5 research outputs found

    Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8–12

    Get PDF
    Balance orientation depends on the precise operation of the vestibular end organs and the vestibular ganglion neurons. Previous research on the assemblage of the neuronal network in the developing fetal vestibular organ has been limited to data from animal models. Insights into the molecular expression profiles and signaling moieties involved in embryological development of the human fetal inner ear have been limited. We present an investigation of the cells of the vestibular end organs with specific focus on the hair cell differentiation and innervation pattern using an uninterrupted series of unique specimens from gestational weeks 8-12. Nerve fibers positive for peripherin innervate the entire fetal crista and utricle. While in rodents only the peripheral regions of the cristae and the extra-striolar region of the statolithic organs are stained. At week 9, transcription factors PAX2 and PAX8 were observed in the hair cells whereas PAX6 was observed for the first time among the supporting cells of the cristae and the satellite glial cells of the vestibular ganglia. Glutamine synthetase, a regulator of the neurotransmitter glutamate, is strongly expressed among satellite glia cells, transitional zones of the utricle and supporting cells in the sensory epithelium. At gestational week 11, electron microscopic examination reveals bouton contacts at hair cells and first signs of the formation of a protocalyx at type I hair cells. Our study provides first-hand insight into the fetal development of the vestibular end organs as well as their pattern of innervation by means of immunohistochemical and EM techniques, with the aim of contributing toward our understanding of balance development

    Characterization of DLK1(PREF1)+/CD34+ cells in vascular stroma of human white adipose tissue

    Get PDF
    AbstractSorting of native (unpermeabilized) SVF-cells from human subcutaneous (s)WAT for cell surface staining (cs) of DLK1 and CD34 identified three main populations: ~10% stained cs-DLK1+/cs-CD34−, ~20% cs-DLK1+/cs-CD34+dim and ~45% cs-DLK1−/cs-CD34+. FACS analysis after permeabilization showed that all these cells stained positive for intracellular DLK1, while CD34 was undetectable in cs-DLK1+/cs-CD34− cells. Permeabilized cs-DLK1−/cs-CD34+ cells were positive for the pericyte marker α-SMA and the mesenchymal markers CD90 and CD105, albeit CD105 staining was dim (cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31−). Only these cells showed proliferative and adipogenic capacity. Cs-DLK1+/cs-CD34− and cs-DLK1+/cs-CD34+dim cells were also α-SMA+ but expressed CD31, had a mixed hematopoietic and mesenchymal phenotype, and could neither proliferate nor differentiate into adipocytes. Histological analysis of sWAT detected DLK1+/CD34+ and DLK1+/CD90+ cells mainly in the outer ring of vessel-associated stroma and at capillaries. DLK1+/α-SMA+ cells were localized in the CD34− perivascular ring and in adventitial vascular stroma. All these DLK1+ cells possess a spindle-shaped morphology with extremely long processes. DLK1+/CD34+ cells were also detected in vessel endothelium. Additionally, we show that sWAT contains significantly more DLK1+ cells than visceral (v)WAT. We conclude that sWAT has more DKL1+ cells than vWAT and contains different DLK1/CD34 populations, and only cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31− cells in the adventitial vascular stroma exhibit proliferative and adipogenic capacity
    corecore