47 research outputs found

    Distinct phospholipase C-regulated signalling pathways in Swiss 3T3 fibroblasts induce the rapid generation of the same polyunsaturated diacylglycerols

    Get PDF
    AbstractProstaglandin F2α, platelet-derived growth factor (PDGF) and calcium ionophore A23187 stimulated the rapid (within 25 s) generation of polyunsaturated 1,2-diacylglycerol (DAG) species, in particular 18:0/20:3n-9, 18:0/20:4n-6 and 18:0/20:5n-3, in Swiss 3T3 fibroblasts. This was followed by a second sustained phase characterised by saturated, monounsaturated and diunsaturated DAG species derived, at least partially, from a phospholipase D/phosphatidate phosphohydrolase-linked pathway. This could be directly activated by phorbol ester. Assay of rat brain protein kinase C (PKC) in lipid vesicles showed that first phase, polyunsaturated-enriched DAG isolated from Swiss 3T3 cells was a more potent activator of kinase activity compared to that achieved with DAG from control or 5 min stimulated cells. Thus activation of distinct members of the phospholipase C family leads to the rapid and almost identical generation of polyunsaturated DAG species which are capable of preferentially activating protein kinase C (PKC)

    L6 skeletal muscle cells have functional V1-vasopressin receptors coupled to stimulated inositol phospholipid metabolism

    Get PDF
    AbstractThe effects of vasopressin and related peptides upon the rat skeletal muscle cell line, L6, have been examined. No effects upon cellular cyclic AMP levels were found indicating that L6 cells possess no functional V2-vasopressin receptors. Vasopressin and its analogues did, however, stimulate the rapid and dose-dependent accumulation of inositol phosphates. This effect and the rank order of potency of vasopressin analogues demonstrate the presence of functional V1-vasopressin receptors upon L6 cells. These results suggest that the L6 line may be a useful model for vasopressin effects upon skeletal muscle metabolism

    Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus

    Get PDF
    In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection

    Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation.

    Get PDF
    An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo

    Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress

    Get PDF
    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment

    Pleckstrin homology (PH) domains and phosphoinositides

    No full text

    SnapShot: Lipid Kinases and Phosphatases

    No full text
    corecore