77 research outputs found

    Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression.

    Get PDF
    Purpose:To apply computational techniques to wide-angle swept-source optical coherence tomography (SS-OCT) images to identify novel, glaucoma-related structural features and improve detection of glaucoma and prediction of future glaucomatous progression. Methods:Wide-angle SS-OCT, OCT circumpapillary retinal nerve fiber layer (cpRNFL) circle scans spectral-domain (SD)-OCT, standard automated perimetry (SAP), and frequency doubling technology (FDT) visual field tests were completed every 3 months for 2 years from a cohort of 28 healthy participants (56 eyes) and 93 glaucoma participants (179 eyes). RNFL thickness maps were extracted from segmented SS-OCT images and an unsupervised machine learning approach based on principal component analysis (PCA) was used to identify novel structural features. Area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy of RNFL PCA for detecting glaucoma and progression compared to SAP, FDT, and cpRNFL measures. Results:The RNFL PCA features were significantly associated with mean deviation (MD) in both SAP (R2 = 0.49, P < 0.0001) and FDT visual field testing (R2 = 0.48, P < 0.0001), and with mean circumpapillary RNFL thickness (cpRNFLt) from SD-OCT (R2 = 0.58, P < 0.0001). The identified features outperformed each of these measures in detecting glaucoma with an AUC of 0.95 for RNFL PCA compared to an 0.90 for mean cpRNFLt (P = 0.09), 0.86 for SAP MD (P = 0.034), and 0.83 for FDT MD (P = 0.021). Accuracy in predicting progression was also significantly higher for RNFL PCA compared to SAP MD, FDT MD, and mean cpRNFLt (P = 0.046, P = 0.007, and P = 0.044, respectively). Conclusions:A computational approach can identify structural features that improve glaucoma detection and progression prediction

    Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers

    Get PDF
    Purpose: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. Methods: FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. Results: FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G(1) and G(2) combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G(1) and G(2) the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. Conclusions: VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.open0

    Vessel Delineation in Retinal Images using Leung-Malik filters and Two Levels Hierarchical Learning.

    No full text
    Blood vessel segmentation is important for the analysis of ocular fundus images for diseases affecting vessel caliber, occlusion, leakage, inflammation, and proliferation. We introduce a novel supervised method to evaluate performance of Leung-Malik filters in delineating vessels. First, feature vectors are extracted for every pixel with respect to the response of Leung-Malik filters on green channel retinal images in different orientations and scales. A two level hierarchical learning framework is proposed to segment vessels in retinal images with confounding disease abnormalities. In the first level, three expert classifiers are trained to delineate 1) vessels, 2) background, and 3) retinal pathologies including abnormal pathologies such as lesions and anatomical structures such as optic disc. In the second level, a new classifier is trained to detect vessels and non-vessel pixels based on results of the expert classifiers. Qualitative evaluation shows the effectiveness of the proposed expert classifiers in modeling retinal pathologies. Quantitative results on two standard datasets STARE (AUC = 0.971, Acc=0.927) and DRIVE (AUC = 0.955, Acc =0.903) are comparable with other state-of-the-art vessel segmentation methods
    • …
    corecore