377 research outputs found

    Dietary intake alters behavioral recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion

    Get PDF
    Concussion and mild traumatic brain injury (mTBI) research has made minimal progress diagnosing who will suffer from lingering symptomology or generating effective treatment strategies. Research demonstrates that dietary intake affects many biological systems including brain and neurological health. This study determined if exposure to a high fat diet (HFD) or caloric restriction (CR) altered post-concussion susceptibility or resiliency using a rodent model of pediatric concussion. Rats were maintained on HFD, CR, or standard diet (STD) throughout life (including the prenatal period and weaning). At postnatal day 30, male and female rats experienced a concussion or a sham injury which was followed by 17 days of testing. Prefrontal cortex and hippocampus tissue was collected for molecular profiling. Gene expression changes in BDNF, CREB, DNMT1, FGF-2, IGF1, LEP, PGC-1α, SIRT1, Tau, and TERT were analyzed with respect to injury and diet. Analysis of telomere length (TL) using peripheral skin cells and brain tissue found that TL in skin significantly correlated with TL in brain tissue and TL was affected by dietary intake and injury status. With respect to mTBI outcomes, diet was correlated with recovery as animals on the HFD often displayed poorer performance than animals on the CR diet. Molecular analysis demonstrated that diet induced epigenetic changes that can be associated with differences in individual predisposition and resiliency to post-concussion syndrome

    Rapid and Robust Continuous Purification of High-Titer Hepatitis B Virus for In Vitro and In Vivo Applications

    Get PDF
    Available treatments for hepatitis B can control the virus but are rarely curative. This led to a global initiative to design new curative therapies for the 257 million patients affected. Discovery and development of these new therapies is contingent upon functional in vitro and in vivo hepatitis B virus (HBV) infection models. However, low titer and impurity of conventional HBV stocks reduce significance of in vitro infections and moreover limit challenge doses in current in vivo models. Therefore, there is a critical need for a robust, simple and reproducible protocol to generate high-purity and high-titer infectious HBV stocks. Here, we outline a three-step protocol for continuous production of high-quality HBV stocks from supernatants of HBV-replicating cell lines. This purification process takes less than 6 h, yields to high-titer stocks (up to 1 × 1011 enveloped, DNA-containing HBV particles/mL each week), and is with minimal equipment easily adaptable to most laboratory settings.Peer Reviewe

    Melatonin as a treatment after traumatic brain injury: a systematic review and meta-analysis of the pre-clinical and clinical literature

    Get PDF
    Traumatic brain injury is common and yet effective treatments of the secondary brain injury are scarce. Melatonin is a potent, non-selective neuroprotective and anti-inflammatory agent that is showing promising results in neonatal brain injury. The aim of this study was to systematically evaluate the pre-clinical and clinical literature for the effectiveness of Melatonin to improve outcome after TBI. Using the systematic review protocol for animal intervention studies (SYRCLE) and Cochrane methodology for clinical studies, a search of English articles was performed. Eligible studies were identified and data was extracted. Quality assessment was performed using the SYRCLE risk of bias tool. Meta-analyses were performed using standardized mean differences (SMD). Seventeen studies (15 pre-clinical, 2 clinical) met inclusion criteria. There was heterogeneity in the studies, and all had moderate-to-low risk of bias. Meta-analysis of pre-clinical data revealed an overall positive effect on neurobehavioural outcome with SMD of 1.51 (95% CIs: 1.06-1.96). Melatonin treatment had a favorable effect on the neurological status, by a SMD of 1.35 (95% CI: 0.83-1.88) and cognition by a SMD of 1.16 (95% CIs: 0.4-1.92). Melatonin decreased the size of the contusion by a SMD of 2.22 (95% CI: 0.84-3.59) and cerebral oedema by SMD of 1.91 (95% CI: 1.08-2.74). Only two clinical studies were identified. They were of low quality, used for symptom management, and were of uncertain significance. In conclusion, there is evidence that Melatonin treatment after TBI significantly improves both behavioural outcomes and pathological outcomes, but significant research gaps exist especially in clinical populations

    Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues

    Get PDF
    Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization

    A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes

    Get PDF
    Analyses of 55 individual and 31 concatenated protein data sets encoded in Reclinomonas americana and Marchantia polymorpha mitochondrial genomes revealed that current methods for constructing phylogenetic trees are insufficiently sensitive (or artifact-insensitive) to ascertain the sister of mitochondria among the current sample of eight alpha-proteobacterial genomes using mitochondrially-encoded proteins. However, Rhodospirillum rubrum came as close to mitochondria as any alpha-proteobacterium investigated. This prompted a search for methods to directly compare eukaryotic genomes to their prokaryotic counterparts to investigate the origin of the mitochondrion and its host from the standpoint of nuclear genes. We examined pairwise amino acid sequence identity in comparisons of 6,214 nuclear protein-coding genes from Saccharomyces cerevisiae to 177,117 proteins encoded in sequenced genomes from 45 eubacteria and 15 archaebacteria. The results reveal that approximately 75% of yeast genes having homologues among the present prokaryotic sample share greater amino acid sequence identity to eubacterial than to archaebacterial homologues. At high stringency comparisons, only the eubacterial component of the yeast genome is detectable. Our findings indicate that at the levels of overall amino acid sequence identity and gene content, yeast shares a sister-group relationship with eubacteria, not with archaebacteria, in contrast to the current phylogenetic paradigm based on ribosomal RNA. Among eubacteria and archaebacteria, proteobacterial and methanogen genomes, respectively, shared more similarity with the yeast genome than other prokaryotic genomes surveyed

    Functional brush poly(2-ethyl-2-oxazine)s : synthesis by CROP and RAFT, thermoresponsiveness and grafting onto iron oxide nanoparticles

    Get PDF
    Brush polymers are highly functional polymeric materials combining the properties of different polymer classes and have found numerous applications, for example, in nanomedicine. Here, the synthesis of functional phosphonate‐ester‐bearing brush polymers based on poly(2‐oxazine)s is reported through a combination of cationic ring‐opening polymerization (CROP) of 2‐ethyl‐2‐oxazine and reversible addition‐fragmentation chain transfer (RAFT) polymerization. In this way, a small library of well‐defined (Đ ≀ 1.17) poly(oligo(2‐ethyl‐2‐oxazine) methacrylate) P(OEtOzMA)n brushes with tunable lower critical solution temperature (LCST) behavior and negligible cell toxicity is prepared. Upon deprotection, the phosphonic acid end‐group of the P(OEtOzMA)n brush enables the successful grafting‐onto iron oxide nanoparticles (IONPs). Colloidal stability of the particle suspension in combination with suitable magnetic resonance imaging (MRI) relaxivities demonstrates the potential of these particles for future applications as negative MRI contrast agents

    Casimir forces in binary liquid mixtures

    Full text link
    If two ore more bodies are immersed in a critical fluid critical fluctuations of the order parameter generate long ranged forces between these bodies. Due to the underlying mechanism these forces are close analogues of the well known Casimir forces in electromagnetism. For the special case of a binary liquid mixture near its critical demixing transition confined to a simple parallel plate geometry it is shown that the corresponding critical Casimir forces can be of the same order of magnitude as the dispersion (van der Waals) forces between the plates. In wetting experiments or by direct measurements with an atomic force microscope the resulting modification of the usual dispersion forces in the critical regime should therefore be easily detectable. Analytical estimates for the Casimir amplitudes Delta in d=4-epsilon are compared with corresponding Monte-Carlo results in d=3 and their quantitative effect on the thickness of critical wetting layers and on force measurements is discussed.Comment: 34 pages LaTeX with revtex and epsf style, to appear in Phys. Rev.

    Canadian paediatric neurology workforce survey and consensus statement

    Get PDF
    Background: Little knowledge exists on the availability of academic and community paediatric neurology positions. This knowledge is crucial for making workforce decisions. Our study aimed to: 1) obtain information regarding the availability of positions for paediatric neurologists in academic centres; 2) survey paediatric neurology trainees regarding their perceptions of employment issues and career plans; 3) survey practicing community paediatric neurologists 4) convene a group of paediatric neurologists to develop consensus regarding how to address these workforce issues. Methods: Surveys addressing workforce issues regarding paediatric neurology in Canada were sent to: 1) all paediatric neurology program directors in Canada (n=9) who then solicited information from division heads and from paediatric neurologists in surrounding areas; 2) paediatric neurology trainees in Canada (n=57) and; 3) community paediatric neurologists (n=27). A meeting was held with relevant stakeholders to develop a consensus on how to approach employment issues. Results: The response rate was 100% from program directors, 57.9% from residents and 44% from community paediatric neurologists. We found that the number of projected positions in academic paediatric neurology is fewer than the number of paediatric neurologists that are being trained over the next five to ten years, despite a clinical need for paediatric neurologists. Paediatric neurology residents are concerned about job availability and desire more career counselling. Conclusions: There is a current and projected clinical demand for paediatric neurologists despite a lack of academic positions. Training programs should focus on community neurology as a viable career option
    • 

    corecore