1,340 research outputs found

    Splash control of drop impacts with geometric targets

    Full text link
    Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally that the lamella expansion and subsequent break up of the outer rim can be controlled by length scales that are of comparable dimension to the impacting drop diameter. Under identical impact parameters, ie. fluid properties and impact velocity, we observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors include: (i) geometrically-shaped lamellae and (ii) a transition in splashing stability, from regular to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable Plateau-Rayleigh mode

    Light-Element Abundance Variations at Low Metallicity: the Globular Cluster NGC 5466

    Full text link
    We present low-resolution (R~850) spectra for 67 asymptotic giant branch (AGB), horizontal branch and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7-m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken of five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function "bump" on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.Comment: 10 pages, emulateapj format, AJ accepte

    The ACS Survey of Galactic Globular Clusters: M54 and Young Populations in the Sagittarius Dwarf Spheroidal Galaxy

    Get PDF
    We present new Hubble Space Telescope photometry of the massive globular cluster M54 (NGC 6715) and the superposed core of the tidally disrupted Sagittarius (Sgr) dSph galaxy as part of the ACS Survey of Galactic Globular Clusters. Our deep (F606W~26.5), high-precision photometry yields an unprecedentedly detailed color-magnitude diagram showing the extended blue horizontal branch and multiple main sequences of the M54+Sgr system. The distance and reddening to M54 are revised usingboth isochrone and main-sequence fitting to (m-M)_0=17.27 and E(B-V)=0.15. Preliminary assessment finds the M54+Sgr field to be dominated by the old metal-poor populations of Sgr and the globular cluster. Multiple turnoffs indicate the presence of at least two intermediate-aged star formation epochs with 4 and 6 Gyr ages and [Fe/H]=-0.4 to -0.6. We also clearly show, for the first time, a prominent, 2.3 Gyr old Sgr population of near-solar abundance. A trace population of even younger (0.1-0.8 Gyr old), more metal-rich ([Fe/H]\sim0.6) stars is also indicated. The Sgr age-metallicity relation is consistent with a closed-box model and multiple (4-5) star formation bursts over the entire life of the satellite, including the time since Sgr began disrupting.Comment: Accepted to ApJ Letter; 11 pages, 2 figures; figure 1 uploaded as jpg; paper in ApJ format with full-resolution figures available at: http://www.astro.ufl.edu/~ata/public_hstgc/paperIV/paperIV.p

    Regular and Irregular Splashing of Drops on Geometric Targets

    Get PDF
    The effect of target cross-sectional geometry on drop splashing is investigated using surfaces with length scales comparable to the drop diameter. The target cross-sectional geometries are regular polygon shapes that vary from a triangle (n = 3) to a decagon (n = 10), where n is the number vertices. The impacting cross-sectional surface area of all targets is constrained to equal the cross-sectional area of the impacting drop which is 6.38 mm2

    Continuous bunch-by-bunch spectroscopic investigation of the micro-bunching instability

    Get PDF
    Electron accelerators and synchrotrons can be operated to provide short emission pulses due to longitudinally compressed or sub-structured electron bunches. Above a threshold current, the high charge density leads to the micro-bunching instability and the formation of sub-structures on the bunch shape. These time-varying sub-structures on bunches of picoseconds-long duration lead to bursts of coherent synchrotron radiation in the terahertz frequency range. Therefore, the spectral information in this range contains valuable information about the bunch length, shape and sub-structures. Based on the KAPTURE readout system, a 4-channel single-shot THz spectrometer capable of recording 500 million spectra per second and streaming readout is presented. First measurements of time-resolved spectra are compared to simulation results of the Inovesa Vlasov-Fokker-Planck solver. The presented results lead to a better understanding of the bursting dynamics especially above the micro-bunching instability threshold.Comment: 12 pages, 11 figure

    Decoupling of the ϵ\epsilon-scalar mass in softly broken supersymmetry

    Full text link
    It has been shown recently that the introduction of an unphysical ϵ\epsilon-scalar mass m~\tilde{m} is necessary for the proper renormalization of softly broken supersymmetric theories by dimensional reduction (\drbar). In these theories, both the two-loop β\beta-functions of the scalar masses and their one-loop finite corrections depend on m~2\tilde{m}^2. We find, however, that the dependence on m~2\tilde{m}^2 can be completely removed by slightly modifying the \drbar renormalization scheme. We also show that previous \drbar calculations of one-loop corrections in supersymmetry which ignored the m~2\tilde{m}^2 contribution correspond to using this modified scheme.Comment: 7 pages, LTH-336, NUB-3094-94TH, KEK-TH-40
    corecore