237 research outputs found

    Controlled human malaria infection: applications, advances, and challenges

    Get PDF
    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration

    Network information and connected correlations

    Full text link
    Entropy and information provide natural measures of correlation among elements in a network. We construct here the information theoretic analog of connected correlation functions: irreducible NN--point correlation is measured by a decrease in entropy for the joint distribution of NN variables relative to the maximum entropy allowed by all the observed N−1N-1 variable distributions. We calculate the ``connected information'' terms for several examples, and show that it also enables the decomposition of the information that is carried by a population of elements about an outside source.Comment: 4 pages, 3 figure

    Chemically attenuated blood-stage Plasmodium yoelii parasites induce long-lived and strain-transcending protection

    Get PDF
    The development of a vaccine is essential for the elimination of malaria. However, despite many years of effort, a successful vaccinehas not been achieved. Most subunit vaccine candidates tested in clinical trials have provided limited efficacy, and thus attenuatedwhole-parasite vaccines are now receiving close scrutiny. Here, we test chemically attenuated Plasmodium yoelii 17Xand demonstrate significant protection following homologous and heterologous blood-stage challenge. Protection againstblood-stage infection persisted for at least 9 months. Activation of both CD4+ and CD8+ T cells was shown after vaccination;however, in vivo studies demonstrated a pivotal role for both CD4+ T cells and B cells since the absence of either cell type led toloss of vaccine-induced protection. In spite of significant activation of circulating CD8+ T cells, liver-stage immunity was notevident. Neither did vaccine-induced CD8+ T cells contribute to blood-stage protection; rather, these cells contributed to pathogenesis,since all vaccinated mice depleted of both CD4+ and CD8+ T cells survived a challenge infection. This study providescritical insight into whole-parasite vaccine-induced immunity and strong support for testing whole-parasite vaccines in humans

    Chemically attenuated blood-stage Plasmodium yoelii parasites induce long-lived and strain-transcending protection

    Get PDF
    The development of a vaccine is essential for the elimination of malaria. However, despite many years of effort, a successful vaccine has not been achieved. Most subunit vaccine candidates tested in clinical trials have provided limited efficacy, and thus attenuated whole-parasite vaccines are now receiving close scrutiny. Here, we test chemically attenuated Plasmodium yoelii 17X and demonstrate significant protection following homologous and heterologous blood-stage challenge. Protection against blood-stage infection persisted for at least 9 months. Activation of both CD4+ and CD8+ T cells was shown after vaccination; however, in vivo studies demonstrated a pivotal role for both CD4+ T cells and B cells since the absence of either cell type led to loss of vaccine-induced protection. In spite of significant activation of circulating CD8+ T cells, liver-stage immunity was not evident. Neither did vaccine-induced CD8+ T cells contribute to blood-stage protection; rather, these cells contributed to pathogenesis, since all vaccinated mice depleted of both CD4+ and CD8+ T cells survived a challenge infection. This study provides critical insight into whole-parasite vaccine-induced immunity and strong support for testing whole-parasite vaccines in humans

    Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria

    Get PDF
    The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune responses. Since immunity is initiated by dendritic cells (DCs), we compared their phenotype and function following infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes

    Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)

    Get PDF
    Using the vehicle of resolving an apparent paradox, a discussion of quantum interference is presented. The understanding of a number of different physical phenomena can be unified, in this context. These range from the neutral kaon system to massive neutrinos, not to mention quantum beats, Rydberg wave packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure

    Cross-species Malaria Immunity Induced By Chemically Attenuated Parasites

    Get PDF
    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with secocyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4(+) T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species

    A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being

    Get PDF
    In an exploratory, block-randomised, parallel, double-blind, single-centre, placebo-controlled superiority study (ISRCTN12562026, funded by Cultech Ltd), 220 Bulgarian participants (30 to 65 years old) with BMI 25–34.9 kg/m2 received Lab4P probiotic (50 billion/day) or a matched placebo for 6 months. Participants maintained their normal diet and lifestyle. Primary outcomes were changes in body weight, BMI, waist circumference (WC), waist-to-height ratio (WtHR), blood pressure and plasma lipids. Secondary outcomes were changes in plasma C-reactive protein (CRP), the diversity of the faecal microbiota, quality of life (QoL) assessments and the incidence of upper respiratory tract infection (URTI). Significant between group decreases in body weight (1.3 kg, p < 0.0001), BMI (0.045 kg/m2, p < 0.0001), WC (0.94 cm, p < 0.0001) and WtHR (0.006, p < 0.0001) were in favour of the probiotic. Stratification identified greater body weight reductions in overweight subjects (1.88%, p < 0.0001) and in females (1.62%, p = 0.0005). Greatest weight losses were among probiotic hypercholesterolaemic participants (−2.5%, p < 0.0001) alongside a significant between group reduction in small dense LDL-cholesterol (0.2 mmol/L, p = 0.0241). Improvements in QoL and the incidence rate ratio of URTI (0.60, p < 0.0001) were recorded for the probiotic group. No adverse events were recorded. Six months supplementation with Lab4P probiotic resulted in significant weight reduction and improved small dense low-density lipoprotein-cholesterol (sdLDL-C) profiles, QoL and URTI incidence outcomes in overweight/obese individuals

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games
    • 

    corecore