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Brush polymers are highly functional polymeric materials combining the properties of

different polymer classes, which have found numerous applications, e.g. in nanomedicine.

Here, we report the synthesis of functional phosphonate ester bearing brush polymers based

on poly(2-oxazine)s through a combination of cationic ring-opening polymerization (CROP)

of 2-ethyl-2-oxazine and reversible addition-fragmentation chain transfer (RAFT)
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polymerization. In this way, a small library of well-defined (Đ ≤ 1.17) poly(oligo(2-ethyl-2-

oxazine) methacrylate) P(OEtOzMA)n brushes with tunable lower critical solution

temperature (LCST) behavior and negligible cell toxicity was prepared. Upon deprotection,

the phosphonic acid end-group of the P(OEtOzMA)n brush enabled the successful grafting-

onto iron oxide nanoparticles (IONPs). Colloidal stability of the particle suspension in

combination with suitable magnetic resonance imaging (MRI) relaxivities demonstrate the

potential of these particles for future applications as negative MRI contrast agents.
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1. Introduction

Poly(cyclic imino ether)s (PCIE) have attracted significant attention in the last decades due to

their structural diversity and high functionality.[1] PCIE are obtained by cationic ring-opening

polymerization (CROP) of the respective cyclic imino ether, which are heterocyclic

compounds possessing the structural motif –N=C(R)-O-. The most prominent member of this

polymer family are the poly(2-oxazoline)s (POx),[2] particularly due to the exceptional

biomedical properties (e.g., non-cytotoxicity, non-immunogenicity and stealth behavior) of

the water-soluble poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline)

(PEtOx).[3] The living nature of the CROP as well as the straightforward modulation of the 2-

substituent of the monomers enables the synthesis of well-defined tailored POx.[4] Moreover,

the possibility to introduce functional groups through the choice of initiators or terminating

agents has been exploited to introduce polymerizable groups, such as (meth)acrylates,[5]

which makes them available for the design of different polymer architectures. In this context,

brush-like/ comb-shaped POx have been prepared and studied (i) for their thermal and

aqueous solution properties,[6] (ii) in polymer-biomolecule conjugations,[7] and (iii) as

component of multi-layered POx capsules.[8]

In contrast to POx, their higher homologues, namely poly(2-oxazine)s (POz) have received

much less attention, despite the simple property modulation offered by the incorporation of an

additional methylene group in the polymer backbone.[1a, 9] However, recent reports about the

lower critical solution temperature of poly(2-ethyl-2-oxazine) (PEtOz)[10] and the exceptional

hydration and bioinertness of poly(2-methyl-2-oxazine) brushes[11] have sparked a renewed

interest into this polymer class. POz are also synthesised by CROP and similar to POx their

properties can be adjusted by changing the polymer side chain.[9a, 12] Consequently, 2-

oxazolines and 2-oxazines can also be combined in the same polymer system as recently

reported for linear block copolymers for the fabrication of high capacity based

formulations.[13] Moreover, the water-soluble variants PMeOz and PEtOz have been shown to
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not affect the cell viability of 3T3 mouse fibroblasts up to a concentration of 100 g L-1,[14]

indicating their potential as future biomaterials. All these promising results stimulated our

interest to further evaluate the potential of POz for nanomedicine applications. Specifically,

we were interested to explore POz as component in methacrylate-based brush polymers,

which allows us to combine the properties of POz with the modularity of controlled radical

polymerizations. To date, only the potential of linear POz has been discussed as outlined

above. However, to the best of our knowledge POz have not been exploited for the

preparation of other macromolecular architectures or as coating materials for inorganic

(nano)particles.

In this contribution, we further expand the PCIE toolbox and introduce brush-like poly(2-

ethyl-2-oxazine)s as novel water-soluble thermoresponsive materials capable of stabilizing

iron oxide nanoparticles (IONPs). To this end, well-defined oligo(2-ethyl-2-oxazine)

methylacrylate (OEtOzMA) macromonomers, obtained by CROP of 2-ethyl-2-oxazine

(EtOz), were polymerized via reversible addition-fragmentation chain-transfer (RAFT)

polymerization using a phosphonate bearing chain transfer agent (CTA). In this way, well-

defined P(OEtOzMA)n brushes with varying side chain and backbone lengths were obtained

and studied with regard to their thermal properties in bulk and aqueous solution. In order to

highlight the potential of these brushes, we further demonstrated their ability to stabilize

IONPs which are shown to be suitable candidates for negative MRI contrast agents.

2. Results and Discussion

Well-defined oligo(2-ethyl-2-oxazine) methylacrylate (OEtOzMA) macromonomers were

synthesized through CROP of 2-ethyl-2-oxazine (EtOz) (Scheme 1A). Kinetic investigations

of the CROP of EtOz revealed a linear increase of ln([M]0/[M]t) with time as depicted in the

pseudo first-order kinetic plot in Figure 1A. This suggests a constant concentration of the
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propagating species and indicates that the polymerization proceeds in a living manner. With

kp = 0.00017 L (mol s)-1 the polymerization of EtOz was found to be an order of magnitude

slower than EtOx under similar conditions (data not shown). The linear increase of the molar

mass with conversion, as well as low dispersities (Đ ~ 1.2) (Figure 1B), further supported the

living character of the polymerization.

Based on this kinetic investigation two different OEtOzMA macromonomers with degrees of

polymerization (DP) of 4 and 8 were synthesized. Upon near quantitative conversion of the

EtOz, the living polymer chains were terminated by methacrylic acid anions formed by the

addition of methacrylic acid (MAA) and triethylamine (NEt3). Figure 2 depicts the 1H NMR

(A) and MALDI ToF MS (B) spectrum of the purified OEtOz4MA macromonomer. In the 1H

NMR spectrum the signals corresponding to the methacrylate functionality are clearly visible

between 5.5 and 6.5 ppm (double bond; H1, H2) and 1.9 ppm (methyl group; H3). The

comparison of the integrals of the double bond and the backbone (3.1 – 3.5 ppm) suggested

near quantitative introduction of the methacrylate end-group. The molecular composition was

further confirmed by MALDI ToF MS. The individual peaks of the spectrum could be

assigned to CH3-initiated and methacrylic acid-terminated EtOz. The two distributions

observed are referred to ionization with H+ or Na+ (CH3(C6H11NO)nCOOC2H5 + H+/Na+). The

molar mass increments within individual distributions were found to correspond to the EtOz

repeating unit (113.1 g mol-1).

Subsequent RAFT polymerizations of the macromonomers were performed using a protected

phosphonate ester CTA. The kinetic study of the OEtOz4MA polymerization revealed a linear

first order kinetic behavior up to 70-80% conversion (Figure 1C). Moreover, a linear increase

of the molar mass with conversion and low dispersity values (< 1.25) indicated good control

of the polymerization under the chosen conditions (Figure 1D).

To study their thermal behavior in bulk and aqueous solution a library of brush P(OEtOzMA)n

was prepared. All polymerizations were stopped at < 70% conversion, which resulted in well-
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defined brush polymers with narrow molecular weight distributions (Figure 2C, Table 1).

Four different P(OEtOz4MA)n of varying DPs (P1a-P1d: n = 16, 25, 47, 70) and one

P(OEtOz8MA)18 (P2a) were synthesized.

All brush polymers were found to exhibit glass transition temperatures (Tg’s) below room

temperature (Table 1). The DP of the brush backbone only had a marginal effect on the Tg,

whereas an increase in the side chain length resulted in a significant higher Tg. The latter can

be assigned to the decreased chain mobility. Similar to their linear analogues,[10] EtOz-based

brush systems possess lower Tg’s than EtOx based ones. This is due to the additional

methylene group in the EtOz repeating unit, resulting in increased chain mobility. A similar

trend was recently observed for brush polymers based on N-acylated poly(aminoester)s,

obtained by the spontaneous zwitterionic copolymerization (SZWIP) of EtOx and EtOz.[15] In

contrast, the thermal properties of the brush polymers in aqueous solution revealed a more

significant dependency on the brush backbone length. The polymers were dissolved in

deionized water or phosphate buffered saline (PBS) at a concentration of 5 mg mL-1, and the

phase transitions were studied by turbidimetry (Figure 2D). Previously it was shown that

linear PEtOz below DP 50 does not possess any thermo-responsive behaviour in water.[10] For

the brush P(OEtOzMA)n, a trend towards lower cloud point temperatures (Tcp) for longer

methacrylate backbones was observed, similar to brush-like P(OEtOxMA), both in deionized

water and PBS. Tcp values in PBS were found to be lower than in water, indicating a salt

dependency of the phase transition. An increase of EtOz repeating units in the side chain of

the brush polymers (P1a versus P2a) did not lead to a significant change in its Tcp. As

previously stated by Weber et al., this observation might indicate that the hydrophobic

methacrylate backbone is sufficiently shielded by the hydrophilic OEtOz side chains, and thus

cannot be accessed by water molecules, which endows the brush polymers with poly(2-

oxazine)-like properties.[6b]
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Upon the study of the polymerization of OEtOzMA macromonomers and the thermal

properties of the resulting brush polymers, the potential of the P(OEtOzMA)n to stabilize

IONPs in aqueous solution was investigated. Non-functionalized IONPs are colloidally

unstable under physiological conditions resulting in agglomeration, which limits their

application.[16] Steric stabilization of IONPs is hence commonly performed via physisorption

or chemisorption of hydrophilic and biocompatible stealth polymers.[17] In general, there is

only a very limited number of reports about the use of PCIEs for the steric stabilization of

IONPs despite their promising properties.[18] A larger batch of P1b, referred to as P1b* (DP

27, Mn,SEC = 16500 g mol-1, Đ = 1.09), was synthesized and the terminal phosphonate ester

moieties of the RAFT end-group were cleaved in the presence of an excess of

trimethylsilylbromide. Subsequent methanolysis yielded phosphonic acid groups.[19] The

successful deprotection could be confirmed via 1H and 31P NMR by the disappearance of the

methoxy group signals at 3.75 ppm and the shift of the phosphorous signal from 30.9 ppm to

26.6 ppm (Figure S1, Supporting Information). No detectable change upon cleavage could be

observed in the respective SEC chromatograms.

The P1b* brushes before and after phosphonate ester cleavage were exemplarily examined

regarding their cytotoxicity and hemocompatibility. To this end, the cytotoxicity against 3T3

fibroblast and N27 neural cells was investigated using an AlamarBlue assay (Figure S2,

Supporting Information). Only a negligible cytotoxicity could be observed in the

concentration range from 7.8∙10-3 mg mL-1 to 1 mg mL-1. Similarly, P1b* did not trigger any

detectable hemolysis indicating no observable damage of the erythrocyte membrane (Figure

S3, Supporting Information).

Subsequently, IONPs sterically stabilized with oleic acid and with an average diameter of 15

nm were functionalized with phosphonic acid terminated P1b* by the grafting-onto approach

exploiting the strong affinity of the phosphonic acid moiety towards IONP surfaces (Scheme

1B). The ligand exchange reaction was performed in a methanol/chloroform mixture at 37 °C
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overnight followed by nanoparticle purification via precipitation and several centrifugal

washing cycles. The presence of P1b* on the IONP surface was confirmed using ATR-FTIR

and TGA. ATR-FTIR spectra displayed vibrational bands for ester and tertiary amide bonds at

1720 and 1630 cm-1, respectively, in addition to an absorbance at 750 and 660 cm-1

originating from the IONPs (Figure S4, Supporting Information). A grafting density of 0.13

nm-2 was calculated from the observed weight loss in TGA (Figure S5, Supporting

Information) and the molecular weights of P1b* (Mn,NMR = 15200 g mol-1). TEM

measurements revealed the presence of well-dispersed IONPs after modification in aqueous

media (Figure 3A).

The P1b* stabilized IONPs were subsequently tested for their performance as negative MRI

contrast agents. To this end, MRI relaxivities were measured using a 9.4 T high field animal

MR scanner. Different concentrations of particles dispersed in water were immobilized in

agarose gels and the relaxivities r1 and r2 were determined from T1 and T2 mappings,

respectively (Figure 3B). The r2 value was found to be ~ 115 s-1 mM-1, which is within the

expected range for polymer-coated IONPs of similar size.[20] The r1 relaxivity (0.54 s-1 mM-1)

was found to be similar to poly(PEGMA) coated IONPs.[21] This led to a r2/r1 ratio - an

important indicator for negative contrast agent - of ~ 214, a value which is similar to the

commercial product Resovist (r2/r1 = 224).

3. Conclusions

We report the synthesis of water-soluble and thermoresponsive brush poly(2-ethyl-2-

oxazine)s capable of stabilizing IONPs and demonstrate their potential for future MRI

applications. To this end, oligo(2-ethyl-2-oxazine) methacrylate (OEtOzMA)

macromonomers were synthesized via living cationic ring-opening polymerization (CROP)

and subsequently polymerized via reversible addition-fragmentation chain transfer (RAFT)

polymerization to yield well-defined P(OEtOzMA) brushes. The brushes were found to
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exhibit tunable LCST behaviour, negligible cytotoxicity and be capable of stabilizing IONPs

due to their phosphonic acid end groups introduced via a phosphonate ester bearing chain

transfer agent. Relaxivity studies of P(OEtOzMA)@IONPs revealed a r2/r1 ratio comparable

to commercial contrast agents. Further in-depth MRI studies of POz stabilised IONPs are

currently performed in our laboratory.

In summary, this study further expands the poly(cyclic imino ether) toolbox and introduces

poly(2-oxazine) based brush polymers as promising materials for future biomedical

applications.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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Figures, Schemes, Tables and legends

Scheme 1. Schematic representation of the (A) synthesis of poly(oligo(2-ethyl-2-oxazine)
methyl acrylate) (P(OEtOznMA)) by a combination of CROP and RAFT polymerization using
a protected phosphonate chain transfer agent (CTA); (B) grafting of phosphonic acid
functional P(OEtOznMA) to IONPs.
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Figure 1. CROP kinetic of EtOz (DP 10) in acetonitrile at 80 °C using MeOTs as initiator,
(A) first-order kinetic plot, (B) Mn and Đ against conversion plot; (C, D) RAFT
polymerization kinetics of OEtOz4MA (DP 60) in ethanol at 70 °C using AIBN as initiator.
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Figure 2. 1H NMR (400 MHz, CDCl3; A) and MALDI TOF MS spectra (B) of the
OEtOz4MA macromonomer. SEC traces of the different P(OEtOz4MA) (C) and their
corresponding turbidimetry curves (D); black: DP16, red: DP25, blue: DP47, green: DP70.

Figure 3. TEM (A; scale bar = 20 nm) and MRI (B) T1 and T2 weighted images of P1b*
modified IONPs at different concentrations.
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Table 1. Characterization of the macromonomers (M1, M2) and brush polymers (P1a-d,
P2a).

Code DPa
Mn, NMR

[g mol-1]a

Mn, SEC

[g mol-1]b
Đb

Tg
c

[°C]

Tcp
d (H2O)

[°C]

Tcp
d (PBS)

[°C]

M1 4 553 1000 1.19 n.d. n.d. n.d.

M2 8 1005 2100 1.13 n.d. n.d. n.d.

P1a 16 9260 9700 1.09 12.4 50.4 39.8

P1b 25 14240 13100 1.14 11.5 48 45.4

P1c 47 26410 20800 1.15 12.6 44.1 41.4

P1d 70 39130 26400 1.17 15.4 42.9 40.7

P2a 18 18510 18500 1.12 20.8 47.7 45.5

aCalculated by 1H NMR (CDCl3, 400 MHz) from conversion and molar mass of the monomer (EtOz: 113.16 g
mol-1) and macromonomer (M1: 553 g mol-1, M2: 1005 g mol-1), respectively. bDetermined by SEC (eluent:
DMF + NH4BF4, standard: PMMA). cDetermined by DSC (second heating run). dCloud point temperature(5 mg
mL-1). n.d., not determined.



15

Table of Contents

Functional brush poly(2-ethyl-2-oxazine)s: Synthesis by CROP and RAFT,
thermoresponsiveness and grafting onto iron oxide nanoparticles

Tobias Klein, Joshua Parkin, Patrick A. J. M. de Jongh, Lars Esser, Tara Sepehrizadeh, Gang
Zheng, Michael De Veer, Karen Alt, Christoph E. Hagemeyer, David M. Haddleton, Thomas
P. Davis, Mukundan Thelakkat and Kristian Kempe*

The synthesis and characterization of poly(2-oxazine) based brush polymers is reported.
Moreover, the polymers were shown to stabilise IONPs and be suitable contrast agents for
future MRI applications.


