46 research outputs found

    Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields

    Get PDF
    Thrips exhibit different reproductive modes including thelytoky (females produced from unfertilized eggs), arrhenotoky (males produced from unfertilized eggs and females produced from fertilized eggs) and deuterotoky (females and males produced from unfertilized eggs). We investigated patterns of reproductive modes in onion thrips, Thrips tabaci Lindeman, populations and potential effects of the bacterium Wolbachia and temperature on these modes. We also examined the possibility that male-producing T. tabaci populations were resistant to the frequently used insecticides, lambda-cyhalothrin and methomyl. In New York during 2002-2004, T. tabaci populations were sampled from 20 onion fields and reproductive mode was determined by identifying sex of progeny from virgins. Half of the populations were thelytokous and half were a mix of thelytokous, arrhenotokous and deuterotokous individuals, which we refer to as a male-producing population. In two of four cases, the reproductive mode of a population from the same onion field changed across years, suggesting that populations either mix or an external factor caused the change. To address the latter, we speculated that Wolbachia or high temperature mediated reproductive modes. Samples of T. tabaci representing each reproductive mode were examined for Wolbachia using diagnostic polymerase chain reaction (PCR), but it was not detected. Cytological examination of ovaries from two additional thelytokous lines also showed no evidence of Wolbachia. Similarly, high temperature did not affect sex allocation ratios in either thelytokous or male-producing populations. Male-producing T. tabaci populations were not positively correlated with resistance to lambda-cyhalothrin, or tolerance to methomyl. The role of the different reproductive modes in T. tabaci populations in onion fields remains unclea

    Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice

    Get PDF
    Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14−/− macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14−/− macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    Get PDF
    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent

    The DNA Damage Response Pathway Contributes to the Stability of Chromosome III Derivatives Lacking Efficient Replicators

    Get PDF
    In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1AQ allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps

    PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis

    Get PDF
    TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFα and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death

    Molecular and morphological data to facilitate future research on freshwater mussels (Bivalvia: Unionidae: Anodontinae)

    No full text
    This data article presents the multi-locus DNA alignments, morphometric data, and details on specimens examined to resolve the evolutionary history of Anodontoides and Strophitus, primarily generic placement and species boundaries. We sequenced 3 loci to create our molecular matrix: cytochrome c oxidase subunit I, NADH dehydrogenase subunit I, and the nuclear-encoded ribosomal internal transcribed spacer I. Aligned sequences were used in phylogenetic analyses and to identify diagnostic nucleotides for Strophitus pascagoulaensis, Strophitus radiatus, Strophitus sp. cf. pascagoulaensis, and Strophitus williamsi. Linear morphometrics (i.e. maximum height, length, and width) were also implemented to further evaluate species boundaries within Strophitus. For further details and experimental findings, please refer to the article published in Molecular Phylogenetics and Evolution (Smith et al., 2018) [1]. Keywords: Multi-locus sequence data, Linear morphometric data, Strophitus, Species boundarie

    More Is Less: Curcumin and Paclitaxel Formulations Using Poly(2-Oxazoline) and Poly(2-Oxazine) Based Amphiphiles Bearing Linear and Branched C9 Side Chains

    No full text
    p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica} A known limitation of polymer micelles for the formulation of hydrophobic drugs is their low loading capacity, which rarely exceeds 20 wt.%. One general strategy to overcome this limitation is to increase the amphiphilic contrast, i.e. to make the hydrophobic core of the micelles more hydrophobic. However, we reported earlier that for poly(2-oxazoline) based amphiphilic triblock copolymers, a minimal amphiphilic contrast is beneficial, which was tentatively attributed to possible side chain crystallization. Here, we revisit this subject in more detail using more hydrophobic side chains that are either linear (nonyl) or branched (3-ethylheptyl), the latter of which should not crystallize. Moreover, we investigate two different backbones within the hydrophobic block, in particular poly(2-oxazoline) and poly(2-oxazine), for the solubilization and co-solubilization of the two highly water insoluble compounds curcumin and paclitaxel. Even though high loading capacities could be achieved for curcumin within poly(2-oxazine) based triblock copolymers, the solubilization capacity of all investigated polymers with longer side chains was significantly lower compared to poly(2-oxazoline)s and poly(2-oxazine)s with shorter side chains. Although the even lower loading capacity for paclitaxel could be somehow attenuated by co-formulating curcumin, this study corroborates that in the case of poly(2-oxazoline) and poly(2-oxazine) based polymer micelles, an increased amphiphilic contrast leads to less drug solubilization.</p

    Functional diversification within a predatory species flock.

    Get PDF
    Ecological speciation is well-known from adaptive radiations in cichlid fishes inhabiting lentic ecosystems throughout the African rift valley and Central America. Here, we investigate the ecological and morphological diversification of a recently discovered lotic predatory Neotropical cichlid species flock in subtropical South America. We document morphological and functional diversification using geometric morphometrics, stable C and N isotopes, stomach contents and character evolution. This species flock displays species-specific diets and skull and pharyngeal jaw morphology. Moreover, this lineage appears to have independently evolved away from piscivory multiple times and derived forms are highly specialized morphologically and functionally relative to ancestral states. Ecological speciation played a fundamental role in this radiation and our data reveal novel conditions of ecological speciation including a species flock that evolved: 1) in a piscivorous lineage, 2) under lotic conditions and 3) with pronounced morphological novelties, including hypertrophied lips that appear to have evolved rapidly
    corecore