519 research outputs found

    Coherent Control and Entanglement in the Attosecond Electron Recollision Dissociation of D2+

    Full text link
    We examine the attosecond electron recollision dissociation of D2+ recently demonstrated experimentally [H. Niikura et al., Nature (London) 421, 826 (2003)] from a coherent control perspective. In this process, a strong laser field incident on D2 ionizes an electron, accelerates the electron in the laser field to eV energies, and then drives the electron to recollide with the parent ion, causing D2+ dissociation. A number of results are demonstrated. First, a full dimensional Strong Field Approximation (SFA) model is constructed and shown to be in agreement with the original experiment. This is then used to rigorously demonstrate that the experiment is an example of coherent pump-dump control. Second, extensions to bichromatic coherent control are proposed by considering dissociative recollision of molecules prepared in a coherent superposition of vibrational states. Third, by comparing the results to similar scenarios involving field-free attosecond scattering of independently prepared D2+ and electron wave packets, recollision dissociation is shown to provide an example of wave-packet coherent control of reactive scattering. Fourth, this analysis makes clear that it is the temporal correlations between the continuum electron and D2+ wave packet, and not entanglement, that are crucial for the sub-femtosecond probing resolution demonstrated in the experiment. This result clarifies some misconceptions regarding the importance of entanglement in the recollision probing of D2+. Finally, signatures of entanglement between the recollision electron and the atomic fragments, detectable via coincidence measurements, are identified

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    Inhaled PGE1 in neonates with hypoxemic respiratory failure: two pilot feasibility randomized clinical trials.

    Get PDF
    BackgroundInhaled nitric oxide (INO), a selective pulmonary vasodilator, has revolutionized the treatment of neonatal hypoxemic respiratory failure (NHRF). However, there is lack of sustained improvement in 30 to 46% of infants. Aerosolized prostaglandins I2 (PGI2) and E1 (PGE1) have been reported to be effective selective pulmonary vasodilators. The objective of this study was to evaluate the feasibility of a randomized controlled trial (RCT) of inhaled PGE1 (IPGE1) in NHRF.MethodsTwo pilot multicenter phase II RCTs are included in this report. In the first pilot, late preterm and term neonates with NHRF, who had an oxygenation index (OI) of ≥15 and <25 on two arterial blood gases and had not previously received INO, were randomly assigned to receive two doses of IPGE1 (300 and 150 ng/kg/min) or placebo. The primary outcome was the enrollment of 50 infants in six to nine months at 10 sites. The first pilot was halted after four months for failure to enroll a single infant. The most common cause for non-enrollment was prior initiation of INO. In a re-designed second pilot, co-administration of IPGE1 and INO was permitted. Infants with suboptimal response to INO received either aerosolized saline or IPGE1 at a low (150 ng/kg/min) or high dose (300 ng/kg/min) for a maximum duration of 72 hours. The primary outcome was the recruitment of an adequate number of patients (n = 50) in a nine-month-period, with fewer than 20% protocol violations.ResultsNo infants were enrolled in the first pilot. Seven patients were enrolled in the second pilot; three in the control, two in the low-dose IPGE1, and two in the high-dose IPGE1 groups. The study was halted for recruitment futility after approximately six months as enrollment targets were not met. No serious adverse events, one minor protocol deviation and one pharmacy protocol violation were reported.ConclusionsThese two pilot RCTs failed to recruit adequate eligible newborns with NHRF. Complex management RCTs of novel therapies for persistent pulmonary hypertension of the newborn (PPHN) may require novel study designs and a longer period of time from study approval to commencement of enrollment.Trial registrationCLINICALTRIALS.GOV: Pilot one: NCT number: 00598429 registered on 10 January 2008. Last updated: 3 February 2011. Pilot two: NCT number: 01467076 17 October 2011. Last updated: 13 February 2013

    Institutional Export Barriers on Exporters from Emerging Markets: Evidence from China

    Get PDF
    The emerging markets have become the increasingly important trading nations in the global economy. Given its significance to practitioners and policymakers, export barriers has been the popular topic in the international business studies. However, research about export barriers caused by the local institutions are under developed, though institutional voids and institutional inefficiency are reported as the major determinants for business development in emerging markets. This paper aims to fill in this gap by exploring the institutional export barriers in emerging markets. Based on existing studies on export barriers and institutional perspective, a conceptual framework is initially developed by separating formal and informal institutional export barriers. Then three specific institutional export barriers are identified, including government policy, weak legal system and informal and personal networks. In the meanwhile, this paper sheds light on how the institutional export barriers are developed and obstruct exporting in emerging markets

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    The importance of secondary halos for strong lensing in massive galaxy clusters across redshift

    Get PDF
    Cosmological cluster-scale strong gravitational lensing probes the mass distribution of the dense cores of massive dark matter halos and the structures along the line of sight from background sources to the observer. It is frequently assumed that the primary lens mass dominates the lensing, with the contribution of secondary masses along the line of sight being neglected. Secondary mass structures may, however, affect both the detectability of strong lensing in a given survey and modify the properties of the lensing that is detected. This paper focuses on the former: we utilize a large cosmological N-body simulation and a multiple lens plane (and many source plane) ray-tracing technique to quantify the influence of line of sight structures on the detectability of cluster-scale strong lensing in a cluster sample with a mass limit that encompasses current cluster catalogs from the South Pole Telescope. We extract both primary and secondary halos from the "Outer Rim" simulation and consider two strong lensing realizations-one with only the primary halos included, and the other with the full mass light cone for each primary halo, including all secondary halos down to a mass limit more than an order of magnitude smaller than the smallest primary halos considered. In both cases, we use the same source information extracted from the Hubble Ultra Deep Field, and create realistic lensed images consistent with moderately deep ground-based imaging; the statistics of the observed strong lensing are extracted from these simulated images. The results demonstrate that down to the mass limit considered the total number of lenses is boosted by ∼ 13 − 21% when considering the complete multi-halo light-cone; the enhancement is insensitive to different length-to-width cuts applied to the lensed arcs. The increment in strong lens counts peaks at lens redshifts of z ∼ 0.6 with no significant effect at z < 0.3. The strongest trends are observed relative to the primary halo mass, with no significant effect in the most massive quintile of the halo sample, but increasingly boosting the observed lens counts toward small primary halo masses, with an enhancement greater than 50% in the least massive quintile of the halo masses considered

    A multifunctional serine protease primes the malaria parasite for red blood cell invasion

    Get PDF
    The malaria parasite Plasmodium falciparum replicates within an intraerythrocytic parasitophorous vacuole (PV). Rupture of the host cell allows release (egress) of daughter merozoites, which invade fresh erythrocytes. We previously showed that a subtilisin-like protease called PfSUB1 regulates egress by being discharged into the PV in the final stages of merozoite development to proteolytically modify the SERA family of papain-like proteins. Here, we report that PfSUB1 has a further role in ‘priming' the merozoite prior to invasion. The major protein complex on the merozoite surface comprises three proteins called merozoite surface protein 1 (MSP1), MSP6 and MSP7. We show that just before egress, all undergo proteolytic maturation by PfSUB1. Inhibition of PfSUB1 activity results in the accumulation of unprocessed MSPs on the merozoite surface, and erythrocyte invasion is significantly reduced. We propose that PfSUB1 is a multifunctional processing protease with an essential role in both egress of the malaria merozoite and remodelling of its surface in preparation for erythrocyte invasion

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios
    corecore