8 research outputs found

    Neutron Bragg edge tomography characterisation of residual strain in a laser-welded Eurofer97 joint

    No full text
    Nuclear fusion is a potential source of electricity which can address the environmental problems posed by fossil fuels. Eurofer97 steel is a primary structural material for breeding blanket and divertor components in fusion Tokamaks. Assembling and maintaining the structural integrity of these in-vessel components requires remote joint techniques, such as laser welding, although it induces immersive residual stress. The interaction of the residual strain and the heterogeneous microstructure degrades the mechanical performance of fusion components. However, an inspection of bulk residual strain distribution is still challenging. This study presents the residual strain distribution in the bulk of the weldment using volumetric tomographic reconstruction. A neutron Bragg edge imaging technique is used to obtain 2D angular projections. The 3D volumetric strain map is reconstructed from 2D residual strain projections using the filtered back projection technique. It is found that the laser welding technique generates a uniform residual strain field in the through-thickness direction. The results also demonstrate the potential of reconstructing volumetric residual strain distribution in bulk materials using fewer projections to reduce data redundancy and acquisition time for the neutron Bragg edge imaging technique

    Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction

    No full text
    The effects of vacuum induction melting (VIM) vacuum (<1 Pa–100 Pa) on gas content, oxide inclusions and mechanical properties of Ni-based superalloy K4648 has been investigated by electron beam (EB) button experiment under high vacuum (10-3 Pa) and high resolution synchrotron X-ray powder diffraction (SXPD). The results indicated that VIM remelting vacuum drop has obvious effect on the existing form of trace oxygen. The total amount of oxygen did not increase significantly but a dramatic increase in the amount of oxide inclusions by 1–2 orders of magnitude was found. The inclusions are mainly oxides including Al2O3, Cr2O3, NiAl2O4 and complex oxides or sulfides. Remelting under 100–110 Pa has no significant effect on mechanical properties such as stress rupture life and tensile strength but decreased ductility obviously. In comparison to the normal vacuum counterpart, the tensile elongation and impact ductility of the alloy remelted under lower vacuum level decreased by 67% and 39%, respectively. This study reveals the relationship between the vacuum level and mechanical properties of superalloys and highlights the trace amount of oxide inclusions which should be considered as one of the key issues for the cleanliness of virgin or revert superalloys apart from the typical measurement of the gas content only

    A novel pathway for multiscale high-resolution time-resolved residual stress evaluation of laser-welded Eurofer97

    No full text
    The plasma-facing components of future fusion reactors, where the Eurofer97 is the primary structural material, will be assembled by laser-welding techniques. The heterogeneous residual stress induced by welding can interact with the microstructure, resulting in a degradation of mechanical properties and a reduction in joint lifetime. Here, a Xe+&nbsp;plasma focused ion beam with digital image correlation (PFIB-DIC) and nanoindentation is used to reveal the mechanistic connection between residual stress, microstructure, and microhardness. This study is the first to use the PFIB-DIC to evaluate the time-resolved multiscale residual stress at a length scale of tens of micrometers for laser-welded Eurofer97. A nonequilibrium microscale residual stress is observed, which contributes to the macroscale residual stress. The microhardness is similar for the fusion zone and heat-affected zone (HAZ), although the HAZ exhibits around ~30% tensile residual stress softening. The results provide insight into maintaining structural integrity for this critical engineering challenge.</p

    Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging

    No full text
    •Through-thickness residual stress distribution in three dimensions is evaluated.•High-resolution residual strain is mapped by neutron Bragg edge imaging.•Location-dependent reference lattice spacing is first applied on neutron imaging.•Correlation between microstructure, residual stress and micro-hardness is studied.Eurofer97 steel is a primary structural material for applications in fusion reactors. Laser welding is a promising technique to join Eurofer97 plasma-facing components and overcome remote handling and maintenance challenges. The interaction of the induced residual stress and the heterogeneous microstructure degrades the mechanical performance of such fusion components. The present study investigates the distribution of residual stresses of as-welded and post-heat treated Eurofer97 joints. The mechanistic connections between microstructure, material properties, and residual stress are also studied. The neutron diffraction is used to study the through-thickness residual stress distribution in three directions, and neutron Bragg edge imaging (NBEI) is applied to study the residual strain in high spatial resolution. The microstructures and micro-hardness are characterised by electron backscatter diffraction and nanoindentation, respectively. The M-shaped residual stress distribution through the thickness of the as-welded weldment is observed by neutron diffraction line scans over a region of 1.41 × 10 mm2. These profiles are cross-validated over a larger area (∼56 × 40 mm2) with the higher spatial resolution by NBEI. The micro-hardness value in the fusion zone of the as-welded sample almost doubles from 2.75 ± 0.09 GPa to 5.06 ± 0.29 GPa due to a combination of residual stress and cooling-induced martensite. Conventional post weld heat treatment (PWHT) is shown to release ∼ 90% of the residual stress but not fully restore the microstructure. By comparing its hardness with that of stress-free samples, it is found that the microstructure is the primary contribution to the hardening. This study provides insight into the prediction of structural integrity for critical structural components of fusion reactors

    An <i>in situ</i> powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels

    Get PDF
    The evolution of phases in a Fe–14Cr–10Y2O3 (wt%) oxide-dispersion-strengthened ferritic steel during mechanical alloying (MA) and subsequent annealing was studied by high resolution powder neutron diffraction, with emphasis on the kinetics of oxide-based nano-precipitate formation. Y2O3 particles were completely dissolved into the ferritic matrix during MA. The formation of nano-precipitates was then observed by in situ thermo-diffraction experiments during annealing of as-milled powder above 900 °C, supported by scanning electron microscopy. This revealed nano-precipitate coarsening with increasing annealing temperature. Powder microhardness was measured at various processing stages, and hardness changes are discussed in terms of the measured phase fractions, crystallite size and lattice strain at different temperatures and times

    Small-angle neutron scattering reveals the effect of Mo on interphase nano-precipitation in Ti-Mo micro-alloyed steels

    Get PDF
    Ti-containing micro-alloyed steels are often alloyed with molybdenum (Mo) to reduce nano-precipitate coarsening, although the mechanism is still disputed. Using small angle neutron scattering we characterised the precipitate composition and coarsening of Ti-alloyed and Ti-Mo-alloyed steels. The results demonstrate ~25 at.% of Ti is substituted by Mo in the (Ti, Mo)C precipitates, increasing both the precipitate volume percent and average size. Mo alloying did not retard precipitation coarsening, but improved lattice misfit between precipitate and matrix, contributing to better ageing resistance of the Ti-Mo-alloyed steel. This new understanding opens opportunities for designing ageing-resistant micro-alloyed steels with lean alloying elements
    corecore