2,654 research outputs found

    Training and Union wages

    Get PDF
    This paper investigates whether unions, through imposing wage floors that lead to wage compression, increase on-the-job training. Our analysis focuses on Germany. Based on a model of unions and firm-financed training, we derive empirical implications regarding apprenticeship training intensity, layoffs, wage cuts, and wage compression in unionized and nonunionized firms. We test these implications using firm panel data matched with administrative employee data. We find support for the hypothesis that union recognition, via imposing minimum wages and wage compression, increases training in apprenticeship programs

    Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    Get PDF
    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales [Formula: see text]100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes

    Utility of surveillance blood cultures in patients undergoing hematopoietic stem cell transplantation

    Get PDF
    Background Surveillance blood cultures are often obtained in hematopoietic stem cell transplant (HSCT) patients for detection of bloodstream infection. The major aims of this retrospective cohort study were to determine the utility of the practice of obtaining surveillance blood cultures from asymptomatic patients during the first 100 post-transplant days and to determine if obtaining more than one positive blood culture helps in the diagnosis of bloodstream infection. Methods We conducted a 17-month retrospective analysis of all blood cultures obtained for patients admitted to the hospital for HSCT from January 2010 to June 2011. Each patient’s clinical course, vital signs, diagnostic testing, treatment, and response to treatment were reviewed. The association between number of positive blood cultures and the final diagnosis was analyzed. Results Blood culture results for 205 patients were reviewed. Cultures obtained when symptoms of infection were present (clinical cultures) accounted for 1,033 culture sets, whereas 2,474 culture sets were classified as surveillance cultures (no symptoms of infection were present). The total number of positive blood cultures was 185 sets (5.3% of cultures obtained) and accounted for 84 positive culture episodes. Incidence of infection in autologous, related allogeneic and unrelated allogeneic transplants was 8.3%, 20.0%, and 28.6% respectively. Coagulase-negative staphylococci were the most common organisms isolated. Based on our application of predefined criteria there were 29 infections and 55 episodes of positive blood cultures that were not infections. None of the patients who developed infection were diagnosed by surveillance blood cultures. None of the uninfected patients with positive blood cultures showed any clinical changes after receiving antibiotics. There was a significant difference between the incidence of BSI in the first and second 50-day periods post-HSCT. There was no association between the number of positive blood cultures and the final diagnosis. Conclusion Surveillance blood cultures in patients who have undergone HSCT do not identify bloodstream infections. The number of positive blood cultures was not helpful in determining which patients had infection. Patients are at higher risk of infection in the first 50 days post-transplant period

    Integrating Trust into the CyberCraft Initiative via the Trust Vectors Model

    Get PDF
    This research supports the hypothesis that the Trust Vector model can be modified to fit the CyberCraft Initiative, and that there are limits to the utility of historical data. This research proposed some modifications and expansions to the Trust Model Vector, and identified areas for future research

    A zone of preferential ion heating extends tens of solar radii from Sun

    Full text link
    The extreme temperatures and non-thermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the lower corona to an outer boundary 20-40 solar radii from the Sun, producing a steady state super-mass-proportional α\alpha-to-proton temperature ratio of 5.2−5.35.2-5.3. Preferential ion heating continues far beyond the transition region and is important for the evolution of both the outer corona and the solar wind. The outer boundary of this zone is well below the orbits of spacecraft at 1 AU and even closer missions such as Helios and MESSENGER, meaning it is likely that no existing mission has directly observed intense preferential heating, just residual signatures. We predict that {Parker Solar Probe} will be the first spacecraft with a perihelia sufficiently close to the Sun to pass through the outer boundary, enter the zone of preferential heating, and directly observe the physical mechanism in action.Comment: 11 pages, 7 figures, accepted for publication in the Astrophysical Journal on 1 August 201

    A scale-free analysis of magnetic holes in the solar wind

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2006.Includes bibliographical references (p. 45-47).Magnetic holes are isolated intervals of depleted interplanetary magnetic field (IMF) strength on timescales of several seconds to several hours. These intervals have been seen as often as several times per day in the ecliptic and at high heliospheric latitudes from 1 AU to 5.4 AU. We present a scale-free statistical technique for identifying magnetic holes and evaluating their significance relative to turbulent fluctuations in the solar wind. We apply this technique in a comprehensive search for magnetic holes in the Wind and ACE magnetometer data streams through 2004. Using magnetic field and ion measurements on the Wind spacecraft, we present the first statistical study of magnetic hole plasma signatures on the kinetic scale and we present a comparison of magnetic holes as kinetic and microscale phenomena. Magnetic holes are shown to be pressure-balanced structures with similar properties on all scales. Temperature anisotropy measurements are combined with magnetic field measurements to give direct evidence that the mirror-mode instability in the solar wind is a likely source of magnetic holes. Two-satellite correlations between ACE and Wind indicate that magnetic holes are stationary with respect to the solar wind and elongated along the IMF.by M.L. Stevens.S.M

    Magnetic reconnection physics in the solar wind with Voyager 2

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 112-120).Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ. In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow-mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair.(cont.) A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-[beta] are high. Evidence has been found of thinning in Kelvin-Helmholtz unstable reconnection structures. I hypothesize that reconnection in turbulent environments occurs predominantly on smaller scales than one can measure with Voyager 2.by Michael L. Stevens.Ph.D
    • 

    corecore