There is an increase in precipitation during the months before winter in ponderosa 

pine-Douglas-Fir ecosystems of western Montana (Nimlos 1986). This moisture 

undoubtedly causes an increase in N mineralization and it was mistake that this study did 

not attempt to document the amount o f this increase. However, we can speculate that it 

N levels would have been high on the recently bumed sites for NH4  ̂and NO 3 ', and 

would have exhibited a significantly decreasing trend with time since fire for NO 3 ' 

and NRN.

This study demonstrated that significant additive effects exist for N mineralization 

and microbial community dynamics when both time since fire and season are analyzed 

together. Available N levels taper off with time since fire and season while NRN actually 

increased with time since fire and season. The fact that NRN is highest in the summer 

when it does not show a significant trend with time since fire provides more evidence that 

the microbial community is being inhibited in late secondary succession (MacKenzie et 

al. in press, in review). The use o f non-ionic resin capsules to extract soluble or active 

organic compounds in soil need to be studied in detail to ascertain their relationship to 

microbial activity and specific ecosystem processes. Season o f sampling has also been 

identified as a uniquely important variable in this environment as moisture limits 

microbial processes during much o f the summer. Summer months may have been 

erroneously perceived as the period of greatest N mineralization as a result o f work 

performed in higher moisture ecosystems.
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Table 1: Fire chronosequence site despcriptions for 10 sites at 4
locations around westem Montana including: time since fire (TSF- 
sampled in 2002), position on the landscape, pH and texture. All soils 
were classified as Typic Dystrocryepts (Adapted from Mackezie et al., 
in review b).

Location TSF
(years)

Slope
(°)

Aspect
n

Elevation
(m.)

pH Texture

Ninemile 1 2 2 10.3 137.0 1218.6 4.36 SL

92 16.8 175.3 1272.2 4.28 L

2 13.7 187.0 1181.5 4.85 SL

Clearwater 1 2 2 1 1 . 0 141.3 1452.9 4.72 SL

45 8 . 8 163.1 1457.1 4.78 SL

24 5.0 172.7 1396.8 4.55 SL

Lost Horse 132 11.3 207.0 1393.8 4.22 SL

87 12.7 143.8 1390.6 4.35 SL

Lake Como 132 15.3 40.7 1678.5 4.27 SL

78 19.5 106.7 1696.0 4.26 SL
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Table 2: Repeated measures ANOVA p-values for seasonal soil biochemical
measurements from 10 sites in westem Montana with increasing time since fire (TSF). 
Variables include: ammonium nitrate (NO3'), ninhydrin reactive nitrogen
(NRN), anthrone reactive carbon (ARC) and soluble phenols (SP).

Variable
Repeated Measures ANOVA (p-value)

TSF Season TSF* Season

NH4 '" 0.059 0 . 0 0 0 0.079
NOs* 0 . 0 0 0 0 . 0 0 0 0.008
NRN 0 . 0 0 0 0 . 0 0 0 0.066
ARC 0.004 0 . 0 0 1 0.066

SP 0.018 0 . 0 0 0 0.038
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List o f Figures

Figure 1: Monthly mean temperature (°C) and precipitation (cm) data for westerm 

Montana (Montana region 01) from November 2001 to November 2002 (NO A A data, 

2004).

Figure 2; Contour analysis o f seasonal ionic resin capsule data from a chronosequence 

of sites with increasing time since fire (TSF-years) in westem Montana. The contour 

lines are extrapolations o f NH4 ’*̂ -N concentration (pg capsule'^) between seasons and 

TSF.

Figure 3; Contour analysis o f seasonal ionic resin capsule data from a chronosequence 

of sites with increasing time since fire (TSF-years) in westem Montana. The contour 

lines are extrapolations o f NOs'-N concentration (pg capsule - 1 ) between seasons and 

TSF.

Figure 4: Contour analysis of seasonal ionic resin capsule data from a chronosequence 

o f sites with increasing time since fire (TSF-years) in westem Montana. The contour 

lines are extrapolations o f ninhydrin reactive N (NRN) concentration (pg capsule’’) 

between seasons and TSF.

Figure 5: Contour analysis of seasonal non-ionic resin capsule data from a 

chronosequence o f sites with increasing time since fire (TSF-years) in westem Montana. 

The contour lines are extrapolations o f anthrone reactive C (ARC) concentration (pg 

capsule’’) between seasons and TSF.

Figure 6 : Contour analysis o f seasonal non-ionic resin capsule data from a 

chronosequence o f sites with increasing time since fire (TSF-years) in westem Montana.
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The contour lines are extrapolations o f soluble phenols (SP) concentration (mg capsule 

1) between seasons and TSF.
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Comparison of litter quality and nitrogen mineralization in the understory of 

Ponderosa pine/Douglas-fir forests

M. D. MacKenzie' and T. H. DeLuca'

’Department of Ecosystem and Conservation Science, College o f Forestry and 

Conservation, The University o f Montana, Missoula, MT, 59812

Abstract: Frequent, low severity fires appear to maintain low elevation ponderosa pine 

forests of western Montana in an intermediate state of secondary succession. Fire 

exclusion leads to an increase in the more shade tolerant Douglas-fir in the overstory and 

to co-dominance among graminoids, forbs and woody shrubs in the understory of these 

forests. It is thought that some species o f woody shrubs produce allelochemicals that can 

have a significant influence on ecosystem processes in forests, but little evidence exists to 

support this hypothesis. Charcoal has been shown to sorb inhibitory organic compounds 

and is a significant component o f all pyrogenic ecosystems. Experiments were 

performed with charcoal treatments and two different species. Elk sedge {Carex geyeri 

Boott) representing graminoids and Kinnikinnick {Arctostaphylos uva-ursi (L.) Sprengel- 

Mjolon) representing woody shrubs. A seed bioassay was performed in which Trembling 

aspen {Populus tremuloides Michx.) seeds were germinated on different concentrations 

o f sedge and shrub leaf extract. Both extracts exhibited allelopathic characteristics at low 

extract concentration and stimulatory characteristics similar to water at higher 

concentrations. To test whether either plant type controls N mineralization through 

substrate quality, a factorial experiment was performed where forest floor microcosms o f 

both sedge and shrub were treated with glycine, as a labile organic N source, and
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charcoal, both in the greenhouse and in the field. Addition o f glycine drastically 

increased ammonification as measured by ionic resin capsules, for both plant types and 

indicates substrate limitations. Glycine also stimulated nitrification in the sedge 

microcosm, but only the addition o f charcoal stimulated nitrification in the shrub 

microcosm. Non-ionic resin capsules were used to measure labile C compounds and 

demonstrated a significant increase in anthrone reactive C in the presence o f shrub litter, 

glycine and charcoal. A. uva-ursi inhibits the nitrifier community and charcoal mitigates 

this effect for some period of time after fire. The field study did not show the same 

trends. Glycine stimulated ammonification and nitrification in the litter and mineral soil 

of both species as shown by resin analysis and a nitrification assay indicating substrate 

limitations. Overall the results suggest that prolonged fire exclusion shifts the N cycle 

form being disturbance driven to being driven by specific plant types.

Keywords: Ionic and non-ionic resin, Arctostaphylos uva-ursi, ericoid, Carex geyeri, 

nitrification assay, microbial biomass, N cycle, allelopathy

INTRODUCTION

Little is known about factors that affect the nitrogen (N) cycle in low elevation 

forests of western Montana during succession after fire. Historically, these forests 

burned with low severity fires on a return interval o f 10 to 50 years (Amo et al. 1995, 

Barrett et al. 1997, Amo and Allison-Bunnell 2002). Charcoal, which is deposited during 

fire, has been shown to mediate ecosystem function and sub-surface processes, including 

sorption of organic compounds, for some period o f time after fire (Zackrisson et al. 1996,
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Wardle et al. 1998b). Many studies have shown that fire increases N availability in the 

short-term (Covington and Sackett 1986, Zackrisson et al. 1996, DeLuca and Zouhar 

2000, Newland and DeLuca 2000, Choromanska and DeLuca 2001), however little is 

known about long-term N availability in the absence o f fire. Recent studies have shown 

that N availability increases in the forest floor and decreases drastically in the mineral 

soil with increasing time since fire in these systems (MacKenzie et al. in press, in 

review). These studies also indicated an incomplete successional replacement of plants 

recolonizing the burned over areas. Mixed graminoid species dominate bumed sites 

immediately after fire, but shrubs become co-dominant within 25 years on these sites.

The ability o f plants to drive sub-surface processes, including nutrient cycling and 

microbial community, has recently become more recognized in plant ecology (Bever 

1994, Wardle 2002). Allelopathy is the process by which plant secondary metabolites 

negatively influence other organisms. Many studies have shown how plant-produced 

chemicals can deter herbivory, interfering with digestion (Wardle et al. 1998a), suppress 

neighboring plants (Hattenschwiler and Vitousek 2000), act as antibiotics and interfere 

with nutrient cycling (Lodhi 1977, Souto et al. 2000). There is evidence from other 

mature forest ecosystems that shrubs of the Ericaeceous family produce significant 

quantities of allelochemicals and interfere with N cycling (Nilsson et al. 1998). Ericoids 

are common in westem Montana and may be having a similar effect when fire is 

excluded.

Two possible mechanisms exist for the changes occurring with N cycling and 

increasing time since fire: 1 ) different plant types create inhospitable chemical climates 

with the addition o f secondary metabolites (allelochemicals), contained in leaf litter, that
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reduce microbial activity; 2 ) the decomposition o f woody material produces chemicals 

that bind proteins and reduce litter quality. In both cases, it is possible that inhibitory 

chemicals are alleviated by charcoal. Charcoal may act to level the competitive field for 

nutrient acquisition. Charcoal is the long-term foot-print o f fire and acts to enhance 

nutrient cycling by sorbing organic compounds (Zackrisson et al. 1996, Wardle et al. 

1998b). Although it is clear that changes in overstory or understory species composition 

will influence litter quality or allelopathic potential, this study was designed to 

specifically address the influence o f two dominant understory species that are common in 

late succession ponderosa pine ecosystems of the inland Northwest.

The purpose of this study was to examine the different sub-surface biochemical 

conditions created by two different plant types commonly found in the low elevation 

forests of westem Montana, kinnikinnick {Arctostaphylos uva-ursi (L.) Sprengel- 

Mjolon), an ericoid species common in the understory and Elk sedge (Carex geyeri 

Boott), representing graminoids. The specific objectives of this study were: 1) determine 

whether either species exhibits allelopathic inhibition o f seed germination; 2 ) determine 

whether inhibition o f the microbial community occurs during litter decomposition; and 3) 

determine the effect of charcoal on litter decomposition. We hypothesize that A. uva-ursi 

may inhibit both seed germination and nitrification as a means of competitive exclusion 

of graminoids with increasing time since fire.
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M ATERIALS AND M ETHODS

Study Site

The Willow Creek fire complex in westem Montana was chosen for the collection 

o f plant material, forest floor microcosms and the installation of field plots because it was 

well catalogued in previous work (see Choromanska and DeLuca 2001). Located 

between N 46° 17’ 37-39” latitude and W 113° 55’ 28-59” longitude, the site rests in the 

Sapphire mountains o f the Bitterroot valley. Part o f the site experienced a low severity 

fire in 1996 that consumed large patches o f forest floor, killed many o f the sub-dominant 

Douglas-firs, most o f the understory species and scarred some o f the ponderosa pines.

The soil great group is a Lithic Dystrustepts, formed on granitic parent material, with a 

slope of 33 degrees, elevation of 1590 to 1668 m and a predominantly southern aspect.

Seed Bioassav

In June of 2002 a leaf extract was produced from fresh tissue o f each species, A. 

uva-ursi and C.geyeri, by adding 100 g of ground tissue to 1 liter o f deionized water, 

shaking for 24 hours and filtering through 0.20 um Millipore filters to remove microbes. 

Leaf extracts were then diluted to four concentrations for the seed bioassay, 1 %, 5 %, 10 

% and 50 % of the original extract, in an attempt to re-create what occurs naturally. The 

extracts were analyzed for various chemical elements, including the nutrients NH4'*’, NO3' 

and POT^, and a common group o f secondary metabolites, phenols. These compounds 

were measured with the techniques listed in the Soil Chemical Analysis section. Aspen 

seeds {Populus tremuloides Michx.) were used in the bioassay because they germinate 

quickly, require no seed preparation prior to germination except cold storage (Morgan
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1969) and are a local species that may experience the chemical environments produeed 

by each of these understory species. In a plastic Petri-dish, 20 aspen seeds were laid out 

on a Whatman # 2 filter paper, 2 ml of extraet was added to the filter paper and the dish 

was sealed with parafilm. Five replieates o f each concentration, for each species were 

prepared in this way including five replicates o f a control, consisting o f deionized water, 

for a total o f 45 dishes. The replieates were plaeed in a small cabinet germination 

ehamber on a cyele o f 1 2  hours light, 1 2  hours dark and monitored every two hours for 

germination. After seven days, germination was terminated and the radicle length was 

measured.

Greenhouse Experiment

Ten replicates o f forest floor microcosms including both organic material and at 

least 5 cm of mineral soil, were collected intact for both plant types in October 2001. 

Microcosms were returned to a greenhouse facility and potted in 15 by 30 cm rectangular 

pots that were 10 cm deep. Ionic and non-ionic resin capsules were installed in these 

potted samples just below the organic matter/mineral soil interface and left to incubate 

for two months (Kjonaas 1999, Morse et al. 2000) and watered twiee weekly to field 

capacity. Ionic resins were ineased in polyester capsules containing 10 ml 

(approximately Ig dry weight) of mixed bed ionic resins (PST-2, Unibest, Bozeman, 

MT). Fishing line and flagging tape were attached to each capsule to aid in recovery. 

Non-ionic resins were ineased in the same polyester eapsules (Unibest, Bozeman, MT), 

but filled with approximately one gram dry weight (about 1 1 0 0  m^ of surface area) of 

XAD-7 resin (Rohm and Hass Inc., Philadelphia, PA). In December 2001, the resin
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capsules were removed and frozen until they could be analyzed. Analysis o f ionic resin 

capsules included amino-N, and NOs' (Keeney and Nelson 1982), while analysis of

non-ionic resins included anthrone reactive carbon (ARC) (Morse et al. 2000) and soluble 

phenols (SP) (Stem et al. 1996). Both ARC and SP represent measures of labile C and 

are a surrogate for microbial activity (MacKenzie et al. in press, in review).

In January 2002, the microcosms were split in two 15 by 15 cm samples for a 

total of 2 0  replicates per plant type and again, ionic and non-ionic resin capsules were 

installed just below the organic matter/mineral soil interface. Two treatments were 

applied to the defend plant litter types with a two by two factorial design and randomly 

assigned locations on the greenhouse bench. The treatments consisted of applying 50 kg 

per ha glycine and 1 0 0 0  kg per ha charcoal to the microcosms, as these represent contents 

o f each material that may be found naturally. To accomplish this, 30 ml of a 0.32 M 

solution of glycine and 30 ml o f a 7.5 % charcoal solution were injected into the organic 

matter o f each sample with a syringe and modified 5 ml pipette tip. Glycine was added 

as an organic N source that can be easily mineralized and the charcoal was applied at a 

rate that is commonly found in forests that are pyrogenic in nature (Zackrisson et al. 

1996). The charcoal was collected form other ponderosa pine-Douglas-fir sites that had 

bumed in 2000 and therefore should have a high activity level. Replicates were watered 

twice weekly to field capacity and incubated in the greenhouse for two months. In March 

2 0 0 2 , the resin capsules were removed and analyzed for post-treatment biochemistry.
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Field Experiment

In March o f 2003, a similar experiment was set-up at the study site. Three 

replieates of each treatment were applied to different patches of both plant types. The 

same concentration and amount of both glycine and charcoal were applied to an area 

roughly equivalent to the 15 by 15 cm pots used in the greenhouse experiment. Ionic and 

non-ionic resins were installed and analyzed in the same manner as before, but were left 

to incubate in-situ for two months rather than one. Therefore, in May o f 2003 the resin 

capsules were removed and frozen until they could be extracted and analyzed. Mineral 

soil samples were collected from the 0-5 cm depth with a one inch diameter soil probe at 

the end of the incubation period also. Approximately 8  samples were composited per 

replicate and analyzed fresh for N availability, microbial biomass and nitrification 

activity.

Resin Capsule Analysis

Ionic resins were extracted by 3 successive 10 ml rinses and 30 min. o f shaking 

with 2 M KCl (Kjonaas 1999, Morse et al. 2000). After each rinse the KCl was decanted 

into a centrifuge tube and after all 3 rinses the extractant was spun down at 3000 RPM for 

10 min. NH4’*’, NOs' and NRN were analyzed as outlined above. Non-ionic resins were 

extracted with two different extractants in succession. Resin capsules were placed on top 

of 200 ml French square bottles under a partitioning pump that delivered 0.8 ml of 

extractant per minute for 35 minutes. The first extractant was distilled water for 

determination of ARC (Morse et al. 2000) and the second extractant was 50% methanol 

for analysis of soluble phenol (Stem et al. 1996). Studies have shown that distilled water
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does not remove phenols while 50 % methanol removes 95 % of the phenols adsorbed 

(Choromanska and DeLuca 2002).

Soil Chemical Analysis

Oven dried weight was determined by drying a 30 g sub-sample at 105 ° C for 24 

h. The difference between the field moist value and oven dried value were used to 

determine a moisture factor that would allow us to report chemical data on a per gram dry 

soil basis. Twenty-five grams of air dried sample was extracted with 50 % methanol for 

24 h for determining total phenols by the Prussian Blue method (Stem et al. 1996). These 

samples were filtered with Whateman 42's and the extracts were analyzed at 720 nM 

against (+)-catechin as the standard.

Extractable NHU”̂ and NOa' were removed by shaking 30 g field moist soil in 50 

ml o f 2 M KCl for 30 min. and filtering with Whatman 42's on a vacuum manifold. The 

extracts were analyzed for N H / and NO 3 ' on a Technicon II auto-analyzer. We used the 

salicilate-nitroprusside method for NH 4 "̂ and the ammonium chloride-Cd reduction 

method for NOs' (Keeney 1982). These extracts were also used to determine the amount 

of amino N by the Ninhydrin reactive N (NRN) method (DeLuea et al. 1992) for 

comparison with the fumigation results. The extract was analyzed for NIE^on a 

Technicon II auto-analyzer using the same method as discussed above.

Microbial biomass was measured by the fumigation extraction method (Amato 

and Ladd 1988). Briefly, 30 g o f soil were fumigated with chlorophyll in an air-tight bell 

jar for 24 hrs. Fumigated samples were extracted in 50 ml of 2 M KCl with the same 

method as above and extracts are analyzed for Amino N by NRN method (DeLuca et al.
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1992). Unfumigated data was subtracted from fumigated data to give organic N 

concentrations which were multiplied by 3.2 for Biomass N or 22 for biomass C (Amato 

and Ladd 1988). Microbial respiration was measured by the alkali trap-HCl titration 

method (Fierer and Schimel 2002). Briefly, 50 g of field moist soil was sieved to 4 mm 

to remove roots and allowed to respire in a mason jar for 3 days. Scintillation vials with 

20 ml o f 1 M NaOH were placed in the jars to trap CO2 evolved. After 3 days, the traps 

were removed and the solution transferred to 250 ml Erlenmyer flasks containing 30 ml 

of 2 m BaCl and a few drops o f phenathalien. Samples were titrated to a neutral end 

point with 1 M HCl and the volume recorded. From this data the amount o f CO2 evolved 

per g dry soil was calculated by multiplying the ml HCl by 22 pg CO2 per ml HCl.

The rate o f nitrification was measured to assess nitrifier activity after treatment by 

the nitrification aerated slurry method (Hart et al. 1994). One hundred ml o f nutrient 

solution containing NH4 "̂ , and POf^ were added to 15 g o f refiigerated soil in 250 ml 

Erlenmyer flasks capped by rubber stoppers with holes in the middle to allow for aeration 

o f the slurry. Another 15 g was weighed and oven-dried to calculate a moisture factor 

that would allow nitrification rates to be reported on a dry weight basis. The flasks were 

placed on an orbital shaker for 24 hr and 10 ml samples were removed with a 5 ml 

modified pipette at 2, 3, 23 and 24 hrs. Samples were then filtered on an vacuum 

manifold with Whatman 42 filter papers and frozen until analyzed for NOa' 

concentration. The rate o f nitrification is calculated as the slope o f the line produced by 

plotting concentration by time and are reported as ug nitrate per g per hr.
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Statistical Analysis

Analysis o f variance (ANOVA) was used to determine if  statistical differences 

existed between different treatments of the seed bioassay, greenhouse and field 

experiments (Underwood 1997, Wilkinson 1999). In each case we tested the error terms 

to ensure that the assumptions o f heterogeneity, random variance and normal distribution 

were met, and transformed the data as needed (Underwood 1997, Wilkinson 1999). 

When ANOVA results indicated a significant difference, Tukey multiple comparison 

tests (HSD) were performed ad hoc to identify pair wise treatments differences. An 

alpha of 0.05 was accepted in all cases unless otherwise noted. The statistical package 

used for these analyses was Systat 9.0 (Wilkinson 1999).

RESULTS AND DISCUSSION

Seed Bioassav

Analysis o f the chemical constituents o f the two leaf extracts revealed little 

difference in nutrient concentration, but substantial differences for total phenols (Table 

1). A. uva-ursi extracts contained 20 times more total phenol than C.geyeri extracts.

This may indicate that A.uva-ursi has the ability to inhibit seed germination. Phenolic 

compounds have been reported as allelopathic inhibitors o f seed germination and 

nitrification in other ecosystems (Zackrisson et al. 1997, Nilsson et al. 1998, Northup et 

al. 1998, Wardle et al. 1998a, Hattenschwiler and Vitousek 2000, Hierro and Callaway 

2003), and were tested to determine if  the same mechanism is prevalent in the dry inland 

Northwest.
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The seed bioassay revealed that both A. uva-ursi and C.geyeri leaf extracts 

inhibited seed germination significantly when compared to the control (Fig. 1). Different 

concentrations showed that only the 1 % extract was significantly different for A. uva- 

ursi extracts, while the 1, 5 and 10 % extracts were significantly different for C.geyeri 

extracts (Fig. 1). These results were not expected and show that A.uva-ursi is not having 

a unique inhibitory effect on seed germination, but rather that both plant types inhibit 

other plants from establishing in their proximity. Low concentrations o f leaf extract are 

what we would most likely find in natural settings and may explain why only low 

concentrations act as inhibitors o f seed germination. At higher concentrations a 

nutritional factor may be overcome, thereby releasing the seeds from the inhibitory 

compounds, but this is speculation.

Inhibition o f seed germination is a useful competitive tactic for maintaining a 

foot-hold in a highly diverse successional environment such as a forest. Therefore, it is 

not surprising to leam that both plant types exhibit some ability to exclude other plant 

types from germinating in their vicinity. Nilsson et al. (1998) showed that Empatrum 

hermaphroditum, a member of the ericaceous family, produces seasonally variable 

quantities o f a phenolic compound known to inhibit seed germination. The A.uva-ursi 

plant type is also in the ericaeceous family and was chosen as such to examine the effect 

o f one particular species in the woody shrub functional group that had good allelopathic 

potential. However, there is some evidence that Carex spp. also compete intensely with 

seed germination although it is not clear if  it is direct competition for resources or 

indirect competition via interference (Del Moral et al. 1985).
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Greenhouse Experiment

Factorial applications o f glycine and charcoal altered N mineralization for the two 

different plant litter samples as measured by sorption o fN H / and NO3' to ionic resin 

capsules (Fig. 2). Charcoal by itself had no effect on NH 4 '̂  or NO3' concentrations for 

either plant type. However, the addition o f glycine as a labile organic N source 

stimulated a significant amount of ammonification for A.uva-ursi, but not a significant 

amount of nitrification and had the opposite effect on C.geyeri samples. Only in the 

presence of glycine and charcoal was there significantly more NO3' accumulation. 

C.geyeri samples had increased nitrification in the presence of glycine and equal amounts 

of NO3' and N H / with glycine and charcoal additions. Pre-treatment NO3' 

concentrations were significantly lower for A.uva-ursi compared to C.geyeri and showed 

no statistical difference post-treatment (Fig. 3).

These results suggest that A.uva-ursi inhibits nitrification which may be a means 

of competitive nutrient acquisition. It is not clear however, if  this is a unique trait of 

A.uva-ursi or the result o f general ecosystem lignification due to increasing woody litter. 

Woody plants generally exhibit slow growth and tolerate low nutrient environments 

(Lumbers et al. 1998). Inhibiting nitrification is potentially a means of reducing N loses 

by leaching and denitrification (both of which act on NOs’ predominantly), resulting in an 

increase in slowly available N. Inhibition o f nitrification has been demonstrated in other 

forest ecosystems characterized by periodic wildfires (Likens et al. 1969, Rice and 

Pancholy 1972, Lodhi 1977, White 1988). However, other studies have refuted such 

claims (McCarty and Bremner 1986, 1989) and the mechanism is still under debate. In a 

similar study, DeLuea et al. (2002) showed that a significant amount ofNOs’ was
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produced in the presence o f charcoal only, in a pyrogenic Boreal system. However, these 

systems have shrub dominated understories and lack a significant grass component in late 

secondary succession. The opposite is true in westem Montana, where grasses are a 

distinct part of understory vegetation, are adapted to nutrient pulses (Bardgett et al. 1999) 

and do not inhibit nitrification given the data above.

Charcoal is a significant component o f pyrogenic ecosystems and has been shown 

to sorb organic compounds (Zackrisson et al. 1996, Wardle et al. 1998b, DeLuca et al. 

2002). It represents the long-term ‘foot-print’ o f the wildfire disturbance regime, but has 

an activity self-life o f 100 years in Boreal systems (Zackrisson et al. 1996) and perhaps 

shorter (10 -  50 years) in the dry inland Northwest (MacKenzie et al. in press'). During 

the active phase, charcoal increases nitrification as shown above, however, it is not clear 

if  this is the result of sorbing allelopathic compounds that inhibit microbes, sorbing 

polyphenolic compounds that may sorb proteins (Hattenschwiler and Vitousek 2000), 

sorbing hydrophobic compounds notoriously low in N (Piccolo et al. 1999) or by 

providing microbes a safe site with adequate resources and away from predation. It is 

interesting to note that in the presence o f active charcoal, it is the disturbance regime that 

drives N mineralization (a top down control). Whereas, in the absence of active charcoal 

and beyond the natural disturbance interval it seems that it is the plant community that 

drives N mineralization with the quality o f organic inputs (a bottom up control) (Wardle 

2002). This shift in ecosystem function is potentially a very important one given the 

environment o f fire exclusion that has existed for the last 1 0 0  years with regard to 

resource extraction and forest management in the dry inland Northwest.
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Analysis o f different pools o f soluble C was performed as an index of microbial 

activity as an attempt to isolate the inhibitory meehanism. Non-ionic resin extracted 

phenols (50% MeOH) did not exhibit any significant trends for either plant litter type 

(data not shown). It should be emphasized that only soluble or weakly sorbed phenols 

collect on resin capsules and represent the low molecular weight (LMW) category of 

these compounds (Hattenschwiler and Vitousek 2000). LMW phenols are most likely a 

food source for various microbes rather than a chemical inhibitor (Cote and Schimel 

1996). As such, soluble phenols tell us nothing about treatment effects on the microbial 

community in this experiment. However, ARC was measured on water extracts from 

non-ionic resin and showed a significant trend fox A.uva-ursi samples, but not C.geyeri 

samples (Fig. 4). Anthrone reactive C is thought to represent bioavailable C (DeLuca 

1998), and is potentially a surrogate for microbial activity. Since ARC was found to be 

significantly higher in the glycine and charcoal treatment as compared to the control for 

A.uva-ursi (Fig. 4, a) it is likely that this treatment increased microbial activity which 

resulted in a significant increase in nitrification. This points to some form of chemical 

inhibition of the microbial community hy A.uva-ursi, but still does not tell us if  the 

interference is direct (allelopathic) or indirect (chemical immobilization), where 

polyphenol protein complexes reduce N availability. It is also not clear if  bacteria are 

using charcoal as a safe site. In our previous work, we identified that the microbial 

biomass remains constant with increasing time since fire (a surrogate for increasing shrub 

cover) which might indicate indirect inhibition (MacKenzie et al. in press, in review). 

Results from nitrification assay indicate that the nitrifier community is intact, but not 

active (unpublished data), again supporting indirect inhibition.
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Field Experiment

Results from the analysis o f soil samples taken from beneath the two different 

plant types revealed few similarities with the greenhouse study. Only A.uva-ursi NOs' 

concentrations for the glycine treatment were significantly greater than the control for 

available N (Fig. 5). Microbial biomass C or N was not significantly influenced by any 

treatment for either plant type (data not shown).

Unlike soluble phenols measured from non-ionic resin extracts, total phenols 

represent the pool o f both soluble and insoluble phenolic compounds. It is the high 

molecular weight phenols or polyphenols that have been implicated in chemical 

inhibition (Northup et al. 1995, Northup et al. 1998, Hattenschwiler and Vitousek 2000). 

Total phenols were measured from soil extracts, but showed no significant difference 

between treatments for either plant type (Fig. 6 ). However, it is evident that there is a 

slight reduction in total phenols for both charcoal treatments for A.uva-ursi. This 

indicates that charcoal is sorbing phenols and may be the reason for microbial release as 

indicated by the greenhouse experiment.

Charcoal amendments suggested that the nitrifier community was negatively 

affeeted by A.uva-ursi in the greenhouse experiment, therefore we performed a 

nitrification assay on soil samples from the field experiment to see if  charcoal released 

nitrifiers. The rate o f nitrification increased significantly with glycine treatments for the 

two different plant types (Fig. 7). The treatments with glycine and glycine plus charcoal 

produced significantly higher rates of nitrification, while charcoal alone had no 

significant or additive effects. This indicates that both plant types are substrate limited in 

this environment which was also indicated by the greenhouse results, but does not show
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the direct release o f nitrifiers by charcoal that was expected. It is surprising that C.geyeri 

had the same rate o f nitrification as A.uva-ursi given the evidence that graminoids seem 

to maintain a faster N cycle.

Available N was measured from ionic resin extracts for the field experiment, but 

these were also not synonymous with the greenhouse results (Fig. 8 ). Resin capsules 

retrieved from A.uva-ursi micro plots had no significant effect on concentrations 

between treatments and NO3' concentrations were significantly greater than the control 

for the glycine treatment only (Fig. 8 , a). C.geyeri had a significant influence on 

concentrations of both NFU^ and NO 3 ' for the combination of glycine and charcoal 

treatment compared to the control (Fig. 8 , b).

Non-ionic resin extracts produced no significant trends for either soluble phenols 

(data not shown) or ARC (Fig. 9). However the ARC data is presented because there is 

similarity between the field results and the greenhouse experiment for the A. uva-ursi 

(Fig. 9, a). These results show a slight increase in ARC concentrations for the 

glycine/charcoal treatment, which may indicate increased microbial activity. This is 

similar to the greenhouse results indicating that the microbial community was being 

released form some form of inhibition. This evidence is not reflected in the available N 

data possibly due to high turnover in an active system as opposed to decomposing potted 

samples, as previously mentioned.

The field experiments are in direct contrast to greenhouse trials and previous 

studies (DeLuca et al. 2002). Nitrogen mineralization appears to be substrate limited for 

both plant types as shown by the increases in available N and rate o f nitrification when 

glycine was added. However, there is only vague evidence that this limitation is plant
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mediated in the field, based on total phenol sorption by charcoal and resin sorbed ARC 

trends. Given these results, there are several caveats with the field experiment that merit 

discussion. As we saw in an earlier study of this environment, soil grab samples are not 

representative of seasonal forest soil N dynamics (MacKenzie et al. in review). However, 

they were useful for determining microbial biomass differences and total phenol 

differences on sites with increasing time since fire, but not here. The rate o f application 

of glycine and charcoal was the same as the greenhouse experiment for comparability, 

however this was a mistake for charcoal. Charcoal particles were suspended in a 

colloidal solution with water and probably did not disperse well or evenly at the same 

rate as was used in the greenhouse. DeLuca et al. (2002) applied some 10 times more 

charcoal in the field and measured a significant increase in nitrification. Therefore, it 

seems likely that not enough charcoal was used or insufficient mixing was attained in this 

experiment to initiate a response and we expect higher rates o f nitrification and microbial 

enzyme activity with applications o f more concentrated charcoal solutions in a repeat of 

this field trial.

CONCLUSION

It seems that both plant types have evolved means o f persistence regardless of 

successional pressures in low elevation forests o f the dry inland Northwest. In the case of 

hoih. A.uva-ursi and C.geyeri, it seems that chemical inhibition of alternate species seed 

germination is one mechanism of securing space in the forest understory. This 

allelopathic interaction was not expected for grasses, but may be a function o f Carex spp. 

competitive ability (Del Moral et al. 1985). The allelopathic maintenance o f space is the
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most likely reason that Carex geyeri persists with increasing time since fire as shown by 

MacKenzie et al {in press). Very different strategies existed for acquiring available N 

between these two different plant types, in an environment that is substrate limited. 

Grasses are known to thrive with pulse oriented, fast N cycles which are numerous in this 

environment as shown by seasonal data analysis (MacKenzie and DeLuca in review). 

However, A.uva-ursi seemed to promote a slower N cycle that was chemically inhibited. 

This could be an evolved trait for the maintenance of N in an already N limited 

environment in which woody shrubs tolerate low availability by having slow growth 

rates. Whether or not these factors are representative of the their respective functional 

groups needs further investigation. Finally, we were able to produce more evidence for 

the positive effect o f charcoal on N mineralization and lean towards the explanation that 

charcoal does this by sorbing chemicals that indirectly inhibit microbial decomposition. 

We also believe that these chemicals are plant mediated based on evidence here and from 

our previous work.
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Table 1: Nutrient and phenol concentrations (pg g'^) in leaf extracts
produced from two different plant types, Artostaphylos uva-ursi (Shrub) and 
Carex geyeri (Sedge), found in the understory of ponderosa pine/Douglas-fir 
forests of western Montana

Nutrient (pg g‘‘) Total Phenol
Plant Type N H / NOs' P04'^ (Pg g'^)

1% Sedge 0.49 0.09 1.26 10.7
1% Shrub 0.24 0 . 1 0 1.60 200.5
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List o f Figures

Figure 1: Radicle length (mm) of Aspen seed (Populus tremuloides) germination as a 

bioassay for different concentrations (%) o f leaf extract produced from two different 

plant types, Arctostaphylos uva-ursi (Shrub, a) and Carex geyeri (Sedge, b), found in the 

understory o f ponderosa pine-Douglas-fir forests o f westem Montana

Figure 2: Available N (pg capsule'^) measured with ionic resin capsules from factorial 

applications o f glycine (50 kg ha‘ )̂ and charcoal (1000 kg ha"') to greenhouse incubated 

litter samples o f two different plant types, Arctostaphylos uva-ursi (Shrub, a) and Carex 

geyeri (Sedge, b), found in the understory of ponderosa pine-Douglas-fir forests of 

westem Montana

Figure 3: Anthrone reactive C (pg capsule'*) measured with ionic resin capsules from 

factorial applications of glycine (50 kg ha'*) and charcoal (1000 kg ha'*) to greenhouse 

incubated litter samples o f two different plant types, Arctostaphylos uva-ursi (Shrab, a) 

and Carex geyeri (Sedge, b), found in the understory o f ponderosa pine-Douglas-fir 

forests of westem Montana

Figure 4: Nitrate concentrations (pg capsule'*) measured with ionic resin capsules from 

pre-treatment (a) and post-treatment (b) application o f glycine (50 kg ha'*) and charcoal 

( 1 0 0 0  kg ha'*) to greenhouse incubated litter samples o f two different plant types, 

Arctostaphylos uva-ursi (Shrab) and Carex geyeri (Sedge), found in the understory of 

ponderosa pine-Douglas-fir forests o f westem Montana
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Figure 5: Available N (gg g'*) measured for soil samples from factorial applications o f 

glycine (50 kg ha‘ )̂ and charcoal (1000 kg ha '’) to a field site in westem Montana. 

Materials were applied to the litter below two different plant types, Arctostaphylos uva- 

ursi (Shrub, a) and Carex geyeri (Sedge, b), found in the understory of ponderosa pine- 

Douglas-fir forests

Figure 6 : Total phenols (pg g '’) measured for soil samples from factorial applications o f 

glycine (50 kg ha"’) and charcoal (1000 kg ha’’) to a field site in westem Montana. 

Materials were applied to the litter below two different plant types, Arctostaphylos uva- 

ursi (Shrub, a) and Carex geyeri (Sedge, b), found in the understory of ponderosa pine- 

Douglas-fir forests

Figure 7: Available N (pg capsule'’) measured with ionic resin capsules from factorial 

applications o f glycine (50 kg ha '’) and charcoal (1000 kg ha'’) to a field site in westem 

Montana. Materials were applied to the litter below two different plant types, 

Arctostaphylos uva-ursi (Shrab, a) and Carex geyeri (Sedge, b), found in the understory 

of ponderosa pine-Douglas-fir forests

Figure 8 : Anthrone reactive C (pg capsule'’) measured with ionic resin capsules from 

factorial applications of glycine (50 kg ha '’) and charcoal (1000 kg ha'’) to a field site in 

westem Montana. Materials were applied to the litter below two different plant types, 

Arctostaphylos uva-ursi (Shrab, a) and Carex geyeri (Sedge, b), found in the understory 

o f ponderosa pine-Douglas-fir forests

Figure 9: Nitrification rate (pg g '’ h '’) measured for soil samples from factorial

applications o f glycine (50 kg ha'’) and charcoal (1000 kg ha '’) to a field site in westem
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Montana. Materials were applied to the litter below two different plant types, 

Arctostaphylos uva-ursi (Shrub, a) and Carex geyeri (Sedge, b), found in the understory 

of ponderosa pine-Douglas-fir forests
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