79 research outputs found

    Angiogenic Factor Expression in Hepatic Cirrhosis

    Get PDF
    The pathogenesis of fibrosis in hepatic cirrhosis remains obscure. This study examines the eventual role of angiogenic factors in the fibrotic process. A series of 55 cirrhotic livers was studied for the proliferation state of fibroblasts, and the expression of vascular endothelial growth factor (VEGF), thymidine phosphorylase (TP) and the basic and acidic fibroblast growth factor (bFGF, aFGF) in both fibroblasts and hepatic cells. The angiogenic and/or fibrogenic factors VEGF, TP, bFGF, and aFGF were clearly expressed in regenerative hepatocytes, but not in fibroblasts of diffuse hepatic fibrosis. The immunohistochemical findings suggest that angiogenic factors and factors promoting oxidative stress (i.e., TP) produced by hepatocytes may contribute to the development of fibrous bands in hepatic cirrhosis

    Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Get PDF
    AbstractPyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP) to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs). Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5). In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect). Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time

    Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis

    Get PDF
    The pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA) remains obscure, although angiogenesis appears to play an important role. We recently confirmed an overexpression of two angiogenic factors, namely vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF), by the lining and stromal cells of the synovium in both conditions. Because hypoxia inducible factor (HIF)-1α and HIF-2α are essential in regulating transcription of the VEGF gene, active participation of HIF-α molecules in the pathogenesis of these arthritides is anticipated. We investigated the immunohistochemical expression of HIF-1α and HIF-2α in the synovium of 22 patients with RA, 34 patients with OA and 22 'normal' nonarthritic individuals, in relation to VEGF, VEGF/KDR (kinase insert domain protein receptor) vascular activation, PD-ECGF and bcl-2. A significant cytoplasmic and nuclear overexpression of HIF-1α and HIF-2α was noted in the synovial lining and stromal cells of both diseases relative to normal. Overexpression of HIF-αs was related to high microvessel density, high PD-ECGF expression and high VEGF/KDR receptor activation, suggesting HIF-α-dependent synovial angiogenesis in OA. By contrast, the activation of the angiogenic VEGF/KDR pathway was persistently increased in RA, as indeed was microvessel density and the expression of PD-ECGF, irrespective of the extent of HIF-α expression, indicating a cytokine-dependent angiogenesis. In all cases, the VEGF/KDR vascular activation was significantly lower in OA than in RA, suggesting a relative failure of the HIF-α pathway to effectively produce a viable vasculature for OA, which is consistent with the degenerative nature of the disease. The activation of the HIF-α pathway occurs in both RA and OA, although for unrelated reasons

    EVALUATION OF THE ALAMARBLUE ASSAY FOR ADHERENT CELL IRRADIATION EXPERIMENTS

    Get PDF
    The AlamarBlue assay is based on fluorometric detection of metabolic mitochondrial activity of cells. In this study, we determined the methodology for application of the assay to radiation response experiments in 96-well plates. AlamarBlue was added and its reduction measured 7 hours later. Selection of the initial number of plated cells was important so that the number of proliferating cells remains lower than the critical number that produced full AlamarBlue reduction (plateau phase) at the time points of measurements. Culture medium was replaced twice a week to avoid suppression of viability due to nutrient competition and metabolic waste accumulation. There was no need to replace culture medium before adding AlamarBlue. Cell proliferation continued after irradiation and the suppression effect on cell viability was most evident on day 8. At this time point, by comparing measurements from irradiated vs. non-irradiated cells, for various dose levels, a viability dose response curve was plotted. Immediately after the 8th day (nadir), cells started to re-grow at a rate inversely related to the radiation dose. By comparing measurements at the time point of nadir vs. a convenient subsequent time point, re-growth dose response abilities were plotted, simulating clonogenic assays

    Aldehyde Dehydrogenase 1B1 Is Associated with Altered Cell Morphology, Proliferation, Migration and Chemosensitivity in Human Colorectal Adenocarcinoma Cells

    Get PDF
    Aldehyde dehydrogenases (ALDHs) are NAD(P) -dependent enzymes that catalyze the oxidation of endogenous and exogenous aldehydes to their corresponding carboxylic acids. ALDHs participate in a variety of cellular mechanisms, such as metabolism, cell proliferation and apoptosis, as well as differentiation and stemness. Over the last few years, ALDHs have emerged as cancer stem cell markers in a wide spectrum of solid tumors and hematological malignancies. In this study, the pathophysiological role of ALDH1B1 in human colorectal adenocarcinoma was investigated. Human colon cancer HT29 cells were stably transfected either with human green fluorescent protein (GFP)-tagged ALDH1B1 or with an empty lentiviral expression vector. The overexpression of ALDH1B1 was correlated with altered cell morphology, decreased proliferation rate and reduced clonogenic efficiency. Additionally, ALDH1B1 triggered a G2/M arrest at 24 h post-cell synchronization, probably through p53 and p21 upregulation. Furthermore, ALDH1B1-overexpressing HT29 cells exhibited enhanced resistance against doxorubicin, fluorouracil (5-FU) and etoposide. Finally, ALDH1B1 induced increased migratory potential and displayed epithelial-mesenchymal transition (EMT) through the upregulation of and and the consequent downregulation of Taken together, ALDH1B1 confers alterations in the cell morphology, cell cycle progression and gene expression, accompanied by significant changes in the chemosensitivity and migratory potential of HT29 cells, underlying its potential significance in cancer progression

    Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy

    Get PDF
    Nanoparticle (NP) chemotherapeutics hold great potential as radiosensitizers. Their unique properties, such as preferential accumulation in tumors and their ability to target tumors through molecular targeting ligands, are ideally suited for radiosensitization. We aimed to develop a molecularly targeted nanoparticle formulation of docetaxel (Dtxl) and evaluate its property as a radiosensitizer. Using a biodegradable and biocompatible lipid-polymer NP platform and folate as a molecular targeting ligand, we engineered a folate-targeted nanoparticle (FT-NP) formulation of Dtxl. These NPs have sizes of 72±4 nm and surface charges of −42±8 mV. Using folate receptor over-expressing KB cells and folate receptor low HTB-43 cells, we showed folate-mediated intracellular uptake of NPs. In vitro radiosensitization studies initially showed FT-NP is less effective than Dtxl as a radiosensitizer. However, the radiosensitization efficacy is dependent on the timing of radiotherapy. In vitro radiosensitization conducted with irradiation given at the optimal time (24 hours) showed FT-NP Dtxl is as effective as Dtxl. When FT-NP Dtxl is compared to Dtxl and non-targeted nanoparticle (NT-NP) Dtxl in vivo, FT-NP was found to be significantly more effective than Dtxl or NT-NP Dtxl as a radiosensitizer. We also confirmed that radiosensitization is dependent on timing of irradiation in vivo. In summary, FT-NP Dtxl is an effective radiosensitizer in folate-receptor over-expressing tumor cells. Time of irradiation is critical in achieving maximal efficacy with this nanoparticle platform. To the best of our knowledge, our report is the first to demonstrate the potential of molecularly targeted NPs as a promising new class of radiosensitizers
    • 

    corecore