107 research outputs found

    Reversal of Hypertriglyceridemia, Fatty Liver Disease, and Insulin Resistance by a Liver-Targeted Mitochondrial Uncoupler

    Get PDF
    SummaryNonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D

    Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitotic CDK1 and 4E-BP1 II: A single phosphomimetic mutation in 4E-BP1 induces glucose intolerance in mice.

    No full text
    ObjectiveCyclin-dependent kinase 1 (CDK1)/cyclin B1 phosphorylates many of the same substrates as mTORC1 (a key regulator of glucose metabolism), including the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Only mitotic CDK1 phosphorylates 4E-BP1 at residue S82 in mice (S83 in humans), in addition to the common 4E-BP1 phospho-acceptor sites phosphorylated by both CDK1 and mTORC1. We examined glucose metabolism in mice having a single aspartate phosphomimetic amino acid knock in substitution at the 4E-BP1 serine 82 (4E-BP1S82D) mimicking constitutive CDK1 phosphorylation.MethodsKnock-in homozygous 4E-BP1S82D and 4E-BP1S82A C57Bl/6N mice were assessed for glucose tolerance testing (GTT) and metabolic cage analysis on regular and on high-fat chow diets. Gastrocnemius tissues from 4E-BP1S82D and WT mice were subject to Reverse Phase Protein Array analysis. Since the bone marrow is one of the few tissues typically having cycling cells that transit mitosis, reciprocal bone-marrow transplants were performed between male 4E-BP1S82D and WT mice, followed by metabolic assessment, to determine the role of actively cycling cells on glucose homeostasis.ResultsHomozygous knock-in 4E-BP1S82D mice showed glucose intolerance that was markedly accentuated with a diabetogenic high-fat diet (p = 0.004). In contrast, homozygous mice with the unphosphorylatable alanine substitution (4E-BP1S82A) had normal glucose tolerance. Protein profiling of lean muscle tissues, largely arrested in G0, did not show protein expression or signaling changes that could account for these results. Reciprocal bone-marrow transplantation between 4E-BP1S82D and wild-type littermates revealed a trend for wild-type mice with 4E-BP1S82D marrow engraftment on high-fat diets to become hyperglycemic after glucose challenge.Conclusions4E-BP1S82D is a single amino acid substitution that induces glucose intolerance in mice. These findings indicate that glucose metabolism may be regulated by CDK1 4E-BP1 phosphorylation independent from mTOR and point towards an unexpected role for cycling cells that transit mitosis in diabetic glucose control
    corecore