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ABSTRACT

This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refine-
ment to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The
code is Cartesian, can be run in 1, 2, and 3 dimensions, and supports a wide variety of physics in-
cluding hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more
broadly, self-gravity of fluids and particles), primordial gas chemistry, optically-thin radiative cooling
of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation
transport, cosmological expansion, and models for star formation and feedback in a cosmological con-
text. In addition to explaining the algorithms implemented, we present solutions for a wide range of
test problems, demonstrate the code’s parallel performance, and discuss the Enzo collaboration’s code
development methodology.
Keywords: methods: numerical — hydrodynamics

1. INTRODUCTION

Due to the high spatial and temporal dynamical ranges involved, astrophysical and cosmological phenomena present
a taxing challenge for simulators. To tackle such situations, a number of numerical techniques have been developed that
can be broadly split into gridless, Lagrangian methods and grid-based, Eulerian schemes. The most commonly used
is an example of the first type known as Smoothed Particle Hydrodynamics (SPH; Lucy 1977; Gingold & Monaghan
1977). It has achieved much success, particularly in regimes dominated by gravity. However, its development to
include an increasing number of sought-after physical processes is still at a relatively early stage when compared
with the effort put into the latter type of Eulerian grid-based hydrodynamic schemes (e.g., Laney 1998; Toro 1997;
Woodward & Colella 1984b).
Despite this invested expertise, the Eulerian solvers in their original form have a serious drawback: they do not

provide an easy method of adaptively increasing the spatial and temporal resolution in small volumes of the simulation.
Such flexibility is essential for following physical processes such as gravitational instability. A solution to this problem
was first proposed by Berger & Colella (1989) in the Computational Fluid Dynamics (CFD) community, and became
known as Structured Adaptive Mesh Refinement (SAMR). The principle is to adaptively add and modify additional,
finer meshes (“grids”) over regions that require higher resolution. In addition, it is possible to add other, more
advanced physics including – for the AMR implementation in the astrophysics code presented in this paper – comoving
coordinates, self-gravity, radiative cooling, chemistry, heat conduction, collisionless fluids, magnetohydrodynamics,
radiation transport, star formation and a range of other physical effects.

1 Columbia University, Department of Astronomy, New York, NY, 10025, USA
2 CASS, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0424, USA
3 SDSC, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0505, USA
4 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
5 Lyman Briggs College and Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI 48824, USA
6 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025, USA
7 Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA, USA
8 Department of Mathematics, Southern Methodist University, Box 750156, Dallas, TX 75205-0156, USA
9 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544
10 Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder,

CO 80309, USA
11 DOE Computational Science Graduate Fellow
12 NICS, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
13 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
14 Theoretical Astrophysics Center, University of California Berkeley, Hearst Field Annex, Berkeley, CA 94720, USA
15 Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
16 Department of Astronomy/Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ, 85721, USA
17 Physics Department, Faculty of Science, Hokkaido University, Kita-10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
18 ETH Zurich Institute for Astronomy. CH-8093 Zurich. Switzerland
19 Department of Astrophysics, American Museum of Natural History, Central Park West at 81st St, New York, NY 10024
20 Department of Physics, Stanford University, Stanford, CA 94305, USA
21 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

Work supported in part by US Department of Energy under contract DE-AC02-76SF00515.

Published in arXiv:1307.2265.

SLAC-PUB-15890



2

There have been a number of numerical methods described in the astronomical literature that contain elements of
SAMR or have a similar aim. For example, the N-body solver developed by Villumsen (1989) used non-adaptive mesh-
ing to increase the resolution in pre-selected regions. This static approach was later used extensively when applied to
hydrodynamics (e.g., Ruffert 1994; Anninos et al. 1994). Adding adaptivity is a more recent enhancement, and there are
now a number of codes that possess this feature, both with and without hydrodynamics (Couchman 1991; Jessop et al.
1994; Suisalu & Saar 1995; Splinter 1996; Gelato et al. 1997; Kravtsov et al. 1997; Truelove et al. 1998; Fryxell et al.
2000; Knebe et al. 2001; Yahagi & Yoshii 2001; Teyssier 2002; Quilis 2004; Ziegler 2005; Zhang & MacFadyen 2006;
Cunningham et al. 2009; Mignone et al. 2012; Schive et al. 2010; Almgren et al. 2013). Of these, perhaps the most
comparable and widely used are FLASH (Fryxell et al. 2000), which uses grid blocks of fixed size, and RAMSES
(Teyssier 2002) and ART (Kravtsov et al. 1997), both of which refine individual cells. It is also possible to deform the
grid to obtain high resolution (e.g., Gnedin 1995a; Xu 1997; Pen 1998), and more recently a few codes have adopted
an unstructured approach based on a moving Voronoi mesh (Springel 2010; Duffell & MacFadyen 2011).
In this paper, we present Enzo 2.3, a structured adaptive mesh refinement (SAMR) code. Originally developed for

cosmological hydrodynamics, Enzo has since been used on a wide variety of problems. It has grown to become a
general tool for astrophysical fluid dynamics and is intended to be efficient, accurate and easily extended to include
new capabilities. Although many of the components of the Enzo code have been described in previous publications
(Bryan et al. 1995; Bryan 1996; Bryan & Norman 1997b,a; Norman & Bryan 1999; Bryan 1999; Bryan et al. 2001;
O’Shea et al. 2004; Norman et al. 2007; Wang et al. 2008; Reynolds et al. 2009; Collins et al. 2010; Wise & Abel 2011),
there has previously been no systematic and complete description of the code. In this paper we provide that description,
filling in many previous omissions and showing the code’s performance for a wide variety of test problems.
The Enzo code has been extensively used over the last two decades in a wide variety of problems, resulting in the

publication of more than 100 peer-reviewed papers. The variety of astrophysical systems that Enzo has been used for in-
clude galaxies (Tassis et al. 2003; Lackner et al. 2012; Simpson et al. 2013), galaxy clusters (Loken et al. 2002; Xu et al.
2011; Skillman et al. 2012), the interstellar medium (Slyz et al. 2005), the intergalactic medium (Fang & Bryan 2001;
Smith et al. 2011), the circumgalactic medium (Hummels et al. 2013), cooling flows (Li & Bryan 2012; Skory et al.
2013), turbulence (Kritsuk & Norman 2004; Kritsuk et al. 2007, 2009a; Collins et al. 2011), the formation of the first
stars (Abel et al. 2002; O’Shea & Norman 2007; Turk et al. 2009; Xu et al. 2008), and the formation of stars in our
own Galaxy (Collins et al. 2011; Kritsuk et al. 2011b; Collins et al. 2012).
Numerical simulations of astronomical phenomena now play a key role, along with observations and analytic theory,

in pushing forward our understanding of the cosmos (e.g., Astronomy and Astrophysics Survey Committee 2001, 2010).
But along with this role comes responsibility. We believe that those developing simulation tools must fulfill two key
obligations: the first is to make those tools available to the community as a whole, much in the way that astronomical
data are now regularly made publicly available. The second is to document, test and refine those methods so that they
can be critically evaluated and expanded upon by others. Our public release of the Enzo code (which can be found at
http://enzo-project.org) represents our attempt to meet the first of these obligations; this paper represents our
attempt to meet the second.
The structure of this paper is as follows. In Section 2, we first provide a top-level overview of the code method

and structure. This is designed to give a broad-brush picture of the equations solved by Enzo and the methods used
to solve them. Next, in Sections 3 through 10, we describe the methods we use in detail, reserving some of the
longer descriptions of particular components for the appendix in order to not interrupt the flow of the paper. The
Enzo testing framework and code tests are described in Section 11. The parallelism strategy and scaling results are
described in Section 12. Finally, we discuss the code’s development methodology (which is, as far as we know, unique
in the astrophysics community) in Section 13.

2. PHYSICAL EQUATIONS AND OVERVIEW OF NUMERICAL METHODOLOGY

We begin this section by first writing down the complete set of physical equations that can be solved by Enzo, and
then briefly describe the numerical algorithms that we use to solve these equations. This section is intended to be
an overview of Enzo’s capabilities: thus, we gather all of the equations solved into a single place and provide a brief
and high-level introduction to the numerics of the code. Detailed descriptions of the individual components are then
provided in Sections 3-10. In Table 1 we provide a convenient summary of all variables and physical constants used
throughout this manuscript.

Table 1
Summary of symbols used in this manuscript

Symbol Description

Fluid Quantities

E comoving total fluid energy density
e comoving thermal energy density
T baryon temperature
S fluid entropy
ρ comoving baryonic density
ρX comoving mass density of component X (gas, dark matter, stars, metals, total, etc.)
t time

http://enzo-project.org
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Table 1 — Continued

Symbol Description

v peculiar velocity
B comoving magnetic field strength
p comoving thermal pressure
p∗ comoving total (thermal + magnetic) isotropic pressure
γ ideal gas ratio of specific heats
φ gravitational potential
Λ radiative/chemical cooling rate
Γ radiative heating rate
Q artificial viscosity (only for ZEUS hydro)

Code Quantities

∆xl cell size on level l
∆tl timestep on level l
d dimensionality (rank) of the simulation
q conserved quantity
F flux of quantity q
r refinement factor
ǫl refinement criterion parameter
J number of cells per Jeans length (for Jeans length based refinement)

Cosmology

a cosmological expansion factor
Λc cosmological constant
ρ0 mean comoving mass density (including both baryonic and dark matter) of the universe
p0 comoving background pressure

Chemistry

ni comoving number density of species i
kij two-body reaction rate coefficient

Ray-tracing Radiation Transfer

Γph
j photo-ionization/-dissociation destruction/creation rates
Iν specific radiation intensity (energy per time per solid angle per unit area per frequency)
κν radiation absorption coefficient
jν radiation emission coefficient
P photon number flux along ray

σabs absorption cross section
nabs number density of absorbing medium
dtP radiative transfer timestep
kph photo-ionization rate of a single ray
Γph photo-heating rate of a single ray

Flux Limited Diffusion Radiation Transfer

Er grey radiation energy density
ec internal energy correction due to photo-heating and chemical cooling
D Larsen square-root flux-limiter
κ total opacity
η field of radiation sources

Heat Conduction

Fcond thermal conduction heat flux
κcond thermal conduction coefficient
κsp Spitzer conductivity
fsp fraction of Spitzer conductivity

Star Formation And Feedback

tcool cooling time
tdyn local dynamical time
tform star particle formation time
mb baryonic mass of cell
mJ Jeans mass of cell
m∗ star particle mass

m∗min minimum star particle mass
f∗eff star formation efficiency parameter
fZb metallicity fraction of baryon gas in cell
fm∗ fraction of star particle’s mass returned to cell
fZ∗ fraction of star particle’s metal mass returned to cell
fSN fraction of stellar rest mass energy deposited as feedback
∆msf mass of stars formed in current timestep
Eadd feedback energy added to cell

Tdyn,min user-defined minimum dynamical time
η overdensity threshold for star formation

ρSF constant proper density threshold for star formation
τ∗ characteristic star formation timescale (for Schmidt-Law method)

Natural Constants and Values
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Table 1 — Continued

Symbol Description

G gravitational constant
H Hubble constant
kB Boltzmann constant
M⊙ mass of Sun
mH mass of hydrogen atom
me mass of electron
c speed of light
cs sound speed
z redshift

2.1. Physical Equations

The Eulerian equations of ideal magnetohydrodynamics (MHD) including gravity, in a coordinate systems comoving
with the cosmological expansion, are given by

∂ρ

∂t
+

1

a
∇ · (ρv)=0, (1)

∂ρv

∂t
+

1

a
∇ ·

(

ρvv + Ip∗ − BB

a

)

=− ȧ
a
ρv − 1

a
ρ∇φ, (2)

∂E

∂t
+

1

a
∇ ·

[

(E + p∗)v − 1

a
B(B · v)

]

=− ȧ
a

(

2E − B2

2a

)

− ρ

a
v ·∇φ− Λ + Γ +

1

a2
∇ ·Fcond, (3)

∂B

∂t
− 1

a
∇× (v ×B)=0 (4)

In these equations, E, ρ, v, and B are the comoving total fluid energy density, comoving gas density, peculiar velocity,
and comoving magnetic field strength, respectively. The matrix I is the identity matrix, and a is the cosmological
expansion parameter (discussed in more detail below). The first equation represents conservation of mass, the second
conservation of momentum, and the third conservation of total (kinetic plus thermal plus magnetic) fluid energy. They
are respectively, the first, second, and third moments of the Boltzmann equation. The fourth equation is the magnetic
induction equation. Terms representing radiative cooling (Λ) and heating (Γ) enter on the right-hand side of the
energy equation (3), as does the flux due to thermal heat conduction (Fcond).
The comoving total fluid energy density E is given by

E = e+
ρv2

2
+
B2

2a
, (5)

where e is the comoving thermal energy density. The total comoving isotropic pressure p∗ is given by

p∗ = p+
B2

2a
, (6)

and the quantity p is the thermal pressure. We use units such that the magnetic permeability is unity (µ0 = 1). The
equations are closed by an equation of state and Poisson’s equation for the gravitational potential φ:

e=
p

(γ − 1)
, (7)

∇2φ=
4πG

a
(ρtotal − ρ0) (8)

The equation of state is shown here for an ideal gas with a ratio of specific heats γ. The gravitational potential φ is
sourced by the total mass density contrast, where ρtotal = ρgas + ρdm+ ρstars and ρ0 is the mean density. Although we
write the equations including both magnetic field terms and comoving coordinates, the code is frequently used both in
the purely hydrodynamic limit (B = 0, referred to as HD below) and without cosmological expansion (a = 1, ȧ = 0).
For completeness, we note here that we have defined several key quantities in the comoving frame to make the

previous equations more readable. Specifically, we define:

x=x′/a, (9)

v=a ẋ = v′ − ȧx, (10)

ρ=a3ρ′, (11)

p=a3p′, (12)
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E=a3
(

E′ − ȧx · v′ − 1

2
ȧ2x2

)

, (13)

φ=φ′ +
1

2
aäx2, (14)

B=a2B′, (15)

where primes indicate quantities in proper coordinates (fixed frame). We note that the definition of comoving B used
here is such that a uniform field is constant in a homogeneous expanding universe and is also the quantity used in the
MHD-CT solver described below; however, it is not universal, and is slightly different from that used both in Li et al.
(2008) and in the MHD-Dedner solver (see section 4.2 for more details). The expansion parameter a ≡ 1/(1 + z)
follows the expansion of a smooth, homogeneous background, where z, the redshift, is a function only of t. All spatial
derivatives are determined with respect to the comoving position x, which removes the universal expansion from the
coordinate system. The evolution of a(t) is governed by the second Friedmann equation for the expansion of a spatially
homogeneous and isotropic universe

ä

a
=−4πG

3a3
(ρ0 + 3p0/c

2) + Λcc
2/3. (16)

Here ρ0 is the mean comoving mass density (including both baryonic and dark matter), p0 is the comoving background
pressure contribution, and Λc is the cosmological constant. This system of equations is limited to the non-relativistic
regime and assumes that curvature effects are not important — both assumptions are reasonable as long as the size
of the simulated region is small compared to the radius of curvature and the Hubble length c/H , where c is the speed
of light and H = ȧ/a is the Hubble constant.
The comoving evolution equations are equivalent to the fixed coordinate version in the non-cosmological limit

(a = 1, ȧ = 0). We include the cosmological terms with the understanding that Enzo is not restricted to cosmological
applications – while historically the code was written with cosmological situations in mind (e.g., galaxy clusters), in
more recent years it has been used to simulate a much broader range of astrophysical environments.
Any collisionless components (such as dark matter and stars) are modeled by N-body particles, whose dynamics are

governed by Newton’s equations in comoving coordinates:

dx

dt
=

1

a
v, (17)

dv

dt
=− ȧ

a
v − 1

a
∇φ, (18)

The particles contribute to the gravitational potential through Poisson’s equation (Equation 8).
In addition, Enzo can solve the mass conservation equations for a set of chemical species and their reactions. For

any species i with comoving number density ni, these equations have the form:

∂ni

∂t
+

1

a
∇ · (niv) =

∑

j

kij(T )ninj +
∑

j

Γph
j nj (19)

where kij are the rate coefficients for the two-body reactions and are usually functions of only temperature (we will

specifically note the cases where we either include three-body reactions or have density-dependent rates). The Γph
j are

destruction/creation rates due to photoionizations and/or photodissociations. Currently the species Enzo can follow
include H, H+, He, He+, He++, and e−, and through additional options also H−, H2, H

+
2 , and HD, D, and D+. Lastly,

Enzo can also track the advection of one or more comoving metal density fields, which can contribute to the radiative
cooling and star formation processes.
The code can include either a homogeneous radiation background or evolve an inhomogeneous radiation field either

by directly solving the radiative transfer equation along rays or by solving a set of moment equations derived from the
radiative transfer equation. In comoving coordinates (e.g., Gnedin & Ostriker 1997) the radiative transfer equation
reads

1

c

∂Iν
∂t

+
aem
a

n̂ ·∇Iν − H

c

(

ν
∂Iν
∂ν

− 3Iν

)

= −κνIν + jν . (20)

Here Iν ≡ I(ν,x,Ω, t) is specific intensity of the radiation, with dimensions of energy per time t per solid angle Ω per
unit area per frequency ν. The second term represents the propagation of radiation, where the factor aem/a accounts
for cosmic expansion since the time of emission. The third term describes both the cosmological redshift and dilution of
radiation. On the right hand side, the first term captures absorption (κν ≡ κν(x, ν, t)), and the second term emission
(jν ≡ jν(x, ν, t)) from any sources of radiation (whether point or diffuse).
As an alternative to the ray-casting strategy, Enzo can also solve the angle-averaged radiative transfer equation

through a flux-limited diffusion approximation, with couplings to both the gas energy and chemical number densities.
The equations solved are

∂Er

∂t
+

1

a
∇ · (Erv)=∇ · (D∇Er)−

ȧ

a
Er − cκEr + η, (21)
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∂ec
∂t

=−2ȧ

a
ec + Γ− Λ, (22)

where Er = Er(x, t) is a grey radiation energy density and ec is the internal energy correction due to photo-heating and

chemical cooling. Here, we define Er through first assuming a fixed frequency spectrum, i.e. Eν(ν,x, t) = Ẽr(x, t)χ(ν),
and then defining the integrated quantity

Er(x, t) ≡
∫ ∞

ν0

Eν(ν,x, t) dν = Ẽr(x, t)

∫ ∞

ν0

χ(ν) dν. (23)

The quantity D in Equation (21) is the Larsen square-root flux-limiter (see Morel 2000), κ is the total opacity, η is
the field of radiation sources, Γ is the radiation-induced photo-heating rate, and Λ is the chemical cooling rate.
Finally, Enzo implements the equations of isotropic heat conduction in a manner similar to that of Parrish & Stone

(2007), where the isotropic heat flux is given by

Fcond = −κcond∇T. (24)

Here κcond = fsp κsp is the heat conduction coefficient, given as a fraction fsp of the Spitzer conductivity κsp (Spitzer
1962), and T is the gas temperature (with fluids explicitly assumed to be single-temperature). Saturation of the heat
flux in high temperature, low density regimes (such as the intracluster medium in galaxy clusters) is taken into account.
Thermal conduction in a plasma can be strongly affected by the presence of magnetic field lines, which may strongly

suppress heat flow perpendicular to the magnetic field. To include this effect, it is possible to allow heat transport
only along (not across) magnetic field lines, as follows:

Fcond = −κcond b(b ·∇T ), (25)

where b is the unit vector denoting the direction of the magnetic field.

2.2. Overview of Numerical Methods

In this section we briefly describe the numerical methods that are used to solve the equations outlined in Section 2.1.
We proceed through the numerical methods in the same order as will be used in Sections 3 through 10 so that there is a
one-to-one correspondence between each of the following overviews and the complete description provided in the later
sections. The goal in this section is to introduce the reader to the basic principles of the methods without drowning
them in detail.

2.2.1. Structured Adaptive Mesh Refinement

The primary feature of the Enzo code is its Adaptive Mesh Refinement (AMR) capability, which allows it to reach
extremely large spatial and temporal dynamical ranges with limited computational resources, opening doors to appli-
cations otherwise closed by finite memory and computational time. Unlike moving mesh methods (Pen 1995; Gnedin
1995b) or methods that subdivide individual cells (Adjerid & Flaherty 1988), Berger & Collela’s AMR (also referred
to as structured AMR, or SAMR) utilizes an adaptive hierarchy of grid patches at varying levels of resolution. Each
rectangular grid patch (referred to as a “grid”) covers some region of space requiring higher resolution than its parent
grid, and can itself become the parent grid to an even more highly resolved child grid.
The grid hierarchy begins with the root grid, which covers the entire domain of interest with a coarse uniform

Cartesian grid. Then, as the solution evolves and interesting regions start to develop, finer grids are placed within
these coarse regions. We restrict the ratio between cell sizes of parent and child grids to be an integer, typically 2 or
4, and refer to a level as all grids with the same cell size. For simplicity, the edges of subgrids must coincide with the
cell edge of its immediate parent (coarser) grid. Additionally, the hierarchy can be initialized with one or more static
grids if a higher initial resolution is required.
Given the hierarchy at some time t, we advance the solution in the manner of a W-cycle in a multigrid solver. First,

we determine the maximum timestep allowed for the coarsest grid based on a variety of accuracy and stability criteria
and advance the grid by that time interval. We then move down to the next level and advance all the grids on that
level. If there are more levels, we repeat this procedure until the bottom level of the hierarchy has been reached. Once
there, we continue advancing the grids on the lowest level until they have “caught up” to the coarser parent grids.
This procedure repeats itself until all grids have been advanced by the desired time.
Since interesting regions on the grid may move, the hierarchy must adapt itself. This happens whenever a level

has caught up to its parent level, by entirely rebuilding the grids on that level and at finer resolutions. Rebuilding is
achieved by applying the grid refinement criteria to the grids on that level and flagging zones that require extra grids.
These criteria depend on the physical problem being simulated; see Section 3.6 for more details. Once a grid has a set
of flagged cells, we apply a machine-vision based algorithm (Berger & Rigoutsos 1992) to find edges and determine a
good placement of subgrids. Once these new subgrids have been identified, the solution from the next coarser grid is
interpolated in order to initialize the values on the new grids. Finally, any overlap between new subgrids and old ones
is identified, and the prior solution within the regions of overlap is copied to the new subgrids. This procedure is then
repeated on the new grids and in this way, the entire hierarchy (from the original level examined and continuing on to
all finer levels) is rebuilt.
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2.2.2. (Magneto)-hydrodynamic solver methods

Four different (magneto)-hydrodynamic methods are implemented in Enzo: (i) the hydrodynamic-only piecewise
parabolic method (PPM) developed by Colella & Woodward (1984) and extended to cosmology by Bryan et al. (1995);
(ii) the MUSCL-like Godunov scheme (van Leer 1977b) with or without magnetic fields and Dedner-based divergence
cleaning, described in more detail in Wang et al. (2008) and Wang & Abel (2009a); (iii) a constrained transport stag-
gered MHD scheme (Collins et al. 2010), and (iv) the second-order finite difference hydrodynamics method described
in ZEUS (Stone & Norman 1992a,b).

Godunov PPM method (HD only)— We begin with the direct-Eulerian PPM implementation. This is an explicit, higher-
order accurate version of Godunov’s method for ideal gas dynamics with the spatially third-order accurate piecewise
parabolic monotonic interpolation and a nonlinear Riemann solver for shock capturing. It advances the hydrodynamic
equations in the following steps: (i) Construct monotonic parabolic interpolation of cell average data, for each fluid
quantity; (ii) Compute interface states by averaging the parabola over the domain of dependence for each interface;
(iii) Use interface data to solve the Riemann problem; (iv) Difference the interface fluxes to update the cell average
quantities.
The PPM implementation does an excellent job of capturing strong shocks across a few cells. Multidimensional

schemes are built up by directional splitting and produce a method that is formally second-order accurate in space
and time and which explicitly conserves mass, linear momentum, and energy (Hawley et al. 1984; Norman & Winkler
1986). A variety of Riemann solvers have been implemented.
As described in Bryan et al. (1995), we modify the method for use in hypersonic flows when the thermal energy e

is extremely small compared to the total energy E. This situation presents a problem because in the total energy
method the thermal energy is computed by subtracting one large number from another (i.e. the kinetic energy from
the total energy), which tends to generate large numerical inaccuracies. We overcome this difficulty by additionally
solving a thermal energy equation and using e from this equation when we expect the error to be large.

Godunov MUSCL (HD) with Dedner divergence cleaning (MHD)— This solver was developed to attack problems in
magnetic field amplification during the formation of galaxies (Wang & Abel 2009b) and to understand the role of
proto-stellar jets for the theory of star formation (Wang et al. 2009). It combines the standard approach of Godunov
(Godunov 1959) for finite volume techniques with the method of lines as described by LeVeque (2002) and Toro (1997).
In addition, it implements the hyperbolic divergence cleaning algorithm of Dedner et al. (2002). It supports multiple
approximate Riemann solvers and non-ideal equations of states. Consequently, this suite of solvers can be used for
hydro and magneto-hydrodynamic simulations. This class of solvers, as well as a version of the PPM hydro solver, has
been ported to nVidia’s CUDA framework, allowing Enzo to take advantage of modern graphics hardware (Wang et al.
2010).

Godunov MHD with Constrained Transport (MHD)— This MHD method is second-order in time and space, and pre-
serves the divergence constraint, ∇ · B = 0, to machine precision through the Constrained Transport (CT) method
(Collins et al. 2010). CT, originally described by Evans & Hawley (1988), updates the magnetic field with the curl of
an electric field, suitably formulated to preserve ∇ · B. We employ the CT methods described by Balsara & Spicer
(1999) and Gardiner & Stone (2005) with the second-order hyperbolic solver of Li et al. (2008) and the divergence-free
AMR scheme of Balsara (2001).

Second-order finite difference method (HD only)— Lastly, we briefly describe the ZEUS method, a finite difference al-
gorithm originally used in the ZEUS code (Stone & Norman 1992a). Note that Enzo is entirely independent of the
ZEUS code, and only the hydrodynamical algorithm of ZEUS has been implemented in Enzo; the MHD and radiation-
hydrodynamics schemes have not. The ZEUS method uses a staggered mesh such that velocities are face-centered,
while density and internal energy are cell-centered. It splits the solution up into two steps. The first is the so-called
source step, in which the momentum and energy values are updated to reflect the pressure and gravity forces, including
an artificial viscosity required for stability. The second step, known as the transport step, accounts for the advection
of conserved quantities (mass, momentum, and energy) across the grid.

2.2.3. Gravity

The current implementation of self-gravity in Enzo uses a Fast Fourier technique (Hockney & Eastwood 1988) to
solve Poisson’s equation on the root grid on each timestep. The advantage of using this method is that it is fast,
accurate, and naturally allows both periodic and isolated boundary conditions for the gravity, choices which are very
common in astrophysics and cosmology. On subgrids, we interpolate the boundary conditions from the parent grid
(either the root grid or some other subgrid). The Poisson equation is then solved on every timestep using a multigrid
technique on one subgrid at a time. Aside from self-consistently calculating the gravitational potential arising from
the baryon fields and particles in the simulation, there are also a number of options for specifying static gravitational
fields.

2.2.4. N-body Dynamics

Collisionless matter (e.g. dark matter, stars, etc.) is modeled with particles that interact with the baryons only via
gravity. These particles are advanced through a single timestep using a drift-kick-drift algorithm (Hockney & Eastwood
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1988) to provide second-order accuracy even in the presence of varying timesteps. Since the particles follow the collapse
of structure, they are not adaptively refined. Nor are there duplicate sets of particles for each level; instead, each particle
is associated with the highest refined level available at its position in the domain and particles are moved between
grids as the hierarchy is rebuilt. Thus a particle has the same timestep and feels the same gravitational force as a grid
cell at that refinement level.
Although the particles are fixed in mass once initialized (with the exception of star particles, which can lose mass

in the feedback process), we can create them with any initial set of masses and positions. For example, in many
cosmological simulations static subgrids are included from the beginning in order to improve the initial spatial and
baryonic mass resolution, and these subgrids are populated with lower-mass particles to correspondingly improve the
collisionless mass resolution.

2.2.5. Chemistry

Enzo includes the capability of following up to 12 particle species using a non-equilibrium chemical network. The
species can be turned on in sets, with the simplest model including just atomic hydrogen and helium (H, H+, He,
He+, He++, e−), and more complete models adding first species important for gas-phase molecular hydrogen formation
(H−, H2 and H+

2 ), and then HD formation (HD, D, D+). The cooling and heating due to these species is included
(see the next section). The solution of the rate equations is carried out using one Jacobi iteration of an implicit Euler
time discretization to ensure stability. To ensure accuracy the rate equations are sub-cycled within one hydrodynamic
timestep, subject to the constraint that the electron and neutral fractions do not change by more than 10% in one
sub-cycle.

2.2.6. Radiative Cooling and Heating

Enzo can operate in a number of different modes with regard to radiative cooling and heating. In the simplest mode,
where the multi-species flag is turned off and no individual chemical species are tracked, the cooling rate is computed
from a simple temperature-dependent cooling function, taken from Sarazin & White (1987). If chemistry is turned on,
then the code can include cooling from all species of hydrogen and helium (including H2 and Deuterium-related species
such as HD) – and the primordial cooling rates are computed in the same Jacobi iteration as the chemistry. It is also
possible to include metal cooling based on a set of multi-dimensional lookup tables computed with the Cloudy code
(Ferland et al. 1998) as described in Smith et al. (2008) and Smith et al. (2011). Note that the cooling and heating is
most commonly treated in the optically-thin limit, but the code can also follow radiative transfer in a limited set of
energy bins.

2.2.7. Homogeneous radiation backgrounds

The chemical networks and heating rates described in the previous sections can be affected by external radiation
fields, and the code includes a number of pre-calculated meta-galactic UV radiation backgrounds that are uniform
in space but can vary in time. These are generally based on the redshift-dependent rates given in Haardt & Madau
(1996) and Haardt & Madau (2012), but can also include a uniform H2 photo-dissociating background that is either
constant in time or varying as in Wise & Abel (2005).

2.2.8. Radiation transport: ray tracing

Enzo includes a photon-conserving radiative transfer algorithm that is based on an adaptive ray-tracing method
utilizing the HEALPix pixelization of a sphere (Abel & Wandelt 2002). Photons are integrated outwards from sources
using an adaptive timestepping scheme that preserves accuracy in ionization fronts even in the optically-thin limit.
This has been coupled to the chemistry and cooling network to provide ionization and heating rates on a cell-by-cell
basis. The method is described in detail (including numerous code tests) in Wise & Abel (2011).

2.2.9. Radiation transport: Flux-limited diffusion

A second option for radiative transfer is a moment-based method that adds an additional field tracking the radiation
energy density. This field is evolved using the flux-limited diffusion method, which transitions smoothly between
streaming (optically thin) and opaque limits and is coupled to an ionization network of either purely hydrogen, or
both hydrogen and helium. The resulting set of linear equations is solved using the parallel HYPRE framework. Full
details on the Enzo implementation of this method can be found in Reynolds et al. (2009).

2.2.10. Heat Conduction

Heat conduction, both isotropic and anisotropic, can be included using a sub-cycled, operator-split method. The
heat fluxes are computed with simple second-order accurate finite differences, and stability is ensured by restricting
the timestep and using flux-limiters where appropriate.

2.2.11. Star Formation and Feedback

A family of simple heuristic methods are used to model the formation of stars and their feedback of metals and
energy into the gas. These methods are based on the work of Cen & Ostriker (1992), and involve the identification
of plausible sites of star formation based on a set of criteria (for example, dense gas with a short cooling time, which
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ghost zone

Distributed hierarchy Grid zones

real grid
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Figure 1. Left: Example of a simple, distributed AMR hierarchy showing real and ghost grids. Right: Example 2D Enzo grid showing
real and ghost zones, as needed for the PPM hydro stencil.

is both collapsing and unstable). The local star formation rate is computed using a range of methods, such as a
density-dependent method based on the Schmidt-Kennicutt relation (Kennicutt 1989). The affected gas is converted
into a star particle over a few dynamical times, and metals and thermal energy are injected into the region surrounding
the star particle. A related set of methods involves the simulation of single Population III stars rather than ensembles,
and is calibrated by ab initio simulations of primordial star formation.

2.2.12. Timestep constraints

All grids on a given level are advanced with the same timestep. This time step is determined by first calculating
the largest time step allowed for each cell and for each physical process separately (except for chemistry and heat
conduction, which are sub-cycled). The level is then advanced with a timestep equal to the minimum over all of these
∆t.

3. THE STRUCTURED ADAPTIVE MESH REFINEMENT (SAMR) METHOD

The back-bone of the SAMR idea is the patch, or grid, which we take to be rectilinear to simplify bookkeeping (in
practice, the lower-level routines such as the hydro solvers all assume Cartesian coordinates). The single root grid
covers the entire computational domain and plays the role of the root node in the grid hierarchy. Subgrids are placed
such that they cover (hopefully small) sub-volumes of the root grid at higher resolution. This structure forms a tree
that may be extended to arbitrary depths by adding additional grids to refine regions in the subgrids. We use the
following notation to describe grid relationships. A grid’s parent is the coarse grid that completely contains it. The
root grid is the most coarsely-resolved grid, and it has no parent. A child grid is a grid completely contained by its
parent grid (note that a grid may have many children but only one parent), while sibling grids are those that have the
same resolution, but not necessarily the same parent. We also refer to levels of the hierarchy, where the root grid is
labeled level zero and all grids with the same resolution are on the same level.
In order to simplify bookkeeping, a number of restrictions are imposed on the subgrids:

• The refinement factor r, or the ratio of the coarse cell width to the fine cell width, must be an integer. In
practice, we generally adopt r = 2, since tests have shown this typically provides the best performance.

• Each subgrid must begin and end on the boundary of a coarse cell. This means that the number of cells in a
patch will be a multiple of the refinement factor.

• A subgrid must be completely enclosed by its parent.

The AMR grid patches are the primary data structure in Enzo. Each patch is treated as an individual object that
can contain both field variables and particle data. Individual grids are organized into a dynamic, distributed hierarchy
of mesh patches.
Each grid patch in Enzo contains arrays of values for baryon and particle quantities. Grids are partitioned into a core

of active zones and a surrounding layer of ghost zones, as shown in Figure 1. The active zones store field values and ghost
zones are used to temporarily store values that have been obtained directly from neighboring grids or interpolated from
a parent grid. These zones are necessary to accommodate the computational stencil of the (magneto)hydrodynamics
solvers (Sections 4.1 through 4.4) and the gravity solver (Section 5.1). The PPM and ZEUS hydro solvers require
3 layers of ghost zones, and the gravity solver requires 6 (although only for the density and potential fields). This
can lead to significant memory and computational overhead, particularly for smaller grid patches at high levels of
refinement.
From the point of view of the hydro solver, each grid is solved as an independent computational fluid dynamics

(CFD) problem, with Dirichlet boundary conditions stored in the ghost zones. At the beginning of each timestep,
cells on a given level fill ghost zones by interpolating from the parent and copying from neighbors on the same level.
Grids then correct the flux at the interface boundary between fine and coarse zones, and finally project their active
zone data to the parent grid.
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dt
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level 2

Timesteps Order of steps

time

Figure 2. Left: Example of the timesteps on a 2-level AMR hierarchy. Enzo does not restrict the timesteps on the finer levels to be a
factor of 1/2n smaller. Right: The order in which the AMR grids are evaluated on each level.

Timesteps are determined on each level as described in Section 9, and the hierarchy is advanced on a level-by-level
basis in a W-Cycle. Beginning with the coarsest level, l, all grids on that level are advanced one timestep. Then, one
timestep is taken on all grids at the next level of refinement, l + 1, and so on until the finest level is resolved. The
finest level is then advanced, using as many steps as it takes to reach the level immediately above. The finest level is
then synched to the level above it, which then proceeds forward in time one more step. This is shown graphically in
Figure 2.
At the end of every timestep on every level, each grid updates its ghost zones by exchanging information with its

neighboring grid patches (if any exist) and/or by interpolating from a parent grid. In addition, cells are examined
to see where refinement is required and the entire grid hierarchy is rebuilt at that level (including all more highly
refined levels). The timestepping and hierarchy advancement/rebuilding process described here is repeated recursively
on every level to the specified maximum level of refinement in the simulation.
The basic control algorithm looks very much like any used in a grid-based code of a single resolution, and can be

written schematically as:

InitializeHierarchy
While (Time < StopTime):

dt = ComputeTimeStep(0)
EvolveLevel(0, dt)
Time = Time + dt
CheckForOutput(Time)

The AMR control algorithm is contained within the recursive EvolveLevel algorithm, which takes the level upon
which to operate as an argument. This looks something like the following pseudo-code:

EvolveLevel(level):
SetBoundaryValues
while (Time < ParentTime):

dt = ComputeTimeStep(level)
SolveHydroEquations(dt)
SolveOtherEquations(dt)
Time = Time + dt
SetBoundaryValues
EvolveLevel(level+1, dt)
FluxCorrection
Projection
RebuildHierarchy(level+1)

Each function operates on all the grids on the given level. In the following sections, we will address each of the
major elements in turn.

3.1. Setting the boundary values

In order to solve the hydrodynamic equations on a patch, it is necessary to specify the boundary conditions on that
patch. There are two cases. The first is that the boundary is external to the computational domain. This occurs for
all the boundaries of the root grid. The second possibility is that the boundary is within the computational domain,
which is true for most, but not all, subgrids.
In the first case, we allow for four types of boundary conditions (for simplicity, represented here as being at x = 0,

with positive x interior and negative x exterior to the domain):

1. Reflecting. In this case, the boundary behaves like a mirror, with the solution on the boundary reflecting the
solution in the computational domain (q(−x) = q(+x)) but with the velocity normal to the boundary reversed:
vx(−x) = −vx(+x).
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2. Outflow. We approximate outflow boundary conditions by duplicating the solution at the edge of the computa-
tional domain: q(−x) = q(0).

3. Inflow. In this case, the boundary values are fixed by a pre-determined function (q(−x) = q0(−x, t)). The code
provides a simple way to set inflow values that are constant in both time and space over an entire face, or hooks
are provided for special cases where the boundary must be time-varying.

4. Periodic. The boundary solution is obtained from the other side of the grid: q(−x) = q(xmax − x).

In the second case, the value must be either (1) interpolated from a parent or (2) copied from a sibling. In practice,
we solve this problem by first interpolating all boundaries from the grid’s parent and then performing the sibling copy
wherever possible, since these values will always be as good as, or superior to, interpolation.
We focus first on conserved, cell-centered quantities. The interpolation function should be conservative in the sense

that the mean over the interpolated quantity, in a given cell, must return the cell-centered value. It should also be
monotonic, so that new extrema are not introduced into a smoothly varying field.
In one dimension, such functions are well known; examples include donor cell, Van Leer, and piecewise parabolic

interpolation, which are first-, second-, and third-order accurate respectively (e.g., Stone & Norman 1992a). However,
we require fully multi-dimensional interpolation functions, and so focus on second-order schemes since they are tractable
and relatively accurate22. In Appendix A, we explicitly write down functions in one, two and three dimensions, but
here we discuss the general design considerations.
In two dimensions, it is relatively easy to build a linear, monotonic, conservative function by requiring, first, that

the function at the center of the cell return the cell-centered quantity (and since it is linear, this implies that an
average over the cell will also be equal to this value), and second, by treating the cell-diagonals as one-dimensional Van
Leer-type functions. The reason to focus on the cell diagonals is that for a linear function, the extrema will occur at
the cell corners, which are in turn linked by the diagonals. This process can be done in two dimensions since there are
three constraints (one at the center and one along each diagonal), and three parameters in a two-dimensional linear
function.
In three dimensions this process breaks down since the number of constraints (center + four diagonals = five) exceeds

the number of parameters (four). One way to solve this problem would be to perform a least-squares fit under the
given constraints; however, this is too computationally expensive. Therefore, in Appendix A we describe a heuristic
approach that satisfies four constaints analytically and then adjusts the interpolation parameters in such a way as to
satisfy the fifth. While the result is not necessarily optimal, it does appear to perform adequately in our tests.

3.2. Solving the hydrodynamic equations on a grid

Given the grid and its boundary conditions, the process of solving equations (1)–(3) can be detached from the rest of
the SAMR technique, so that it is possible to experiment with a number of different methods. The restrictions are that
the method should be flux-conservative, or at least produce an accurate estimate of the flux of conserved quantities at
cell interfaces. This is required in the flux-correction step (see 3.4). There is also the issue of centering, which refers to
the position of physical quantities within a cell (the primary types are cell-centered, face-centered, and node-centered).
The interpolation step, described in Section 3.1, must correctly interpolate with the selected centering.

3.3. Projection

Since a refined region is simulated with (at least) two different resolutions (one fine and one coarse), it has two or
more “solutions” (i.e. values of density, velocity, etc.) that represent the same volume of space. This is one important
aspect of the SAMR method – some physical regions are represented by grids at multiple resolutions. To maintain
consistency, the coarse grid quantities are updated with the finer values, using a volume-weighted average of the
conserved quantities:

qcoarse = r−d
∑

qfinei,j,k (26)

where r is the refinement factor, and the sum is over all fine cells that “cover” the coarse cell. The exponent, d, refers
to the weight of the average. For cell-centered quantities, this is the dimensionality of the problem. For face-centered
quantities, this is one less than the dimensionality, and for edge-centered quantities this is one.

3.4. Flux correction

One of the significant advantages of flux-conservative methods is, of course, their ability to maintain conserved
quantities to machine precision. Unfortunately, the projection step upsets this flux conservation since, at the boundary
of a refined region, the coarse and fine cells on either side of the border are updated with different estimates of the
flux across the boundary. At one refinement level this comes from the coarse grid computation, and in the other from
the fine grid solution. Conservation can be restored by correcting all coarse cells that lie outside the boundary of a
fine region with the difference between the coarse and fine estimates of the flux across the boundary:

22 We could, in principle, build a multi-dimensional interpolator out of a one-dimensional interpolation function; however, at higher
order, this would not necessarily satisfy our constraint regarding not introducing new extrema in interpolated quantities.
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qcoarse = q̃coarse −∆t



F coarse −
∑

j,k

F fine
j,k



 (27)

where F is the flux of quantity qi in the i-direction through the cell interface. We use q̃ to indicate the uncorrected
quantity on the coarse grid and the sum is over the rd−1 fine cell interfaces in the perpendicular dimensions that share
a face with the coarse cell being corrected. This correction is carried out for all coarse cells that share a face with a
refined cell (and are not themselves covered with more refined cells).

3.5. Hierarchy reconstruction

Since the addition of more highly refined grids is adaptive, the conditions for refinement must be specified. Many
different criteria can be simultaneously specified for a given simulation, and these refinement criteria are discussed in
more detail in the following section (Section 3.6). Once all cells in a given grid that require additional refinement have
been flagged, rectangular boundaries are determined that minimally encompass the flagged cells. This is done using
an iterative machine-vision technique, as described in Berger & Rigoutsos (1992).
We first find the smallest region (or “proto-subgrid”) that covers all of the refined cells on a grid. We compute an

efficiency ǫ for this grid, defined as the ratio of flagged cells to total cells. If this efficiency is sufficiently large (typically
over 30%), or if the grid is small enough, then we adopt the region as a new grid and move on to the next region (if
any). If the region is not acceptable, then we split it into two using the following algorithm. First, we determine the
longest dimension and compute the signature along that dimension. The signature is found by summing the number
of refined cells with the same index along the longest dimension. Edges are typically indicated by inflection points in
this signature, so we calculate the second derivative using a simple three-point finite difference estimator and look for
the maximum in the second derivative, with ties going to the index closest to the center. If no inflection points are
found along the longest axis, the next-longest axis is searched. If no inflection points are found, the longest axis is cut
in half. The original region is then split into two new regions, or proto-subgrids. This process is then re-applied to
each of the new regions.
This algorithm is not necessarily optimal, but experience shows it does a reasonable job of generating an efficient

covering of the refined cells. Note that some cells are unnecessarily refined with the SAMR approach, resulting in
wasted resources (unlike in cell-splitting AMR schemes). However, it has a number of advantages. First, traditional
grid-based hydro methods can be simply added with only minor modifications. Second, it is easier to accommodate
larger stencils (as in PPM, which requires three boundary zones), and third, it can be more efficient for some machines
since there are more predictable and linear memory accesses, which more efficiently use a CPU’s cache.

3.6. Refinement criteria

In this section, we turn to the refinement criteria themselves. Although generalized refinement criteria are available
based on estimators for the error, such as the Richardson method (Atkinson & Han 2004), we have focused generally on
methods that use physical estimators based on the assumption that the simulator has a specific quantity or quantities
that indicate the need for refinement. The flagging methods currently built into Enzo are:

1. Slope. If the normalized slope (qi+1 − qi−1)/(2qi) of baryon quantities between adjacent cells is larger than a
specified value (typically 0.3), then the cell is flagged.

2. Baryon mass. This refinement criterion is designed to mimic a Lagrangian method in that it tries to keep a fixed
mass resolution. In this method, a cell is refined if the baryonic mass in the cell (Mg = ρ (∆x)d) is larger than
a specified value:

Mg > ρflag (∆xroot)
drǫll, (28)

where ρflag is the equivalent density on the root grid required for refinement, ∆xroot is the root grid cell spacing, r
is the refinement factor, l is the level and ǫl is a parameter that can be used to make the refinement more aggressive
(ǫl < 0) or less aggressive (ǫl > 0) than pure Lagrangian refinement — in other words, super-Lagrangian or sub-
Lagrangian refinement.

3. Shocks. In this method, we identify and refine cells that contain shocks using the following criteria:

(pi+1 − pi−1)/min(pi+1, pi−1) > 0.33, ui−1 − ui+1 > 0, and ei/Ei > 0.1.

We note that the parameters 0.33 and 0.1 in the equations above were determined empirically, and can be
modified by the user to refine more or less aggressively, as the situation warrants.

4. Particle mass. This refinement criterion is precisely the same as the baryon mass criterion except that it uses
the gridded (cloud-in-cell, or CIC) particle density. In general, this criteria is used in cosmological simulations,
and thus refines on dark matter and stellar density.
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5. Jeans length. Following Truelove et al. (1998), the code can be forced to refine the Jeans length by a fixed
number of cells, or, more specifically, whenever the following criterion is not met:

∆x <

(

πkBT

N2
JGρmH

)1/2

, (29)

where JJ is the required number of cells per Jeans length (4 by default).

6. Cooling time. Often in cosmological simulations, cooling is a rapid process and we do not necessarily want to
be limited by the cooling time. However, in some cases it is desirable to resolve the cooling process, in which
case we flag cells that have a cooling time shorter than their sound crossing time. The cooling time is given by
tcool = 1.5kBT/(nΛ(T )) and the sound crossing time is tcross = ∆x/cs, where cs is the sound speed.

7. Must-refine particles. In order to allow for refinement in moving regions, it is possible to generate “must-refine”
particles that ensure local refinement of the 8 nearest cells to a specific level. The particles feel gravitational
forces and their trajectories are followed as for any other collisionless particle. This feature can be used to ensure
that a specific Lagrangian region stays refined to a specified level of resolution.

8. Shear. As described in Kritsuk et al. (2006), turbulence calculations can be successfully modeled with AMR if
the shear is used as a refinement parameter; in particular, refinement occurs when the finite difference version
of the following inequality holds:

∑

i

∑

j

(

∂vi
∂xj

)2

−
∑

i

(

∂vi
∂xi

)2

> ǫs
c2s
∆x2

, (30)

where ǫs is a dimensionless parameter.

9. Optical depth. This refinement criterion, typically used for simulations using radiation transport, flags cells for
refinement if they have an H I optical depth lower than unity. The optical depth of a cell is estimated to be:

τ = σHInHI∆x (31)

where σHI is the neutral atomic hydrogen absorption cross section, nHI is the proper H I number density, and
∆x is the cell width (which is assumed to be the same along each axis). If τ > 1, the cell is refined further, up
to the maximum level of refinement.

10. Resistive length. In a way similar to the Jeans length criterion described above, the code can be forced to locally
resolve the resistive length scale by a minimum of a fixed number of cells. This is done by ensuring that the
resistive length scale, defined as

LR = |B|/|∇×B| (32)

is always refined by at least NR cells locally (i.e. we refine a given cell further if LR ≤ NR∆x). Note that Enzo

does not actually solve the resistive MHD equations – this is the “characteristic” local resistive length, rather
than one calculated within the MHD solver.

11. Must refine region. This refinement criterion is used to ensure that all cells in a given subvolume of the simulation
are refined to at least some minimum level of refinement. The subvolume is user-specified, and may evolve over
time (e.g., to follow a structure of interest that is traveling through the simulation volume).

12. Metallicity. This refinement criterion ensures that all cells with a metallicity (defined as Z ≡ ρZ/ρb/0.022, where
ρZ is the density of metals in the cell, ρb is the total baryon density (including metals), and 0.022 is the solar
mass fraction of metals) above a user-defined value is refined to at least some minimum level of refinement.

13. Second Derivative. This is similar to the refinement criteria used in Paramesh and was originally developed by
Loehner et al. (1987). This method calculates the second derivative of a user-defined field normalized by the
first derivative, and sets a threshold for refinement. More background information can be found in the FLASH4
user guide23, but we reproduce the relevant equation here for completeness. The multi-dimensional version of
the criteria takes in to account all cross-derivatives, and is expressed by

23 http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug/

http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug/
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where f is the user-defined field,
∣

∣f̄ij
∣

∣ is an average of f over cells in the i and j dimensions, and ǫ is a user-

controlled value that provides a method of ignoring small fluctuations, set by default to 10−2. If S is larger than
a specified threshold (bounded by [0,1]) a cell is marked for refinement. This threshold is chosen at runtime and
can vary for each of the fields under consideration.

Finally, it is also possible to specify a rectangular region that is statically refined to a certain level. These static
refined regions are in place throughout the simulation regardless of the grid quantities and can be used for testing
purposes, or for multiply-zoomed initial conditions (in cosmology simulations, for example) that would not otherwise
be refined.

4. FLUID METHODS

In this section, we describe the four solvers that we have implemented for solving the fluid equations. We describe
the PPM method in considerably more detail than the other methods in part because its implementation in Enzo
has not previously been described, but mostly because it introduces many of the ideas and methods used for the
MUSCL-Dedner and MHDCT schemes (including expansion terms, reconstruction, Riemann solvers, and dual energy
formalism).

4.1. Hydrodynamics: The PPM method

One (purely) hydrodynamic method used in Enzo is closely based on the piecewise parabolic method (PPM) of
Colella & Woodward (1984) – henceforth referred to as CW84 – which has been modified for the study of cosmological
fluid flows. CW84 describe two variants on this method: Lagrangian Remap and Direct Eulerian. We use the Direct
Eulerian version in Enzo, which is better suited for AMR simulations. The Lagrangian Remap version has previously
been adapted for cosmological use as described in Bryan et al. (1995), and the implementation we use here is closely
based on that work.
The first term on the right hand side of equations (2) and (3) comes from our choice of comoving coordinates (a

similar term also appears in equation (18), the velocity relation for the dark matter particles). A similar term does
not appear in the mass conservation equation (1) because of the comoving density definition. We note that these
expansion terms could be eliminated entirely by the proper choice of variables (including time), although we have not
done so here as they do not constitute a major source of error. We solve these terms using the same technique – they
are split from the rest of the terms and solved using an (implicit) time-centered method, which is straightforward as
there are no spatial gradients. Note that we use this method for all four of the hydro solvers.
The remainder of the terms in the fluid equations involve derivatives. Because we are interested in phenomena with

no special geometry, we will restrict discussion to Cartesian coordinates. We can dimensionally split the equations and
rewrite the one-dimensional (Eulerian) versions of equations (1)–(3) without expansion terms in conservative form as,

∂ρ
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Here x and v refer to the one dimensional comoving position and peculiar velocity of the baryonic gas, and g is the
acceleration at the cell center. These equations are now in a form that can be solved by the split PPM scheme.
We now restrict ourselves to the solution of equations (34)–(36) in one dimension. In the Direct Eulerian version

of PPM, this is accomplished by a three-step process. First, we compute effective left and right states at each grid
boundary by constructing a piecewise parabolic description of the primative variables (ρ, u and E) and then averaging
over the regions corresponding to the distance each characteristic wave can travel (u, u− cs and u+ cs, where cs is the
sound speed). Second, a Riemann problem is solved using these effective left and right states, and finally the fluxes are
computed based on the solution to this Riemann problem and the conserved quantities are updated. This is described
in detail in CW84, but we will briefly outline the procedure here both for completeness and to put the changes we will
make in context.
The Eulerian difference equations are:

ρn+1
j = ρnj +∆t

(

ρj+1/2vj+1/2 − ρj−1/2vj−1/2

∆xj

)

(37)
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ρn+1
j vn+1

j = ρn+1
j vnj +∆t

(

ρj+1/2v
2
j+1/2 − ρj−1/2v

2
j−1/2 + pj+1/2 − pj−1/2

∆xj

)

+
∆t

2
g
n+1/2
j (ρnj + ρn+1

j ), (38)

ρn+1
j En+1

j = ρnjE
n
j +∆t

(

ρj+1/2vj+1/2Ej+1/2 − ρj−1/2vj−1/2Ej−1/2 + vj+1/2pj+1/2 − vj−1/2pj−1/2

∆xj

)

+
∆t

2
g
n+1/2
j (ρnj v

n
j + ρn+1

j vn+1
j ). (39)

We have used subscripts to indicate zone-centered (j) and face-centered (j+1/2) quantities, while superscripts refer
to position in time. The cell width is ∆xj . Although they have been discretized in space, the accuracy of the updates
depend on how well we can compute the fluxes into and out of the cell during ∆t. This in turn depends on our ability
to compute the time-averaged values of p, ρ and v at the cell interfaces, denoted here by pj±1/2, ρj±1/2, and vj±1/2.
We now describe the steps required to compute these quantities.
We first construct monotonic piecewise parabolic (third-order) interpolations in one dimension for each of p, ρ, and

v. The pressure is determined from equation (7), the equation of state. The interpolation formula for some quantity
q is given by:

qj(x)= qL,j + x̃(∆qj + q6,j(1− x̃)), (40)

x̃≡ x− xj−1/2

∆xj
, xj−1/2 ≤ x ≤ xj+1/2.

This is equation (1.4) of CW84 (in the spatial rather than mass coordinate, as is appropriate for the direct Eulerian
approach). The quantities qL,j , ∆qj , and q6,j can be viewed simply as interpolation constants; however, they also have
more intuitive meanings. For example, qL,j is the value of q at the left edge of zone j, while ∆qj and q6,j are analogous
to the slope and first-order correction to the slope of q (see CW84 for a complete discussion):

∆qj ≡ qR,j − qL,j q6,j ≡ 6 [qj − 1/2 (qL,j + qR,j)] . (41)

We have reduced the problem to finding qL,j and qR,j . While this is simple in principle, it is complicated somewhat
by the requirement that these values be of sufficient accuracy and that the resulting distribution be monotonic. That
is, no new maxima or minima are introduced. The resulting formulae are straightforward but complicated and are
not reproduced here, but see Equations 1.7 to 1.10 of CW84. We also optionally allow steepening as described in that
reference.
Once we have the reconstruction, the primary quantities (p, ρ, v and E) are averaged over the domains corresponding

to the three characteristics u − c, u, or u + c (where c is the sound speed in a cell). The linearized gas dynamics
equations are then used to compute second-order accurate left and right states that take into account the multiple
wave families. This process is described in CW84 and we use their equations (3.6) and (3.7).
With these effective states, an approximation to the Riemann problem is found (see below for more detail about the

Riemann solvers used), producing estimates for pj±1/2, ρj±1/2, and vj±1/2 that are third-order accurate in space and

second-order accurate in time. These are then used to solve the difference Equations (37)–(39) for ρn+1, vn+1, and
En+1.
We include an optional diffusive flux (and flattening for the parabolic curves) that can improve the solution in some

cases. Our implementation follows that in the appendix of CW84.
In addition, as discussed earlier, the three-dimensional scheme is achieved by operator-splitting and repeating the

above procedure in the other two orthogonal directions. The transverse velocities and any additional passive quantities
are naturally and easily added to this system (see Equation 3.6 of CW84).
We note that the acceleration required in Equation (38) is actually the acceleration felt by the entire zone and

not just at the zone center. Therefore, it is possible to find the mass-weighted average acceleration over the zone by
expanding the density and acceleration distributions and retaining all terms up to second-order in ∆x (Bryan et al.
1995), although we find that the potential is so slowly varying that this is unnecessary.

4.1.1. The dual energy formulation for very high Mach flows

The system described thus far works well for gravitating systems with reasonable Mach numbers (< 100) as long as
the structures are well resolved. This section and the next detail changes that are required to correctly account for
situations where one or both of these requirements are not met.
Large, hypersonic bulk flows appear to be very common in cosmological simulations and they present a problem

because of the high ratio of kinetic energy Ek to gas internal energy e, which can reach as high as 108. Inverted,
we see that the internal energy consists of an extremely small portion of the total energy. In such a situation, the
pressure, proportional to E −Ek, is the small difference between two large numbers: a disastrous numerical situation.
This is not as large a problem as it may at first appear because it only occurs when the pressure is negligibly small.
Therefore, even if we suffer large errors in the pressure distribution in these regions, the dynamics and total energy
budget of the flow will remain unaffected. Nevertheless, if the temperature distribution is required for other reasons
(e.g., for calculating radiative processes), a remedy is required.
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To overcome this, we also solve the internal energy equation:

∂e

∂t
+

1

a
v ·∇e = −3

ȧ

a

p

ρ
− p

aρ
∇ · v (42)

in comoving coordinates. The structure is similar to the total energy equation; the second term on the left hand side
represents transport, while the first term on the right is due to expansion of the coordinate system. It is differenced
(again, in Eulerian form without the expansion term) as,

ρn+1
j en+1

j = ρnj e
n
j +∆t

(

ρj+1/2vj+1/2ej+1/2 − ρj−1/2vj−1/2ej−1/2

∆xj

)

−∆t pnj

(

vj+1/2 − vj−1/2

∆xj

)

(43)

Note that because of the structure of this equation, it is not in flux-conservative form. In particular, the pressure is
evaluated at the cell center. Unfortunately, time-centering of this pressure has proved difficult to do without generating
large errors in the internal energy and so we leave the pressure at the old time in this difference equation. This leads
to some spreading of shocks; however, we note that this equation is only used in hypersonic flows.
It is necessary, however, to conserve the total energy so that the conversion of kinetic to thermal energy is performed

properly. We must therefore combine the two formulations without allowing the separately-advected internal energy
e to play a role in the gas dynamics. This is done by carrying both terms through the simulation and using the total
energy E for hydrodynamic routines and the internal energy e when the temperature profile is required. One way to
view this procedure is to treat e as enhanced precision (extra digits) for E that automatically ‘floats’ to where it is
needed. We only require that they be kept synchronized when the two levels of precision overlap.
When the pressure is required solely for dynamic purposes, the selection criterion operates on a cell by cell basis

using,

p =

{

ρ(γ − 1)(E − v2/2), (E − v2/2)/E > η1;
ρ(γ − 1)e, (E − v2/2)/E < η1.

(44)

It should be stressed that as long as the parameter η1 is small enough the dual energy method will have no dynamical
effect. We use η1 = 10−3, which is consistent with the truncation error of the scheme for grid sizes that are typically
used in our simulations. We are now free to select the method by which the internal energy field variable e is updated
so that it will not become contaminated with errors advected by the total energy formulation but still give the correct
distribution in shocked regions. Since we are concerned with the advection of errors, the selection criterion must look
at each cell’s local neighbourhood. In one dimension, this is done with,

e =

{

(E − v2/2), ρ(E − v2/2)/max(ρj−1Ej−1, ρjEj , ρj+1Ej+1) > η2,
e, ρ(E − v2/2)/max(ρj−1Ej−1, ρjEj , ρj+1Ej+1) < η2.

(45)

Thus, η2 determines when the synchronization (of e with E) occurs. Too high a value may mask relatively weak
shocks, while spurious heating (via contamination) may occur if it is set too low. After some experimentation, we have
chosen η2 = 0.1, a somewhat conservative value. This scheme is optional and is generally only required in large-scale
cosmological simulations where the gas cools due to the expansion of the universe but large bulk flows develop due to
the formation of structure.
We note that others have independently developed a similar but distinct scheme for dealing with this problem,

which is endemic to methods adopting the total energy equation. In Ryu et al. (1993), the two variables adopted are
total energy and entropy (rather than total energy and thermal energy), with an analogous scheme for choosing which
variable to employ.

4.1.2. Riemann Solvers and Fallback

In this section, we describe the methods we adopt to solve the Riemann problem, which is generally required to
compute the fluxes in any Godunov-based scheme. This section therefore applies to all three of our Godunov-based
schemes. The Riemann problem we are solving involves two constant states separated by a single discontinuity
at t = 0. The subsequent evolution has an exact analytic solution. This solution is described in detail in many
texts on computational fluid dynamics (e.g., Toro 1997). In brief, there are three waves that propagate away from
the initial discontinuity. The central wave, characterized by a density jump but not a pressure jump, is called the
contact discontinuity. The waves traveling to the left and right of the contact discontinuity can be either shocks, if
characteristics converge on the wave front, or rarefaction fans if characteristics diverge.
While there exists an exact solution to this problem, finding it is expensive. There are four possible combination

of left- and right- traveling shocks and rarefactions, only one of which is fully consistent with the initial conditions.
Once the correct physical state is determined, the pressure in the central region can only be computed by finding the
root to an algebraic equation, which is necessarily an iterative process. Thus a series of approximate Riemann solvers
are typically used. There are four approximate Riemann solvers in Enzo: two-shock (Toro 1997), Harten-Lax-van
Leer (HLL, Toro 1997), HLL with a contact discontinuity (HLLC, Toro 1997), and HLL with multiple discontinuities
(HLLD, Miyoshi & Kusano 2005). Two-shock is used only with the PPM method. HLL and HLLC are used with
PPM, MUSCL (both with and without MHD) and MHD-CT. HLLD is exclusively an MHD solver, and works with
both the MUSCL and MHD-CT methods.
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The only approximation that two-shock makes is that both left- and right-moving waves are shocks. This solution
still requires an iterative method for finding the pressure in between the two waves. The HLL method alleviates
this iteration by assuming that there is no central contact discontinuity, and the signal speed in the central region
is approximated by an average over the left- and right- moving waves. This method is significantly faster than the
two-shock method, but it is also quite a bit more dissipative. The HLLC is a three-wave method that improves upon
the HLL method by also including the third wave, the contact discontinuity.
For the MHD equations, there are seven waves instead of three. This makes the exact solution to the Riemann

problem quite a bit more expensive. Both the HLL and HLLC approximations can be formulated for the MHD
equations, and are employed in both the Dedner and CT solvers in Enzo. The HLLD solver includes two of the
additional waves, the rotational discontinuities, making it a five-wave solver.
On rare occasions, high-order solutions can cause negative densities or energies. Both our PPM and MUSCL solvers

employ a Riemann solver fallback mechanism (Lemaster & Stone 2009). If a negative density is found at a particular
interface, the more diffusive HLL Riemann solver is used to compute the fluxes associated with that cell, and the flux
update is repeated.

4.2. Hydrodynamics and Magnetohydrodynamics: MUSCL with Dedner cleaning

The second method we describe is a MUSCL-based solver than can be used in both HD and MHD modes. The
description here will be very brief both because the ideas are similar to those described in the previous section, and
because this implementation has previously been described in more detail elsewhere (Wang et al. 2008; Wang & Abel
2009a).
Much like the PPM solver, we have three basic steps: the first is reconstruction of the variables, the second is a

solution of the Riemann problem, and the third is is updating the conserved quanties with the fluxes as written above.
For the reconstruction scheme we have implemented only the simple piecewise linear reconstruction (van Leer 1979;
Colella & Glaz 1985), with options for both primitive and conservative variable reconstruction. The available Riemann
solvers are HLL, HLLC, and HLLD, as described earlier.
To more clearly describe the Dedner divergence cleaning modifications, we write the equations of compressible

inviscid hydrodynamics in the form of conservation laws as,

∂U

∂t
+
∂F x

∂x
+
∂F y

∂y
+
∂F z

∂z
= 0, (46)

The conserved variable U is given by

U = (ρ, ρvx, ρvy, ρvz, ρE)T , (47)

where ρ is density, vi are the three components of velocity for i = x, y, z, E = v2/2 + e denotes the specific total
energy and e the specific internal energy (note that in this section only, we use the specific energy).
For the generalized Lagrange multiplier (GLM) formulation of the MHD equations (Dedner et al. 2002), we consider

these conserved variables

U = (ρ, ρvx, ρvy, ρvz, ρE +B2/2, Bx, By, Bz, ψ)
T , (48)

where Bi with i = x, y, z are the three components of magnetic fields and ψ is the additional scalar field introduced
in the GLM formulation for the divergence cleaning. The fluxes then are

F x=(ρvx, ρv
2
x + p+B2/2−B2

x, ρvyvx −ByBx,

ρvzvx −BzBx, ρ(
v2

2
+ h)vx +B2vx −BxB · v,

ψ, vxBy − vyBx,−vzBx + vxBz, c
2
hBx)

T , (49)

F y =(ρvy , ρvxvy −BxBy, ρv
2
y + p+B2/2−B2

y ,

ρvzvy −BzBy, ρ(
v2

2
+ h)vy +B2vy −ByB · v,

vyBz − vzBy, ψ,−vxBy + vyBx, c
2
hBy)

T , (50)

F z =(ρvz , ρvxvz −BxBz, ρvyvz −ByBz, ρv
2
z + p+B2/2−B2

z ,

ρ(
v2

2
+ h)vz +B2vz −BzB · v,

−vyBz + vzBy, vzBx − vxBz, ψ, c
2
hBz)

T , (51)

where ch is a constant controlling the propagation speed and damping rate of ∇ · B, and h = e + p/ρ denotes the
specific enthalpy. All quantities are cell-centered.
The method is dimensionally un-split in that the fluxes are computed for all dimensions first and the conserved

quantities are updated in one step, in contrast to the Strang splitting employed in the other fluid methods described
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in this paper. Also unlike the other schemes, time-integration is done with a second-order Runge-Kutta scheme
(Shu & Osher 1988).
Finally, we note that for cosmological simulations, this solver uses a slightly different definition of the magnetic field

than used in the rest of the paper. In particular, the field is defined as B = a3/2B′ (where B′ is the proper field
strength). This adds a source term of −ȧ/(2a)B on the right-hand side of Equation (4) and removes the factor of a in
the B term in the energy equation (Eq. 5) and in the definition of the isotropic pressure p∗.

4.3. Magnetohydrodynamics: Constrained transport

The third solver we describe is an MHD method developed by Collins et al. (2010). Since a full description and suite
of test problems can be found in that reference, we only describe the method briefly here.
The divergence of the magnetic field, ∇ · B, is identically zero in reality due to the fact that the evolution of the

magnetic field is the curl of a vector, and the divergence of the curl of a vector is identically zero. The Constrained
Transport (CT) method (Evans & Hawley 1988; Balsara & Spicer 1999) for magnetohydrodynamic (MHD) evolution
employs this same vector property to evolve the magnetic field in a manner that preserves ∇ · B = 0. The electric
field is computed using the fluxes from the Riemann solver. The curl of that electric field is then used to update the
magnetic field. The advantage of this method is that it preserves ∇ ·B to machine precision. The primary drawback
is increased algorithm complexity. Note also that since only the update of the magnetic field is divergence free, any
monopoles created by other numerical sources (such as ill-chosen initial conditions) persist.
The base Godunov method, described in Li et al. (2008), uses spatially and temporally second-order reconstruction

(both MUSCL-Hancock and Piecewise Linear Method), and a selection of Riemann solvers including HLLC and
HLLD (Mignone 2007), as described earlier. The constrained transport methods are the first-order method described
by Balsara & Spicer (1999) and the second-order methods described in Gardiner & Stone (2005). The AMR machinery
is described by Balsara (2001) and Collins et al. (2010).
The increased complexity of the constrained transport scheme comes in the form of area-averaged face and length-

averaged edge-centered variables, while the rest of Enzo employs predominantly volume-averaged cell-centered variables.
The magnetic field is represented by both a face-centered field, Bf , and a cell-centered field, Bc. The electric field is
edge-centered. The magnetic field is updated in four steps: first, the Riemann problem is solved in the traditional
manner, using the cell-centered field; second, an edge-centered electric field is computed using the fluxes from the
Riemann solver; third, the curl of that electric field is used to update the face-centered field; finally, the cell-centered
magnetic field is updated with an average of the face-centered field.
Divergence-free AMR is somewhat more complex than the AMR employed elsewhere in Enzo. First, the interpolation

must be constrained to be divergence free. Thus, all three face-centered field components are interpolated in concert.
Second, any magnetic field information from the previous timestep must be included in the interpolation, making
the interpolation more complex than the simple parent-child relation used for other fields. Third, the flux correction
involves more possible grid relations than traditional AMR. In order to circumvent this last complexity, the electric
field is projected from fine grids to parent grids (rather than the magnetic field), and is then used to re-update the
parent magnetic field. This is described in detail in Balsara & Spicer (1999) and Collins et al. (2010).
The dual energy formalism has also been incorporated in two possible ways – one that uses internal energy, as

described in Section 4.1, and one that uses entropy Ryu et al. (1993); Collins et al. (2010).

4.4. Hydrodynamics: The ZEUS method

As an alternative to the previous Godunov methods, Enzo also includes an implementation of the finite difference
hydrodynamic algorithm employed in the compressible magnetohydrodynamics code ZEUS (Stone & Norman 1992a,b).
Fluid transport is solved on a Cartesian grid using the upwind, monotonic advection scheme of van Leer (1977b) within
a multistep (operator-split) solution procedure that is fully explicit in time. This method is formally second-order
accurate in space but first-order accurate in time.
As discussed in the section describing the Piecewise Parabolic Method (Section 4.1), operator-split methods break

the solution of the hydrodynamic equations into parts, with each part representing a single term in the equations.
Each part is evaluated successively using the results preceding it. In this method, in addition to operator-splitting the
expansion terms (i.e., those terms in Eqs. (1) – (3) that depend on ȧ), we divide the remaining terms into source and
transport steps. The terms to be solved in the source step are those on the right-hand side of eqs. (1) – (3), while the
transport terms are on the left-hand side of these equations and are responsible for the advection of mass, momentum
and energy across the grid.
The ZEUS method uses a von Neumann-Richtmyer artificial viscosity to smooth shock discontinuities that may

appear in fluid flows and can cause a breakdown of the finite difference equations. The artificial viscosity term is
added in the source terms as:

ρ
∂v

∂t
=−∇p− ρ∇φ−∇ ·Q (52)

∂e

∂t
=−p∇ · v −Q : ∇v, (53)

Here Q is the artificial viscosity stress tensor, which we take to be diagonal with on-axis terms given by l2ρ(∂v/∂x)2

as proposed by von Neumann & Richtmyer. The length scale l determines the width of shocks and is typically a few
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times the cell spacing.
In our Cartesian coordinate system, the finite difference version of these equations is particularly simple, although

there is one important complication. In the ZEUS formalism, the velocity is a face-centered quantity – that is, the
velocity is recorded on a grid that is staggered as compared to the density, pressure and energy, which are at the cell
center. Therefore we must remember that vj is at position xj−1/2 (we use this notation, rather than writing vj+1/2

both to match the original ZEUS paper and also to make it easier to compare these equations to what is actually in
the code).
As in the original ZEUS paper, the source terms are added in three steps. First we add the pressure and gravity

forces:

vn+a
j = vnj − ∆t

∆xj

pnj − pnj−1

(ρnj + ρnj−1)/2
. (54)

Partial updates are denoted by the n+ a, n+ b notation. We show updates in one dimension as the extension to the
multi-dimensional case is straightforward (note that all dimensions are carried out for each substep before progressing
to the next substep). We then add the artificial viscosity:

vn+b
j = vn+a

j − ∆t

∆xj

qn+a
j − qn+a

j−1

(ρnj + ρnj−1)/2
(55)

en+b
j = enj − ∆t

∆xj
qn+a
j (vn+a

j+1 − vn+a
j ). (56)

The artificial viscosity coefficient qj is given by:

qj =

{

QAVρj(vj+1 − vj)
2 if (vj+1 − vj) < 0

0 otherwise
(57)

where QAV is a constant with a typical value of 2. We refer the interested reader to Stone & Norman (1992a) and
Anninos & Norman (1994) for more details. We also include the option (turned off by default) of adding a linear
artificial viscosity as suggested in the ZEUS paper for stagnant flow regions. This is given by

qlin,j = QLINρcj(vj+1 − vj) (58)

where c2j = γp/ρ is the adiabatic sounds speed.
Finally, the third source step is the compression term and is given by

en+c
j = en+b

j

(

1− (∆t/2)(γ − 1)(∇ · v)j
1 + (∆t/2)(γ − 1)(∇ · v)j

)

(59)

We have used the notation (∇ · v)j to indicate the (potentially) multi-dimensional velocity divergence evaluated at
the cell center position xj . This equation differs from the previous ones in that in the multi-dimensional case, still
only one finite difference equation is evaluated, but the divergence becomes multi-dimensional.
We next examine the transport step, which is conservative. Once again, we dimensionally split the equations and

present only the one-dimensional version. The finite difference equations actually solved are:

ρn+d
j = ρnj − ∆t

∆x
(vn+c

j+1/2ρ
∗
j+1/2 − vn+c

j−1/2ρ
∗
j−1/2) (60)

Here ρ∗j is the correctly upwinded value of ρ evaluated at the cell-face corresponding to vj , making ρ∗jvj the mass
flux at the cell boundary and guaranteeing mass conservation. This requires interpolating each cell-centered quantity
to the cell edge. As recommended in Stone & Norman (1992a), we use the second-order van Leer scheme, which uses
piecewise linear functions. These are given by Equations (48) and (49) of Stone & Norman (1992a). The transport
steps for the other variables are similar. Note that we advect the specific energy and specific momenta using the mass
flux, as dictated by the principle of consistent transport. This requires appropriate averaging for the momenta in the
perpendicular directions as outlined in equations (57)-(72) of Stone & Norman (1992a).
A limitation of a technique that uses an artificial viscosity is that, while the correct Rankine-Hugoniot jump condi-

tions are achieved, shocks are broadened over 3-4 mesh cells. This may cause unphysical pre-heating of gas upstream
of the shock wave, as discussed in Anninos & Norman (1994). On the other hand, it is much more robust than PPM
and is easy to add additional physics. We also note that this method solves only the internal energy equation rather
than total energy, so the dual energy formulation discussed in Section 4.1 is unnecessary.

5. GRAVITY AND N-BODY

5.1. Gravity

Solving for the accelerations of the cells and particles on the grid due to self-gravity involves three steps: (i) computing
the total gravitating mass, (ii) solving for the gravitational potential field with the appropriate boundary conditions,
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and (iii) differencing the potential to get the acceleration, and, if necessary, interpolating the acceleration back to the
particles. These steps are described in detail below.
First, the massive (dark matter and star) particles are distributed onto the grids using the second-order cloud-in-cell

(CIC) interpolation technique (Hockney & Eastwood 1988) to form a spatially-discretized density field ρDM. During
the CIC interpolation, particle positions are (temporarily) advanced by 0.5vn∆t so that we generate an estimate of
the time-centered density field. Particles on subgrids within the grid’s volume are also added to its gravitating field
using the same method. In addition, since the gravitating field for a grid is defined beyond the grid edges (see below),
massive particles from sibling grids and sub grids that lie within the entire gravitating field are used. This step can
involve communication.
Next, we add the baryonic grid densities in a similar fashion. In particular, we treat baryonic cells as virtual CIC

particles that are are placed at the grid center but are advanced by 0.5vn∆t in order to approximately time-center the
gravitating mass field. Cells that are covered by further-refined grids are treated in a similar way (i.e., we also use the

subgrid cells as virtual CIC particles). This procedure results in a total gravitating mass field ρ
n+1/2
total .

To compute the potential field from this gravitating mass field on the root grid, we use a a fast Fourier transform.
For periodic boundary conditions, we can use either a simple Greens function kernel of −k−2, or the finite difference
equivalent (Hockney & Eastwood 1988):

G(k) = − ∆x

2 (sin(kx∆x/2)2 + sin(ky∆y/2)2 + sin(kz∆z/2)2)
(61)

where k2 = k2x + k2y + k2z is the wavenumber in Fourier space and the potential is calculated in k-space as usual with

φ̃(k) = G(k)ρ̃(k).
For isolated boundary conditions, we use the James method (James 1977). In this case, the Greens function is

generated in real-space so as to have the correct zero-padding properties and then transformed into the Fourier
domain. In both cases, the potential is then transformed back into the real domain to get potential values at the cell
centers. These are differenced with a two-point centered difference scheme to obtain accelerations at the cell centers
(except if we are using the staggered ZEUS-like solver, in which case the accelerations are computed at the cell faces
to match the velocities). Particle accelerations are obtained using a (linear) CIC interpolation from the grid.
In order to calculate more accurate potentials on the subgrids, Enzo uses a similar but slightly different technique

from the root grid. The generation of the total gravitating mass field is essentially identical, using CIC interpolation
for both the particles and baryons, including subgrids as before. To compute the potential on subgrids, however, we
use the standard seven-point (in three dimensions) second-order finite difference approximation to Poisson’s equation.
Boundary conditions are then interpolated from the potential values on the parent grid. We use either tri-linear
interpolation or a natural second-order spline for this: both methods give similar results, but the default is the tri-
linear interpolation, which empirically provides a resonable compromise between speed and accuracy. The potential
equation on each subgrid is then solved with the given Dirichlet boundary conditions with a multigrid relaxation
technique. This is applied to each subgrid separately.
The region immediately next to the boundary can contain unwanted oscillations (e.g., Anninos et al. 1994), and so

we use an expanded buffer zone around the grid, of size three parent grid boundary zones (so typically six refined zones
for a refinement factor of 2). The density is computed in this region and the potential solved, but only the region that
overlaps with the active region of the grid itself is used to calculate accelerations.
Simply interpolating the potential without feeding it back to higher levels leads to errors in the potential at more

refined levels, due to the build-up of errors during the interpolation of coarse boundary values. In addition, neighboring
subgrids are not guaranteed to generate the same potential values because of the lack of a coherent potential solve
including the whole grid hierarchy. In an attempt to partially alleviate this problem, we allow for an iterative procedure
across sibling grids, in which the potential values on the boundary of grids can be updated with the potential in ‘active’
regions of neighboring subgrids. To prevent overshoot, we average the potential on the boundary and allow for (by
default) 4 iterations, with the number of iterations determined by a parameter specified at runtime. This procedure
can help in many cases, but does not necessarily produce a coherent solution across all grids and so does not completely
solve the problem; we are working on a slower but more accurate method that does a multigrid solve across the whole
grid (Reynolds et al., in preparation).
At this point it is useful to emphasize that the effective force resolution of an adaptive particle-mesh calculation is

approximately twice as coarse as the grid spacing at a given level of resolution.

5.2. N-body Dynamics

Enzo uses a particle-mesh N-body method to calculate the dynamics of collisionless systems (Hockney & Eastwood
1988). This method follows trajectories of a representative sample of individual particles that sample the phase
space of the dark matter distribution, and is much more efficient than a direct solution of the Boltzmann equation in
essentially all astrophysical situations for the levels of accuracy that are required for simulations of structure formation.
As described earlier, the gravitational potential is computed by solving the elliptic Poisson’s equation (Eq. 8) and
differencing the potential to find accelerations, which are then interpolated back to particles. This acceleration is time-
centered (because the underlying gravitating mass field is approximately time-centered), and so we have accelerations
gn+1/2 for each particle. These are used to update the particle positions and velocities starting from xn and vn using
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a standard drift-kick-drift technique (Hockney & Eastwood 1988):

xn+1/2=xn +
∆t

2an
vn

vn+1=vn

(

1− ȧn+1/2

an+1/2

)

+
∆t

an+1/2
gn+1/2 (62)

xn+1=xn+1/2 +
∆t

2an+1
vn+1

Particles are stored in the most highly refined grid patch at the point in space where they exist, and particles that
move out of a subgrid patch are sent to the grid patch covering the adjacent volume with the finest spatial resolution,
which may be of the same spatial resolution, coarser, or finer than the grid patch from which the particles moved.
This takes place in a communication process at the end of each timestep on a level.
To avoid unphysical point-mass effects, Enzo provides a parameter that governs the maximum level at which particles

will be regarded as point masses. At higher levels, contributions from particles to the gravitating mass field will be
smoothed over a spherical region centered at each particle’s position.

6. MICROPHYSICS

6.1. Chemistry

While it is often safe to assume that species (both chemical and ionization) within a gas can be treated as being in
equilibrium, in some regimes that are found in astrophysics this assumption leads to considerable error. For example,
the cooling and collapse of primordial gas in Population III star formation is dominated by molecular hydrogen, which
in the absence of dust forms via an inefficient pair of collisional processes that depend heavily on the local, highly
non-equilibrium population of free electrons. As a result, when modeling primordial star formation it is critical to
follow the non-equilibrium evolution of the chemical species of hydrogen, including molecular hydrogen and deuterium.
The primordial non-equilibrium chemistry routines used in Enzo were first described by Abel et al. (1997) and

Anninos et al. (1997), but have since been extended with updated reaction rates and the inclusion of deuterium species
(McGreer & Bryan 2008; Turk 2009). These routines follow the non-equilibrium chemistry of a gas of primordial
composition with 12 total species: H, H+, He, He+, He++, H−, H+

2 , H2, e
−, D, D+, and HD. Enzo also computes

the radiative heating and cooling of the gas from atomic and molecular line excitation, recombination, collisional
excitation, free-free transitions, Compton scattering of the cosmic microwave background, as well as several models for
a metagalactic UV background that heat the gas via photoionization and photodissociation (see Section 6.2 for more
details). The chemical and thermal states of the gas can be updated either at the same hydrodynamical timestep (i.e.,
decoupled and operator-split) or through the same subcycling system (i.e., a coupled chemical and thermal system).
The default behavior of Enzo is to couple these two systems at subcycles of the hydrodynamic timestep; this results
in updates to both the chemical and thermal states of the gas (which also inform the temperature, the reaction rate
coefficients and the cooling functions of the gas) on timescales that are faster than those of the gas dynamics. The
gamma used by Enzo to compute the temperature of the gas from the energy and density characteristics utilizes a
variable gamma that includes effects of the rotational state of molecular hydrogen, enabling it to vary from 5/3 (fully-
atomic) to 7/5 (fully molecular). This further coupling of the chemical and thermal states of the gas underscores the
need for coupled chemistry and radiative cooling solutions.
Input parameters to Enzo govern the chemical species that are updated during the course of the simulation. This

can include only the atomic species (H, H+, He, He+, He++, and e−), those species relevant for molecular hydrogen
formation (H2, H

+
2 , and H−), and can further include deuterium and its species (D, D+, and HD). A total of 9 kinetic

equations are solved for the 12 species mentioned above, including 29 kinetic and radiative processes. See Table 2 for
the collisional processes and Table 3 for the radiative processes solved.
The chemical reaction equation network is technically challenging to solve due to the huge range of reaction timescales

involved. The characteristic times for creation and destruction of the various species and reactions can differ by many
orders of magnitude and are often very sensitive to the chemical and thermal state of the gas. This makes a fully-
implicit scheme, with convergence criteria and error tolerance, strongly preferable for such a set of equations. However,
most implicit schemes require an iterative procedure to converge, and for large networks (such as this one) an iterative,
fully-implicit method can be very time-consuming and computationally costly for a relatively small increase in accuracy.
At the present time, this makes fully-implicit methods somewhat undesirable for large, three-dimensional simulations.

Enzo solves the rate equations using a method based on a semi-implicit formulation in order to provide a stable,
positive definite and first-order accurate solution. The update discretization splits chemical changes into formation
components and destruction components and updates with a mixed set of time states, as described in Anninos et al.
(1997). The formation components of species Si are computed at the current subcycle time, where the contribution
of species Si to its own destruction components are computed at the updated time; all other contributions to the
destruction component are computed at the current time. This mixed state improves accuracy, ensures species values
are positive definite, and is equivalent to one Jacobi iteration of an implicit Euler solve. This technique is optimized by
taking the chemical intermediaries H−and H+

2 , which have large rate coefficients and low concentrations, and grouping
them into a separate category of equations. Due to their fast reactions, these species are very sensitive to small changes
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Collisional Processes

(1) H + e− → H+ + 2e−

(2) H+ + e− → H + γ
(3) He + e− → He+ + 2e−

(4) He+ + e− → He + γ
(5) He+ + e− → He++ + 2e−

(6) He++ + e− → He+ + γ

(7) H + e− → H− + γ
(8) H− + H → H2 + e−

(9) H + H+ → H+
2 + γ

(10) H+
2 + H → H2 + H+

(11) H2 + H+ → H+
2 + H

(12) H2 + e− → 2H + e−

(13) H2 + H → 3H
(14) H− + e− → H + 2e−

(15) H− + H → 2H + e−

(16) H− + H+ → 2H
(17) H− + H+ → H+

2 + e−

(18) H+
2 + e− → 2H

(19) H+
2 + H− → H2 + H

(20) 2H + H2 → 2H2

(21) 2H + H → H2 + H
(22) H2 + H2 → H2 + 2H
(23) 3H → H2 + H

(24) D + e− → D+ + 2e−

(25) D+ + e− → D + γ
(26) H+ + D → H + D+

(27) H + D+ → H+ + D
(28) H2 + D+ → HD + H+

(29) HD + H+ → H2 + D+

(30) H2 + D → HD + H
(31) HD + H → H2 + D
(32) H− + D → HD + e−

Table 2
Collisional processes solved in the Enzo nonequilibrium primordial chemistry routines.

in the more abundant species and are (at almost all times in astrophysical calculations) close to their equilibrium values.
Attempting to resolve their formation and destruction times would necessitate extremely small timesteps. Therefore,
reactions governing these two species can be decoupled from the rest of the network and treated independently through
analytic solutions for equilibrium values. This allows a significant speedup in the solution speed, as the timestepping
scheme is applied only to the slower 7- or 10-species network (depending on whether deuterium is included or not),
which will be much closer to the overall hydrodynamic timestep of the simulation.
Even so, the accuracy and stability of the scheme is maintained by subcycling the rate solver within a single

hydrodynamic timestep. These subcycle timesteps are determined so that the estimated fractional change in the
electron concentration is limited to no more than 10% per timestep; additional criteria may be applied based on the
expected change in internal energy from radiative cooling and from chemical heating due to the formation of molecular
hydrogen.
It is important to note the regime in which this model is valid. According to Abel et al. (1997) and Anninos et al.

(1997), the reaction network is valid for temperatures between 100 − 108 K. The original model discussed in these two
references was only claimed to be valid up to nH ∼ 104 cm−3. However, addition of the 3-body H2 formation process
(equation 20 in Table 2) allows correct modeling of the chemistry of the gas up until the point where collisionally-
induced emission from molecular hydrogen becomes an important cooling process, which occurs at nH ∼ 1014 cm−3.
A further concern is that the optically thin approximation for radiative cooling eventually breaks down, which occurs
before nH ∼ 1016−1017 cm−3 in gas of primordial composition. Beyond this point, modifications to the cooling function
that take into account the non-negligible opacity in the gas must be made, as discussed by Ripamonti & Abel (2004),
and was put into Enzo for the work published in (Turk et al. 2009; Turk 2009). The formation of molecular hydrogen
as catalyzed by dust was recently added to Enzo to enable studies of low-metallicity gas, as well as the inclusion of
appropriate timestepping criteria to account for the input of ionizing radiation. Even with these modifications, a
completely correct description of the cooling of primordial gas at very high densities requires some form of radiation
transport, which will greatly increase the cost of the simulations. Furthermore, at very high densities, the stiffness of
the molecular hydrogen reaction rates may require better than a first-order accurate solution; as such, the transition
to this regime will likely necessitate a fully-implicit, iterative solver.

6.2. Radiative Cooling and Heating

Enzo has multiple methods for computing the energy change from radiative cooling and heating. All of them assume
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Radiative Processes

(33) H + γ → H+ + e−

(34) He + γ → He+ + e−

(35) He+ + γ → He++ + e−

(36) H− + γ → H + e−

(37) H2 + γ → H+
2 + e−

(38) H+
2 + γ → H + H+

(39) H+
2 + γ → 2H+ + e−

(40) H2 + γ → H∗
2 → 2H

(41) H2 + γ → 2H
(42) D + γ → D+ + e−

Table 3
Radiative processes solved in the Enzo nonequilibrium primordial chemistry routines.

that the gas can be modeled either as completely optically thin or with a simple, local approximation to optical
thickness. In this section, we describe the methods for computing the cooling rates from metal-free and metal-enriched
gas. Sample cooling curves for each of Enzo’s primary cooling methods are shown in Figure 3.

6.2.1. Primordial Cooling

As discussed in Section 6.1, the set of reactions that characterize a metal-free gas is simple enough to be computed
in non-equilibrium during even very large simulations. Similarly, the radiative cooling of metal-free gas is solved
by directly computing the cooling and heating rates from the following individual processes for atomic H and He:
collisional excitation and ionization, recombination, free-free emission, Compton scattering off of the cosmic microwave
background (CMB), and photo-heating from a metagalactic ultraviolet background. If the H2 chemistry network
is enabled, the following H2 cooling processes are also considered: ro-vibrational transitions (Glover & Abel 2008;
Galli & Palla 1998), heating and cooling from molecular formation and destruction (Turk et al. 2009), and collision-
induced emission (Ripamonti & Abel 2004). If Deuterium chemistry is enabled, then rotational transitions of HD
(Galli & Palla 1998; Lepp & Shull 1983) are treated as well. The radiative cooling calculation is coupled to the update
of the chemistry network such that they both occur within the same subcycling loop. This is necessary in regimes
where rapid cooling or change in the ionization state occur, as this will influence the chemical kinetic rate coefficients
through both changes in energy and the equation of state of the gas. In addition to the subcycle timestepping contraints
mentioned in Section 6.1, the subcycle timestep is also not permitted to exceed 10% of the cooling time, tcool = e/ė.
A metagalactic background affects the gas through both photo-heating and photo-ionization. These are treated by

including redshift-dependent photo-ionization and photo-heating rate terms in the chemistry and cooling equations
for H I, He I, and He II. The black curves in Figure 3 show cooling rates for a metal-free gas with number density
nH = 10−4 cm−3 both with and without a radiation background. More detail on the specific UV backgrounds in Enzo

will be presented in Section 7.1.

6.2.2. Metal Cooling

A proper treatment of the cooling from metals is significantly more challenging due to the large number of chemical
reactions and energy transitions that must be taken into account for each element. Because of this, most metal
cooling methods employ significant assumptions in order to seek out a balance between accuracy and speed. There
are two primary metal cooling methods available in Enzo. The simpler of the two uses the analytic cooling function
of Sarazin & White (1987), which assumes a fully ionized gas with a constant metallicity of 0.5 Z⊙. The cooling rate
produced by this cooling function is shown by the red curve in Figure 3.
A more sophisticated method makes use of multidimensional cooling and heating rate tables computed with the

photo-ionization code Cloudy (Ferland et al. 1998). This method, detailed in Smith et al. (2008, 2011), works by
using Cloudy to compute the cooling and heating rates from the metal species only. The primary assumption made is
that of ionization equilibrium. The tables can vary along up to five dimensions: density, metallicity, electron fraction,
redshift (for an evolving metagalactic UV background), and temperature. Tables can be created for any abundance
pattern for elements up to atomic number 30 (Zn) and for any incident radiation field. Cooling from the standard
Enzo non-equilibrium cooling module is applied on top of the metal contributions. The contribution of metals to the
cooling is computed within the same subcycling loop as the coupled primordial chemistry and cooling solver. The blue
curves in Figure 3 show cooling rates calculated with this method for a gas with number density nH = 10−4 cm−3 and
metallicity of 0.5 Z⊙.

7. RADIATION

7.1. Homogeneous radiation background

Enzo supports the use of a set of spatially uniform (but possibly time-varying) radiation fields that can interface
with the chemistry and cooling/heating routines described in Section 6. Many of these use fits to the H, He and
He+ ionizing and photo-ionization heating rates that are of the form

rate = k0(1 + z)α exp

(

β(z− z0)
2

1 + γ(z + z1)2

)

(63)



24

101 102 103 104 105 106 107 108 109

T [K]

10-29

10-28

10-27

10-26

10-25

10-24

10-23

10-22

10-21

Λ
/
n
2 H
 [
e
rg

 s
−1

 c
m

3
]

H/He

Cloudy, 0.5 Z⊙
SW87, 0.5 Z⊙

Figure 3. Radiative cooling rates from the various cooling methods available in Enzo. The black curves show cooling rates from a
gas with primordial composition using the non-equilibrium chemistry network. The blue curves are for a gas with metallicity of 0.5 Z⊙

computed with the Cloudy cooling method. The solid black and blue lines assume collisional processes only while the dashed lines include
photo-ionization and photo-heating from a UV metagalactic background at z = 0 with a gas number density of 10−4 cm−3. The rates
shown by the dashed lines indicate a net heating below T ∼ 104.5, where the rapid change in rate is evident (the curve is an absolute value
so it can be shown on a log plot). The red curve is the tabulated cooling function of Sarazin & White (1987), which assumes a fully ionized
gas with metallicity of 0.5 Z⊙.

where the constant coefficients α, β, γ, z0 and z1 are fits from the literature. For radiation field types 1-3 (numbered
as they appear in the Enzo source code and simulation parameter values), we give the coefficients for the photoion-
ization (and photo-heating) rates of H, He, and He+ in Table 4. Radiation background types 1 and 2 are based on
Haardt & Madau (1996) with two different intrinsic quasar spectra slopes, while Type 3 is from Haardt & Madau
(2012), modified to match the normalized field found in Kirkman et al. (2005).
The remainder of the radiation field types either build on the fits in Types 1-3 or use a completely different form

and therefore we describe them in the text rather than in Table 4. Type 4 is the same as Type 3 but also adds X-ray
Compton heating from Madau & Efstathiou (1999), using equations (4) and (11) of that paper.
Homogeneous radiation field types 5 and 6 start with a spectral shape that is then integrated against the appro-

priate H, He, and He+, cross-sections to compute the ionization and photo-ioniziation heating rates (we use 400 bins
logarithmically spaced from 0.74 eV to 7.24× 109 eV). In particular, Type 5 has a hard, featureless quasar-like power
law spectrum fν = fHIν

α0 , where α0 = 1.5 by default and the spectrum is normalized at the HI ionization edge. Type
6 has the same spectrum, but attenuated by a column density of 1022 cm−3 neutral hydrogen.
Types 8, 9, and 14 have only a photo-dissociating Lyman-Werner flux, with Type 8 being constant and Type 9 using

the redshift-dependent results of Trenti & Stiavelli (2009). Type 14 uses a fit from Wise & Abel (2005) for the range
6 < z < 50, constant for z < 6, and zero for z > 50. Other types are either undefined or currently unused.

7.2. Radiation transport: ray tracing

Stars and black holes strongly affect their surroundings through radiation. Radiation transport is a well-studied
problem; however, its treatment in multidimensional calculations is difficult because of the dependence on seven
variables – three spatial, two angular, frequency, and time. The non-local nature of the thermal and hydrodynamical
response to radiation sources further adds to the difficulty. Here we briefly describe Enzo’s ray tracing implementation
Enzo+Moray, which is presented in full detail in Wise & Abel (2011) with seven code tests and six applications.
We solve the radiative transfer equation in comoving coordinates (given by Equation 20). We can make some

appropriate approximations to reduce the complexity of this equation in order to include radiation transport in
numerical calculations. Typically timesteps in dynamic calculations are small enough so that ∆a/a ≪ 1, therefore
aem/a ≈ 1 in any given timestep, reducing the second term to n̂∂Iν/∂x. To determine the importance of the third
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Table 4
Homogeneous radiation field coefficients

Element k0 α β γ z0 z1
Radiation Type 1 (Haardt & Madau 1996) for the case αq = 1.5

H ionization 6.7× 10−13 0.43 1/1.95 0 2.3 0
He ionization 6.3× 10−15 0.51 1/2.35 0 2.3 0
He+ ionization 3.2× 10−13 0.50 1/2.00 0 2.3 0
H heating 4.7× 10−24 0.43 1/1.95 0 2.3 0
He heating 8.2× 10−24 0.50 1/2.00 0 2.3 0
He+ heating 1.6× 10−25 0.51 1/2.35 0 2.3 0

Radiation Type 2 (Haardt & Madau 1996) for the case αq = 1.8

H ionization 5.6× 10−13 0.43 1/1.95 0 2.3 0
He ionization 3.2× 10−15 0.30 1/2.60 0 2.3 0
He+ ionization 4.8× 10−13 0.43 1/1.95 0 2.3 0
H heating 3.9× 10−24 0.43 1/1.95 0 2.3 0
He heating 6.4× 10−24 0.43 1/2.10 0 2.3 0
He+ heating 8.7× 10−26 0.30 1/2.70 0 2.3 0

Radiation Type 3 modified Haardt & Madau (2012)

H ionization 1.04× 10−12 0.231 -0.6818 0.1646 1.855 0.3097
He ionization 1.84× 10−14 -1.038 -1.1640 0.1940 1.973 -0.6561
He+ ionization 5.79× 10−13 0.278 -0.8260 0.1730 1.973 0.2880
H heating 8.86× 10−25 -0.0290 -0.7055 0.1884 2.003 0.2888
He heating 5.86× 10−24 0.1764 -0.8029 0.1732 2.088 0.1362
He+ heating 2.17× 10−25 -0.2196 -1.070 0.2124 1.1782 -0.9213

term, we evaluate the ratio of the third term to the second term. This is HL/c, where L is the simulation box length.
If this ratio is ≪ 1, we can ignore the third term. For example at z = 5, this ratio is 0.1 when L = c/H(z = 5) = 53
proper Mpc. In large boxes where the light crossing time is comparable to the Hubble time, then it becomes important
to consider cosmological redshifting and dilution of the radiation. Thus equation (20) reduces to the non-cosmological
form in this local approximation,

1

c

∂Iν
∂t

+ n̂
∂Iν
∂x

= −κνIν + jν . (64)

We choose to represent the source term jν as point sources of radiation (e.g. stars, quasars) that emit radial rays that
are propagated along the direction n̂.
Ray tracing is an accurate method to propagate radiation from point sources on a computational grid as long as

there are a sufficient number of rays passing through each cell. Along a ray, the radiation transfer equation reduces to

1

c

∂P

∂t
+
∂P

∂r
= −κP, (65)

where P is the photon number flux along the ray. To sample the radiation field at large radii, ray tracing requires at
least Nray = 4πR2/(∆x)2 rays to sample each cell with one ray, where R is the radius from the source to the cell and
∆x is the cell width. If one were to trace Nray rays out to R, the cells at a smaller radius r would be sampled by, on
average, (r/R)2 rays, which is computationally wasteful because only a few rays per cell are required to provide an
accurate calculation of the radiation field (as we will show later).
We avoid this inefficiency by utilizing adaptive ray tracing (Abel & Wandelt 2002), which is based on Hierarchical

Equal Area isoLatitude Pixelation (HEALPix; Górski et al. 2005) and progressively splits rays when the sampling
becomes too coarse. In this approach, the rays are traced along normal directions of the centers of the HEALPix pixels
that evenly divide a sphere into equal areas. The rays are initialized at each point source with the photon luminosity
(photon s−1) equally spread across Npix = 12× 4l rays, where l is the initial HEALPix level. We usually find l = 0 or
1 is sufficient because these coarse rays will usually be split before traversing the first cell.
The rays are traced through the grid in a typical fashion (e.g. Abel et al. 1999), in which we calculate the next cell

boundary crossing. The ray segment length crossing the cell is

dr = R0 − min
i=1→3

[(xcell,i − xsrc,i)/n̂ray,i] , (66)

where R0, n̂ray, xcell,i, and xsrc,i are the initial distance traveled by the ray, normal direction of the ray, the next
cell boundary crossing in the i-th dimension, and the position of the point source that emitted the ray, respectively.
However before the ray travels across the cell, we evaluate the ratio of the face area Acell of the current cell and the
solid angle Ωray of the ray,

Φc =
Acell

Ωray
=
Npix(∆x)

2

4πR2
0

. (67)

If Φc is less than a pre-determined value (usually > 3), the ray is split into 4 child rays. The pixel numbers of the
child rays p′ are given by the “nested” scheme of HEALPix at the next level, i.e. p′ = 4× p+ [0, 1, 2, 3], where p is the
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original pixel number. The child rays (1) acquire the new normal vectors of the pixels, (2) retain the same radius of
the parent ray, and (3) get a quarter of the photon flux of the parent ray. Afterward, the parent ray is discontinued.
A ray propagates and splits until at least one of the following conditions is met: (1) the photon has traveled c×dtP ,

where dtP is the radiative transfer timestep; (2) its photon flux is almost fully absorbed (> 99.9%) in a single cell, which
significantly reduces the computational time if the radiation volume filling fraction is small; (3) the photon leaves the

computational domain with isolated boundary conditions; or (4) the photon travels
√
3 of the simulation box length

with periodic boundary conditions. In the first case, the photon is halted at that position and saved, where it will
be considered in the solution of Iν at the next timestep. In the next timestep, the photon will encounter a different
hydrodynamical and ionization state, hence κ, in its path. Furthermore any time variations of the luminosities will be
retained in the radiation field. This is how this method retains the time derivative of the radiative transfer equation.
The last restriction prevents our method from considering sources external to the computational domain. However, a
uniform radiation background can be used in conjunction with ray tracing that adds the background intensity to the
local radiation field.
The radiation field is calculated by integrating Equation (65) along each ray, which is done by considering the

discretization of the ray into segments. In the following description, we assume the rays are monochromatic for
simplicity. For convenience, we express the integration in terms of optical depth τ =

∫

κ(r, t) dr, and for a ray segment

dτ = σabs(ν)nabsdr. (68)

Here σabs and nabs are the cross section and number density of the absorbing medium, respectively. In the static case,
equation (65) has a simple exponential analytic solution, and the photon flux of a ray is reduced by

dP = P × (1− e−τ ) (69)

as it crosses a cell. We equate the photo-ionization rate to the absorption rate, resulting in photon conservation
(Abel et al. 1999; Mellema et al. 2006). Thus the photo-ionization and photo-heating rates associated with a single
ray (kph and Γph, respectively) are

kph =
P (1− e−τ )

nabs Vcell dtP
, (70)

Γph = kph (Eph − Ei), (71)

where Vcell is the cell volume, Eph is the photon energy, and Ei is the ionization energy of the absorbing material. In
each cell, the photo-ionization and photo-heating rates from each ray in the calculation are summed. After the ray
tracing is complete, these rates are used as inputs to the solver described in Section 2.2.5 to update the ionization,
chemical, and energy states of the gas in each cell.

7.3. Radiation transport: Flux-limited diffusion

In addition to the ray-tracing approach for radiation transport described in Section 7.2, Enzo currently includes
a field-based radiation transport solver for problems posed on uniform (i.e. non-AMR, non-static mesh refinement)
grids, which has been tuned for large-scale simulations involving many ionizing sources. Detailed explanations of the
model and solution approach may be found in Norman et al. (2008), Reynolds et al. (2009), Norman et al. (2009), and
Norman et al. (2013), the salient features of which are reproduced here. In addition, comparisons of this solver with
other astrophysical radiation transport solvers may be found in Iliev et al. (2009). Enzo’s field-based radiation solver
focuses on a flux-limited diffusion approximation for cosmological radiative transfer, with couplings to both the gas
energy and chemical number densities.
The system of equations (21-22) along with the chemical network (Equation 19) is solved independently of Enzo’s

hydrodynamics, gravity and dark-matter solvers (Sections 4.1-5.2), thereby allowing the advective portions of Equations
(21) and (19) to be taken care of by the fluid solvers. Due to the disparate time scales between radiation transport
and chemical ionization and heating, the remainder of these equations is solved using an operator-split algorithm.
Within a given timestep to evolve (En

r , e
n
c , n

n
i ) → (En+1

r , en+1
c , nn+1

i ), we first evolve equation (21): (En
r , e

n
c , n

n
i ) →

(En+1
r , enc , n

n
i ). This uses an implicit Euler time discretization, and a second-order centered finite difference spatial

discretization, resulting in a large linear system of equations. These are solved using a preconditioned conjugate
gradient iteration, where the preconditioner consists of a geometric multigrid solver. Both of these linear solvers are
provided by the HYPRE linear solver library (see Falgout & Yang 2002, 2012).
We then evolve the heating and chemistry system, Equations (22) and (19): (En+1

r , enc , n
n
i ) → (En+1

r , en+1
c , nn+1

i ).
Due to the lack of spatial derivatives (since advection is handled elsewhere), this system is a coupled system of nonlinear
ordinary differential equations. This utilizes an implicit quasi-steady-state approximation, formulated as follows. We
consider the modified equations,

∂ec
∂t

=−2ȧ

a
ec + Γ

(

Ēr, n̄i
)

− Λ
(

Ēr, n̄i
)

, (72)

∂ni
∂t

=ki,j (ēc) nen̄j − niΓ
ph
i

(

Ēr

)

, i = 1, . . . , Ns, (73)
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where we have defined the time-centered “background” states Ēr =
(

En
r + En+1

r

)

/2, n̄i =
(

nni + nn+1
i

)

/2 and ēc =
(

enc + en+1
c

)

/2. These equations may each be solved analytically for their solution at the time t, which we denote by

ec(t)= sole
(

t, Ēr, n̄i, e
n
c

)

, (74)

ni(t)= solni

(

t, Ēr, ēc, n
n
i

)

, i = 1, . . . , Ns. (75)

We then define a nonlinear system of equations to compute the time-evolved solutions
(

En+1
r , en+1

c , nn+1
i

)

as

fe(e
n+1
c , nn+1

i )≡ en+1
c − sole

(

tn+1, Ēr, n̄i, e
n
c

)

= 0, (76)

fni
(en+1

c , nn+1
i )≡ni(t)− solni

(

t, Ēr, ēc, n
n
i

)

= 0, i = 1, . . . , Ns. (77)

This system of Ns + 1 nonlinear equations is solved using a damped fixed point iteration,

Ui = Ui − λfi(U), i = 1, . . . , Ns + 1,

where U is a vector containing the solutions to equations (76-77). In this iteration, for the first 50 sweeps we use
λ = 1. For more challenging problems where this does not converge, we switch to a damping parameter of λ = 0.1.

8. OTHER PHYSICS

8.1. Thermal conduction

Enzo implements the equations of isotropic heat conduction in a manner similar to that of Parrish & Stone (2007).
The isotropic flux of heat is given by equation (24) and we use a value for the Spitzer conduction coefficient, κsp =

4.6× 10−7 T5/2 erg s−1 cm−1 K−1 (Spitzer 1962). In this situation we are using a value for the Coulomb logarithm,
log Λ = 37.8, that is appropriate for the intracluster medium (Sarazin 1988) – in astrophysically-relevant, fully ionized
plasmas this value varies by no more than 50% (see, e.g., Smith et al. 2013, submitted). It is quite possible that
the local heat flux computed in this way can become unphysically large in the high-temperature, low-density cluster
regime when using this formulation; therefore, we take into account the saturation of the heat flux (Cowie & McKee
1977) at a maximum level of

Fsat ≃ 0.4nekbT

(

2kbT

πme

)1/2

. (78)

To ensure a smooth transition between the Spitzer and saturated regimes, we define an effective conductivity using
the formalism of Sarazin (1988)

κeff =
κcond

1 + 4.2λe/ℓT
, (79)

where λe is the electron mean free path and ℓT ≡ T/|∇T | is the characteristic length scale of the local temperature
gradient. We also assume that the conductivity of the plasma can be described in terms of an effective conductivity,
which can be expressed as a fraction fsp of the Spitzer conductivity (where fsp ≤ 1.0 are considered physically realistic
values). This takes into account physical processes below the resolution limit of the simulation, such as tangled
magnetic fields, that can suppress heat transport.
Thermal conduction in a plasma can be strongly affected by the presence of magnetic field lines, which may suppress

heat flow perpendicular to the magnetic field. In that case, we allow for heat transport only parallel to the magnetic
field lines in magnetohydrodynamic simulations. Mathematically, this is given by equation (25. As with the isotropic
thermal conduction, we allow a multiplicative factor fsp to take into account the possible suppression of magnetic fields
below the resolution limit of the simulation.
Both isotropic and anisotropic thermal conduction in Enzo are treated in an operator-split manner. Furthermore,

within the heat transport module, transport along the x, y, and z directions are computed in a directionally-split
fashion, with heat flux along each direction calculated at the + and - faces of the cell using the arithmetic mean of the
cell-centered temperature in cells n and n+1 or n− 1 and n, respectively (empirically, this is more stable than taking
the geometric mean of the cell-centered temperatures). The addition of transport along magnetic field lines requires
the calculation of cross-terms in the temperature derivatives at cell faces, which can result in spurious oscillations in the
temperature field in regions where the temperature gradient is strong in more than one spatial direction. Controlling
these oscillations requires the addition of a flux limiter for calculations of the temperature field. In this case, we choose
the monotonized central difference flux limiter (van Leer 1977a), which serves to maintain numerical stability without
sacrificing substantial speed or accuracy.

8.2. Star formation and feedback

8.2.1. Overview

Due to the computationally unfeasible number of stars in a galaxy (1011) and the lack of detailed understanding of
star formation, a number of phenomenological star formation models are included in Enzo. Broadly speaking, these
methods all work in similar ways: at a specified time interval, all grid cells that are at the highest local level of



28

refinement (i.e., that have no child cells) are examined to see if they meet a set of criteria for star formation. This may
simply be a baryon density threshold, but can also include more complex tests, such as an examination of local cooling
and dynamical time scales, molecular hydrogen fraction, metallicity, and converging gas flows. If the star formation
criteria are met, some mass of gas is taken away from the cell in question and a “star particle” with the same mass is
placed in the center of that cell with the same velocity as the removed gas. This star particle is then allowed to inject
mass, momentum, thermal energy, metals, and possibly magnetic fields and/or cosmic ray populations into its local
environment. In general, the particle is treated as an ensemble of stars, with feedback properties occuring over time
according to the assumed initial mass function of the stellar population.
In the following sections, we describe some of the more widely-used star formation and feedback methods used in Enzo.

We note that similar methods have been employed in many other codes used for galaxy formation, with comparable
implementations for both star formation and feedback in other grid-based codes. With regards to particle-based codes,
star formation is broadly similar in implementation, though feedback is typically implemented in a very different way
due to the Lagrangian nature of the method (see, e.g., Springel & Hernquist 2003a,b; Hernquist & Springel 2003).

8.2.2. Cen & Ostriker

The Cen & Ostriker method is a heuristic model of star formation on galactic scales. This method, first described by
Cen & Ostriker (1992), assumes that stars form in substantially overdense, converging, and gravitationally unstable
gas. Algorithmically, each cell at the locally highest level of refinement is examined at each timestep to see if it meets
the critiera for star formation. Star particles are allowed to form in a cell if the following criteria are met:

ρb/ρ̄b≥ η, (80)

∇ · vb< 0, (81)

tcool<tdyn ≡
√

3π/32Gρtot, (82)

mb>mJ ≡ G−3/2ρ
−1/2
b c3

[

1 +
δρd
δρb

]−3/2

(83)

where η is the user-defined overdensity threshold, and mb and mj are the baryonic mass in the cell and the Jeans mass
of the cell, and c is the isothermal sound speed in the cell. If all of these criteria are met, the mass of a star particle
is calculated as m∗ = mb

∆t
tdyn

f∗eff , where f∗eff is the star formation efficiency parameter.

If m∗ is greater than a minimum star mass m∗min, a particle is created and given several attributes: mass, a unique
index number, the time of formation tform, the local dynamical free-fall time tdyn and the metallicity fraction of
the baryon gas in the cell fZb. There is a user-defined minimum dynamical time Tdyn,min, which is observationally
motivated and affects the feedback rates (see below). The particle is placed in the center of the cell and given the
same peculiar velocity as the gas in the cell, and is then treated in the same manner as the dark matter particles. An
amount of gas corresponding to the new particle’s mass is removed from the cell.
The star formation algorithm creates each star particle instantaneously. However, feedback should take place over a

significant timescale, as all of the stars contained within the “star particle” would in reality form (and massive stars
would die) over a substantial period of time. Therefore, we assume that for the purposes of feedback that the mass of
stars formed at a time t with timestep ∆t is:

∆msf =

∫ t+∆t

t

dM

dt
dt =

∫ τ1

τ0

m∗τe
−τdτ = m∗

[

(1 + τ0)e
−τ0 − (1 + τ1)e

−τ1
]

(84)

where τ0 = (t− tform)/tdyn and τ1 = (t+∆t− tform)/tdyn.
During this timestep, the star particle returns metal-enriched gas and thermal energy from supernovae and from

stellar winds. Since massive stars have very short lifetimes, we assume that there is an immediate feedback of some
fraction fSN of the rest energy from the stars into the gas, such that Eadd = fSN∆msfc

2, where c is the speed of
light. In addition, a fraction fZ∗ of the stellar mass is fed back in the form of metals. Finally, a fraction of the mass
fm∗ is added back into the gas along with momentum in order to simulate the mass ejection from all stars (not just
supernovae).
There are six user-defined parameters in this algorithm: three deal with star formation (η, m∗min and tdyn,min), and

three deal with feedback (fSN, fZ∗ and fm∗). Some of these parameters are completely free, while others can be guided
by observation or theory. For example, the supernova feedback parameter, fSN, can be constrained by assuming that,
for every 200M⊙ of stars created, one supernova occurs, and this event feeds back approximately 1051 ergs of thermal
energy, giving:

fSN =
1051 erg

200 M⊙ c2
≃ 3× 10−6 (85)

The metal yield fZ∗, defined as the mass in metals produced per unit mass of stars created, can be constrained
by, e.g., the theoretical model of Woosley & Weaver (1995). This model suggests that fZ∗ = 0.02 is an appropriate
number. The minimum dynamical time is set to be tdyn,min = 107 years to agree with the SN timescales seen in nearby
OB associations.
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The other parameters, such as the overdensity threshold η, minimum star massm∗min, and mass ejection fraction fm∗

are not well constrained either theoretically or observationally. Indeed, m∗min is a purely numerical parameter designed
to keep the code from producing too many star particles, and thus has no observational or theoretical counterpart.
The η parameter, on the other hand, nominally has physical meaning (i.e., the density above which star formation
must occur on a very short timescale in a self-gravitating cloud); however, in the vast majority of simulations the
densities that are reachable are nowhere near the densities of protostellar clouds, and thus this parameter becomes a
rough proxy for finding the densest environments in a given simulation.

8.2.3. Schmidt-Law method

This method of star particle creation is designed to reproduce the global Schmidt law of star formation (Kravtsov
2003; Schmidt 1959). This algorithm is deliberately minimal, and is explicitly geared towards modeling star formation
in a phenomenological way on kiloparsec scales. Stars are assumed to form with a characteristic gas timescale τ∗
such that ρ̇∗ = ρgas/τ∗. This “constant efficiency” model on the scale of star formation regions is well motivated
observationally (Young et al. 1996; Wong & Blitz 2002). Star formation is only allowed to take place in very dense
regions with ρgas ≥ ρSF, where ρSF is a constant proper (as opposed to comoving) density threshold. No other criteria
are imposed. Typical choices for τ∗ and ρSF are τ∗ = 4 Gyr and ρSF = 1.64 M⊙ pc−3 (nH ∼ 50 cm−3). The adopted
timescale is derived from the observationally-determined normalization of the Schmidt law, and the density threshold
is determined by observations of star forming regions on ∼ 100 pc scales.
Algorithmically, the star formation events in the Schmidt-law algorithm are assumed to occur once every global

timestep (with the constraint ∆t0 ≤ 107 years). In cells where star formation is determined to occur (i.e. ρgas ≥ ρSF),
star particles with a mass of m∗ = ρ̇∗Vcell∆t0 (where Vcell is the volume of the mesh cell) are assumed to form
instantaneously in a manner similar to that described in Section 8.2.2. The Enzo implementation of this algorithm is
similar, except that instead of forming stars only at the root grid timestep, we allow stars to form at the timestep of
the highest level of resolution at any particular point in space. As can be seen from the equation for m∗ above, this can
result in very small stellar masses. To avoid memory and processor time issues related to having very large numbers of
star particles we impose a threshold mass M∗,min such that a star particle only forms if m∗ ≥M∗,min. An appropriate
choice of M∗,min does not significantly change the star overall star formation history of a simulation, though it may
delay the onset of star formation in a given cell relative to a simulation without a particle mass threshold.
Each “star particle” is assumed to represent an ensemble of stars and is treated as a single-age stellar population

(as in the previous section). Kravtsov assumes that the stellar initial mass function (IMF) is described by a Miller &
Scalo functional form with stellar masses between 0.1 and 100 M⊙ (Miller & Scalo 1979). All stars in this IMF with
M∗ > 8M⊙ deposit 2×1051 erg of thermal energy and a mass fzM∗ of metals into the cell in which they form without
delay, with fz ≡ min(0.2, 0.01 M∗ − 0.06) (i.e. instantaneous deposition of metals). The definition of fz is a rough
approximation of the results of Woosley & Weaver (1995).

8.2.4. H2-regulated method

The methods described in the previous two sections are generally used in simulations that have relatively poor
resolution, ∆x & 1 kpc. At this physical scale, individual star forming regions are not resolved, so all uncertainty
about the behavior of molecular clouds is folded into a density threshold for star formation. In calculations with much
higher resolution, however (on the order of a few pc), individual molecular clouds can be resolved, thus rendering
these approximations invalid. To that end, Kuhlen et al. (2012) have implemented a star formation algorithm that is
specifically geared to high-resolution cosmological simulations of galaxy formation, where the formation of molecular
hydrogen is followed directly and stars are allowed to form at the highest level of refinement when the local H2 fraction
exceeds a pre-determined threshold. Cells are examined every root grid timestep, ∆t0, and cells at the highest level
that exceed the H2 limit form star particles with masses proportional to the inferred mass of molecular hydrogen in
the star-forming region (Krumholz et al. 2008, 2009; McKee & Krumholz 2010). The mass of the particle is calculated
as:

mp = ǫρgas(∆xm)3
∆t0
t∗

(86)

where ∆xm is the resolution of the maximum level of refinement, ǫ is an efficiency parameter with a standard value of
0.01 (as motivated by Krumholz & Tan 2007), and t∗ is the local free-fall timescale.
The feedback method used in this method is identical to that described in Section 8.2.2.

8.2.5. Population III star formation

Unlike in the previous sections, under some circumstances it is both possible and desirable to simulate stars indi-
vidually, rather than treating particles as ensembles. One particular example of this is Population III star formation
(Abel et al. 2002; O’Shea & Norman 2007; Wise & Abel 2008; Turk et al. 2009), where a given halo may only form
one star of primordial composition. To accommodate this, Enzo contains a star formation algorithm that forms in-
dividual Population III stars directly (Abel et al. 2007; Wise & Abel 2008; Wise et al. 2012). Using criteria similar
to Cen & Ostriker (1992), a star particle forms when a cell meets all of the following conditions:

1. A baryon overdensity of 5× 105 (corresponding to a hydrogen number density of roughly 103 cm−3 at z = 10),
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2. A converging gas flow (∇ · v < 0), and

3. A molecular hydrogen mass fraction fH2 > 5× 10−4,

These are comparable to the conditions typical of a collapsing metal-free molecular cloud roughly 10 million years
before the birth of a Pop III main-sequence star. If multiple neighboring cells are flagged as being able to form stars,
a single star is created instead. This star has a mass that is randomly sampled from a stellar IMF with a functional
form of

f(logM)dM =Mα exp
[

−
(Mchar

M

)β]

(87)

Feedback from Population III stars created using this algorithm comes in multiple forms. Radiative feedback using
the Moray radiation transport algorithm (Wise & Abel 2011) is available, using the mass-dependent hydrogen ionizing
and Lyman-Werner photon luminosities and lifetimes of the Population III stars from Schaerer (2002). At the end of
their main-sequence lifetimes, explosion energies, ejected gas mass, and ejected metal are calculated using a variety of
sources that depend on the mass of the star, and are described in detail in Section 3.2.1 of Wise et al. (2012).

9. TIMESTEPPING

In Enzo, the integration of the equations being solved is generally adaptive in time as well as in space. The timestep
∆t is set on a level-by-level basis by finding the largest timestep such that all of the criteria listed below (that are
relevant for the simulation in question) are satisfied. The timestep criteria are given by the following expressions,
showing the one-dimensional case for clarity:

∆thydro = min

(

κhydro
a∆x

cs + |vx|

)

L

, (88)

∆tMHD = min

(

κMHD
a∆x

vf + |vx|

)

L

, (89)

∆tdm = min

(

κdm
a∆x

vdm,x

)

L

, (90)

∆taccel = min

(√

∆x

|g|

)

L

, (91)

∆trad = min

(√

∆x

|arad|

)

L

, (92)

∆tcond = min

(

kcond
fsp

∆x2nb

κsp(T )

)

L

, (93)

∆texp = fexp

(a

ȧ

)

, (94)

In equations (88)-(93), the min(. . .)L formalism means that this value is calculated for all cells or particles on a given
level L and the minimum overall value is taken as the timestep.
Equation (88) ensures that all cells satisfy the Courant-Freidrichs-Levy (CFL) condition for accuracy and stability of

an explicit finite difference discretization of the Euler equations. In this equation, κhydro is a dimensionless numerical
constant with a value of 0 < κhydro ≤ 1 (with a typical value of κhydro ∼ 0.3−0.5) that ensures that the CFL condition
is always met, and cs and vx are the sound speed and peculiar baryon velocity in a given cell.
Equation (88) is valid for one dimension, and is used when the equations of hydrodynamics are being solved. For 2

or 3 dimensions, it was shown by Godunov (1959) that using the harmonic average of the timestep found along each
of the coordinate axes yields a maximum κhydro = 0.8. So letting ∆tx, ∆ty, and ∆tz be the analogues of equation (88)
along the x, y and z axes,

∆thydro = min

(

κhydro
1/∆tx + 1/∆ty + 1/∆tz

)

L

(95)

For all other criteria except for equation (89), multiple dimensions are accounted for by repeating the one dimensional
criterion along each axis, and taking the minimum.
Equation (89) is only enforced when the equations of magnetohydrodynamics are being solved, and is directly

analogous to equation (88) in that it ensures that the CFL condition is being enforced at all times. In this equation,
κMHD is a dimensionless numerical constant with a value of 0 < κMHD ≤ 1 (with a typical value of κMHD ∼ 0.5) that
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ensures that the CFL condition is always met, and vf and vx are the “fast wave speed” and peculiar baryon velocity
in a given cell. The fast wave speed comes from a stability analysis of the MHD equations, and is given by:

vf =

√

1

2

(

v2A + c2s +
√

(v2A + c2s)
2 − 4v2Ac

2
s

)

, (96)

where cs is the sound speed and vA is the Alfven speed, calculated as vA =
√

B2/ρB in units where µ0 = 1.
Equation (90) is analogous to equation (88) and helps to ensure accuracy in the N-body solver by requiring that

no particle travels more than one cell width. The parameter κdm is like κhydro, with a similar range of values. This
criterion is used when massive particles are included in a simulation.
Equations (91) and (92) are supplementary to equation (88) in that they take into account the possibility of large

accelerations due to either gravity (equation 91) or radiation pressure (equation 92). In equation (91), g is the
gravitational acceleration in each cell on level l. In equation (92), arad is the estimated acceleration due to radiation
pressure in each cell on level l, defined as

arad =

∑

i
Ėi

c r̂i

mb
(97)

where the sum calculates the energy deposited in a cell during the previous timestep due to all photon packets that
crossed that cell, with r̂i being a unit vector that accounts for the packet direction.
Equation (93) is the stability condition for an explicit solution to the equation of heat conduction. In this expression,

nb is the baryon number density, κsp(T ) is the Spitzer thermal conductivity, and fsp is a user-defined, dimensionless
conduction suppression factor whose value must be fsp ≤ 1. kcond is a dimensionless prefactor whose value must be
0 < kcond ≤ 0.5, and is exactly 0.5 for the implemention in Enzo. From a practical perspective, it is useful to note
that, unlike other timestep criteria discussed above (which effectively scale as ∆x/

√
T with the grid cell size ∆x and

temperature T ), the timestep criterion due to thermal conduction scales as ∆x2/T 2.5, which can result in a rapid
decrease in timestep in regions of high resolution and/or temperature.
Finally, equation (94) is a cosmological constraint that limits the timestep so that the simulated universe only

expands by some fractional amount, fexp, during a single step. In this equation, a and ȧ refer to the scale factor of
the universe and its rate of change, respectively. This criteria is necessary because the expansion of the universe and
its first derivative with respect to time both appear in the equations of cosmological (magneto)hydrodynamics and
particle motion, and some limit is required for the stability of the PPM algorithm in comoving coordinates. This
criterion typically limits the simulation’s timestep only during the earliest phases of a cosmological simulation, before
substantial structure has formed.

10. ANALYSIS

10.1. Inline analysis with yt

Detailed analysis of simulation results requires both the tools to ask sophisticated questions of the data and the
ability to process vast quantities of data at high time-cadence. As simulations grow in size and complexity, storing
data for post-processing simply becomes intractable. To cope with this, we have instrumented Enzo with the ability to
conduct analysis during the course of a simulation. This enables analysis with extremely high time cadence (as often
as every subcycle of the finest refinement level), without attempting to write an entire checkpoint output to disk. The
current mechanism for conducting analysis in Enzo during the course of the simulation utilizes the same computional
resources as are used by the simulation itself by transferring their usage from Enzo to the analysis routines; this is often
referred to as in situ analysis or visualization. Utilizing a dynamically-scheduled second set of computing resources,
often referred to as co-scheduled analysis or visualization, provides greater flexibility and overall throughput at the
expense of simplicity.
We expose Enzo’s mesh geometry and fluid quantities to the analysis platform yt (Turk et al. 2011b; Turk & Smith

2011). At compile time, Enzo is (dynamically or statically) linked against the Python and NumPy libraries necessary
to create proxy objects exposing the mesh geometry, fluid quantities and particle arrays as NumPy arrays. This
information is then passed to a special handler inside yt. yt interprets the mesh and fluid information and, without
saving data to disk, constructs a native representation of the in-memory state of the simulation that appears identical
to an on-disk simulation output. Enzo then executes a user-provided analysis script, which is able to access the
in-memory simulation object. Once the analysis script has returned control to Enzo, the simulation proceeds. This
process can occur at either the top of the main “EvolveHierarchy” loop or at the end of a timestep at the finest level,
and the frequency with which it is called is adjustable by a run-time parameter. During the course of conducting
analysis, the simulation is halted until the conclusion of the analysis.
Most analysis operations that can be performed on data sets that reside on disk can be performed on in-memory

data sets in yt. This includes projections (i.e., line integrals, both on- and off-axis), slices, 1-, 2-, and 3-D fluid phase
distributions, calculation of derived quantities and arbitrary data selection. As of version 2.5 of yt, the Rockstar
phase-space halo finder (Behroozi et al. 2013) can be executed through yt on in-memory Enzo data, and so can the
Parallel HOP halo finder (Eisenstein & Hut 1998; Skory et al. 2010). Operations that currently cannot be conducted
on in-memory datasets are those that require spatial decomposition of data. For instance, calculating marching cubes
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on a data object with yt is a fully local operation and can be conducted in situ. However, calculating topologically-
connected sets requires a spatial decomposition of data and thus cannot be conducted in situ. This prohibition extends
to halo finding operations other than Rockstar, most multi-level parallelism operations, and volume rendering.
Where microphysical solvers or other operator-split physics calculations can be done in Python, yt can serve as a

driver for these calculations. A major feature set that is currently being developed is to pass structured (i.e., non-fluid)
information back from yt into Enzo. For instance, this could be the result of semi-analytic models of the growth and
evolution of star clusters, galaxy particle feedback parameters that have been influenced by merger-tree analysis, or
even spectral energy distributions that are calculated within yt and provided to Enzo as input into radiative transfer
calculations. Future versions will include this, as well as the ability to dynamically allocate computional resources to
yt such that the simulation may proceed asynchronously with analysis (co-scheduled analysis). With this functionality
will also come the ability to dynamically partition data, such that spatially-decomposed operations such as volume
rendering become feasible during the course of a simulation.

10.2. Tracer particles

One of the inherent drawbacks of a grid-based fluid method is the inability to follow the evolution of a single parcel
of fluid as it travels through the simulation volume. To address this, Enzo has the capability to introduce Lagrangian
“tracer particles” into a calculation either at the beginning of the simulation or when restarting the calculation. These
tracer particles are put into the simulation in a rectangular solid volume with uniform, user-specified spacing. Each
particle’s position and velocity is updated over the course of a single timestep ∆t as follows:

xn+1/2=xn + (∆t/2)vinterp,n

vn+1= vinterp,n+1 (98)

xn+1=xn+1/2 + (∆t/2)vn+1

This is essentially a drift-kick-drift particle update from time n to time n + 1 – however, instead of computing an
acceleration at the half-timestep tn +∆t/2 (as is done for massive particles – see Equation 62), the particle’s velocity
is updated both at the beginning of each timestep and at the half-timestep by linearly interpolating the cell-centered
baryon velocity to the position of the particle (vinterp), and assigning it to that value.

Enzo saves tracer particle data at user-specified intervals, independent of the intervals at which regular data sets
are written. The data written out typically includes the tracer particle’s unique ID and position, as well as the
velocity, density, and temperature of the gas at its location, but is easily extensible to output any grid-based quantity
that a user requires. This capability has been used quite effectively in several papers, including Silvia et al. (2010)
and Silvia et al. (2012). It is crucial to keep in mind that tracer particles model a fixed number of Lagrangian fluid
trajectories. The fluid on the grid, however, models the motion of all the mass and represents the average quantity in
a grid cell’s volume. Consequently, after a period of evolution, tracer particles – even if they initially had the same
density distribution as the gas – will not have the same density distribution as the fluid. For example, they tend to
accumulate at stagnation points of the flow, and care has to be taken in using these particles appropriately. Tracer
particles are very useful in studies such as the variety of histories of the hydrodynamic quantities in Lagrangian fluid
elements and when evaluating complex chemical and cooling models in regard to the simpler ones used in the actual
numerical evolution.

10.3. Shock finding

Identification of shocks and their pre- and post-shock conditions can be accomplished through a combination of
either temperature or velocity jumps with dimensionally split or unsplit search methods. The primary method used in
Enzo is the dimensionally unsplit temperature jump method described in detail in Skillman et al. (2008). We briefly
outline the method here.
For every cell, we first determine whether it satisfies the following conditions necessary to be flagged as a shock:

∇ · v < 0, (99)

∇T ·∇S > 0, (100)

T2 > T1, (101)

ρ2 > ρ1, (102)

where v is the velocity field, T is the temperature, ρ is the density, and S = T/ργ−1 is the entropy. T2 and T1
are the post-shock (downstream) and pre-shock (upstream) temperatures, respectively. An optional temperature floor
may be chosen, which is useful for situations such as cosmological simulations without a radiation background where
underdense gas in the intergalactic medium (IGM) can cool adiabatically to unphysically low temperatures.
Once a cell is flagged, the local temperature gradient is calculated, which is then used to traverse cells parallel to

the gradient to search for the first pre- and post-shock cell that do not satisfy the above conditions. If during the
search a cell satisfying the conditions is found to have a more convergent flow, that cell is marked as the center, and
the search is started again. Using the temperature values from each of these cells, the Mach number is then solved
using the Rankine-Hugoniot temperature jump conditions:
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T2
T1

=
(5M2 − 1)(M2 + 3)

16M2
, (103)

where M is the upstream Mach number.
Shock finding in the context of AMR is applied grid-by-grid. If a search for pre/post-shock cells goes outside the

bounds of the grid ghost zones, the search is stopped for that particular shocked cell. In most situations this is adequate
since the hydrodynamic shock is captured in fewer than the number of ghost zones. Shock finding can be run either
upon data output or at each step in the evolution of an AMR level if the Mach and pre/post-shock quantities are
needed for additional physics modules.

11. CODE TESTS

Ensuring that a complex piece of software is behaving correctly is a non-trivial task. While there are a range of
techniques that one can apply to ensure correctness, the Enzo code uses two primary methods: a suite of test problems
that can be compared to previous versions of the code, used to ensure that Enzo is running correctly on a new computer,
with a new compiler, or after substantial changes have been made to the code base; and by direct comparisons to other
astrophysical fluid dynamics codes. We describe the Enzo test methodology in Section 11.1.1, discuss code comparisons
involving Enzo in Section 11.1.2, and show a small set of representative test problems in Section 11.2. We further note
that the Enzo test suite (Section 11.1.1) contains hundreds of test problems, as well as the ability to compare to a
“gold standard” solution, and thus all of the tests shown here are easily reproducible by the reader. To facilitate this,
all of the test problems included in this paper, as well as scripts to run the test problems and generate the figures
found in Section 11.2, can be found on the Enzo website.

11.1. Verifying and validating the Enzo code

11.1.1. The Enzo test suite

Enzo is capable of simulating a large variety of problems types, with all but a few of these types requiring only
a parameter file as an input. The most notable exception is the cosmology simulation, which takes as input initial
conditions created by other codes. The suite of test problems spans a wide range in complexity. At one end of this
spectrum are simple problems that utilize only a single component of Enzo and for which analytic solutions exist for
comparison with the simulation results. At the opposite end are problems that exercise a large portion of Enzo’s
machinery in concert. Together, the available problem types fully cover all of Enzo’s functionality. This enables them
to serve as a vehicle for verifying that the code’s behavior remains stable over time, on new computing platforms, and
after modification of the codebase.

Enzo uses an automated testing framework that allows a user to run, with a single command, a set of test problems and
compare the results against results produced by any other version of the code. Within the Enzo source distribution, the
test problem parameter files are stored in a nested directory structure organized according to the primary functionality
tested (e.g., hydrodynamics, gravity, cooling, etc.). Each parameter file is accompanied by a text file containing various
descriptive keywords, such as the machinery tested, the dimensionality, and the approximate run time. A test runner
script is responsible for taking as input from the user a series of keywords that are used to select a subset of all available
test problems. The test problems are also grouped into three suites: the quick, push, and full suites, each a superset
of the ones named before. The quick suite is considered to minimally cover the primary functionality in Enzo and is
designed to be run repeatedly during the development process. The push suite has slightly increased feature coverage
and is mandated to be run before code changes are accepted into the main repository. The full suite consists of all
test problems that can be run with no additional input. Approximate run times for the quick, push, and full suite are
15 minutes, 1 hour, and 60 hours, respectively, on a relatively new desktop computer (circa 2013).
After the test problems are selected by the test runner script, they are run in succession using either the Enzo

executable contained within that distribution or an external executable built from another Enzo version and specified
by the user. This allows for any version of the code to be tested with an identical set of test problems. After
running the test problem simulations, the test runner then performs a series of basic analysis tasks using the yt
analysis toolkit (Turk et al. 2011b; Turk & Smith 2011). The default analysis performed on all test problems includes
calculation of various statistics (such as extrema, mean, and variance) on the fields present in the output data. Custom
analysis provided by scripts that accompany the test problem parameter files is run for special cases, such as when
an analytical solution exists that can be compared against the simulation data. After the analysis is performed, the
results are compared against a set of gold standard results that are maintained on a website and downloaded on the
fly by the test runner script. Alternately, results from any version of Enzo can be stored locally and compared to any
other version of the code. In Section 11.2, we describe some of the key test problems that are used to verify proper
behavior. All of these test problems, as well as the scripts to generate the figures from them, are available at http://
bitbucket.org/enzo/enzo-method-paper, the Bitbucket repository for the Enzo method paper. The test problems
subdirectory in this repository contains all of the files necessary to regenerate all of the figures in Section 11.2. We note
for completeness that the figures in Section 11.2 were generated using yt version 2.5.3 and the https://bitbucket.
org/enzo/enzo-dev repository of Enzo with changeset 5d8c412, which corresponds to Enzo 2.3.

11.1.2. Code comparisons

http://bitbucket.org/enzo/enzo-method-paper
http://bitbucket.org/enzo/enzo-method-paper
https://bitbucket.org/enzo/enzo-dev
https://bitbucket.org/enzo/enzo-dev
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Over the course of its existence, Enzo has been involved in numerous comparisons with other astrophysical codes used
for self-gravitating fluid dynamics. In general, Enzo behaves in a manner similar to other grid-based (and particularly
AMR-based) codes, as we will summarize below.

Enzo has been involved in multiple cosmological code comparisons, including the Santa Barbara Cluster code com-
parison project (Frenk et al. 1999), a large comparison of N-body simulations (Heitmann et al. 2008), as well as several
direct comparisons between Enzo and the GADGET SPH code in a variety of set-ups, including N-body and adiabatic
hydrodynamics (O’Shea et al. 2005; Voit et al. 2005; Vazza et al. 2011) and simulations of the Lyman-alpha forest
(Regan et al. 2007). Compared to the other codes involved in these projects, the Enzo code typically has a more diffi-
cult time resolving small-scale self-gravitating structures (for an equivalent dark matter particle count and nominally
equivalent force resolution), but does comparably well as a tree-based code for larger structure, and is typically superior
in terms of resolving fluid features due to its higher-order (and artificial viscosity-free) PPM hydrodynamics solver.
When examining classical test cases such as the Santa Barbara project (Frenk et al. 1999), Enzo forms galaxy clusters
with very similar density, temperature, and entropy profiles to other grid-based codes that use Godunov-type hydro
methods, which systematically differed from particle-based codes using SPH in this code comparison. Similarly, in
galaxy cluster simulations that look specifically at the properties of cosmological shocks (e.g. Vazza et al. 2011), Enzo
produces results that are similar to other high-order grid-based hydrodynamics codes, and a far superior performance
of Enzo is observed (in terms of resolution of fluid features and shock detection) in low-density regions when compared
to a particle-based code. In tests of the Lyman-alpha forest that include radiative cooling and a uniform metagalactic
ultraviolet background, Enzo and GADGET provide results on metrics such as the matter power spectrum that are
comparable to within 5% (Regan et al. 2007).
Several comparisons have been made that focus specifically on hydrodynamics solvers and fluid behavior. In partic-

ular, the work of Agertz et al. (2007) and Tasker et al. (2008) perform direct comparisons between several grid- and
particle-based codes for a variety of fluid-centric test problems (including shocked gas clouds, self-gravitating, trans-
lating clouds, and Sedov-Taylor explosions), and show that Enzo is comparable or superior in behavior to the other
grid-based hydrodynamics codes involved in the comparison, and provide useful information on the sort of practical
challenges that a user of an AMR code such as Enzo may experience. More specific comparisons, including one testing
the linear and nonlinear growth of the Kelvin-Helmholz instability (McNally et al. 2012), as well as a comparison
that more broadly examines Galilean invariance in grid-based codes (Robertson et al. 2010), show that Enzo, and in
particular its implementation of the PPM hydrodynamics solver, converge to the correct solution as expected, and
generally provide less diffusive solutions than lower-order codes, including those that use artificial viscosity. Finally,
there have been two code comparison projects that focus on turbulence simulations. The first studied the behavior
of decaying isothermal supersonic turbulence (Kitsionas et al. 2009), and the second examined supersonic magneto-
hydrodynamical turbulence (Kritsuk et al. 2011a). Both included the Enzo code, with the former testing the PPM
hydrodynamics and the latter both the constrained transport MHD implementation of Collins et al. (2010) and the
Dedner method of Wang et al. (2008). In both cases, Enzo performed similarly to other grid-based codes that use
Godunov-based fluid solvers, and typically had better effective resolution than particle-based codes when using the
same number of particles as the number of grid cells in the Enzo simulation.
Three other comparisons between the Enzo code and other simulation tools have been performed that focus on

physics other than gravity and fluid flow. The flux-limited diffusion radiation transport scheme was measured against
several test problems by Iliev et al. (2009), which involved tests with and without analytical solutions. Enzo produced
results similar to both the analytical solutions and results obtained by other codes. We note, however, that there
were minor differences throughout the comparison between various codes, and the majority of the codes differed in at
least a subset of the tests. Turk et al. (2011a) show the result of varying reaction rate coefficients for the formation of
molecular hydrogen via the 3-body process in both the Enzo and GADGET-2 codes, observing similar trends between
the two codes. However, at nominally equivalent resolution where the particle and cell gas masses are comparable,
Enzo simulations typically displayed a substantially higher level of gas structure. This is unsurprising due to Enzo’s
higher-order hydro solver. Finally, Passy et al. (2012) show the results of comparing Enzo in its non-AMR mode
to a smoothed-particle hydrodynamics code, SNSPH, in the context of common-envelope binary stellar interactions.
The authors show that the codes display reasonable convergence properties as a function of simulation resolution,
and also agree quite well with each other. However, the observed mass-loss rates do not agree particularly well with
observations.

11.2. Representative test problems

The Enzo test suite (described in Section 11.1.1) contains hundreds of test problems that probe the code’s behavior
in a wide range of physical circumstances, and explicitly tests each physics package in the Enzo code, both individually
and in combination. It is impractical to include a substantial fraction of these problems in a method paper; as a result,
we have chosen to publish the results of only a small subset of particularly crucial test problems here. If the interested
reader desires, they can download Enzo and yt, run the test suite, and see the results of any other test problem and
its comparison to an analytic solution (if available), or to a “gold standard” solution from a stable version of Enzo.
The general structure of each test problem description is as follows. We will describe the construction of the test

problem (including its initial and boundary conditions), the analytical or expected solutions, and motivate why we
have included it in the paper. After that, we will show and describe Enzo’s solution to the test problem. We remind
the user that, as discussed at the end of Section 11.1.1, they can download a Mercurial repository containing this
paper, the Enzo test problem parameter files that produced the simulation data used to generate the figures in this
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Figure 4. The density distribution of the classic Sod Shock Tube for three different solvers (from left to right column) and with (bottom
row) and without (top row) AMR. In each case 100 zones are used on the root level and the results are shown at t = 0.25. All cells
are plotted and color-coded by level with purple indicating level 0, green level 1 and red level 2 (at the time shown, only small region
surrounding the contact discontinuity and the shock are refined). In each panel, we show the analytic solution as a solid line and the E1

error norm in the upper right.

section, and the yt scripts necessary to create the figures themselves.

11.2.1. Sod Shock Tube

We begin the paper test suite with the classic one-dimensional Sod shock tube problem (Sod 1978), which provides
a good test of a hydrodynamical solver’s ability to resolve a clean Riemann problem with clear separation between
the three resultant waves. These waves consist of a rarefaction fan, a contact discontinuity, and a moderate shock.
The initial state is ρL, PL = 1.0, 1.0 on the left of the boundary at x = 0.5 and ρR, PR = 0.125, 0.1 on the right. All
velocities are initially zero. In Figure 4, we show the density solution at the final time (t = 0.25) for three of our hydro
solvers – the spatially third-order PPM, as well as the two second-order ZEUS and MUSCL schemes. We use 100 cells
across the domain, which is a relatively standard choice in code method papers, and show solutions both with and
without adaptive mesh refinement. Without AMR (top row in Figure 4), it is clear that the PPM scheme produces by
far the cleanest solution with all wave families crisply reproduced (in particular, the contact discontinuity and shock).
ZEUS and MUSCL produce similar results, with MUSCL doing a slightly better job on the rarefaction fan. In Figure
4, we also show the integrated absolute deviation from the exact solution, ||E1|| =

∑

i∆xi|F (xi)− Exact(xi)|. These
numbers confirm the qualitative differences noted previously.
We also run the same simulation but with two levels of AMR (using a refinement factor of 2), triggered based on a

normalized slope greater than 10% in the density. This refinement criterion results in only the refinement of strong
gradients, and does not include the rarefaction fan at late times. The results are shown in the bottom row of Figure 4.
Using AMR, the results are much better for all three methods, with much sharper shocks and contact discontinuities
and even a better representation of the rarefaction wave, which is only refined beyond the root grid at early times.
Although the results are improved for all methods, PPM still produces the best result, as is shown clearly by the
computed error norms (displayed again in each of the individual panels).

11.2.2. Wave pool

In this one-dimensional test we pass a short wavelength linear wave through a static singly-refined region. The
full domain is from 0 to 1 and the refined region is set from 0.25 to 0.75 at all times. We modify the left boundary
consistent with a single linear sound wave with density given by ρ(x, t) = ρ0(1 +A sin(kx−ωt)), where the amplitude
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is A = 0.01 and the wavelength λ = k/2π = 0.1. Similar expressions exist for the pressure and velocity. The initial,
unperturbed density and pressure are set to unity and we adopt γ = 1.4. The (unrefined) root grid is covered with 100
cells, resulting in a wavelength for the linear wave of only 10 cells. This is, therefore, a challenging problem for hydro
methods. We are particularly interested in any reflection or artifacts introduced by the wave entering and exiting the
refined regions.
Figure 5 shows the evolution of the wave at three different times (t = 0.2, 0.3 and 0.8) for three of our solvers (PPM,

ZEUS, and MUSCL). In all panels, the shaded regions denote the statically refined region. The leftmost column shows
the wave just before it enters the refined region so that we can gauge how the solver is operating in the absence of
AMR. The center column shows the wave after it has fully entered the refined region. The rightmost column shows
the wave well after it has exited the refined region.
With the PPM solver, we notice that even before the wave reaches the refined region it has been slightly damped.

This is not unexpected for such a short wavelength mode, even for higher-order solvers such as PPM. The remaining
panels demonstrate that the wave cleanly enters and exits the refined region. No significant reflection is seen on either
entry or exit, and the amount of damping is mild.
For the ZEUS solver, we see that even before it has entered the refined region there are small oscillations excited

behind the wave, although it is also worth noting that the wave itself is beautifully propagated without significant
damping or phase errors. In this test we use only our standard, low amount of quadratic artificial viscosity. The
trailing oscillations could be damped by additional viscosity, but we do not add any in order to be sensitive to any
artifacts at the grid boundary. The remaining panels show that the trailing oscillations continue, but do not generate
any additional noise. We note that the end result is similar to the case without any refined region.
Finally, the MUSCL solver also shows a very clean entry and exit from the refined region without any oscillations,

although with mild damping on exit. However, because we use a piecewise linear reconstruction, the wave is spread
more than with the other methods.

11.2.3. Shock pool

The next problem is similar to the last one but instead examines how a shock with a Mach number of 2 passes in
and out of a static refined region (again defined from z = 0.25 to 0.75). The density and pressure in the domain are
initially set equal to 1.0 with zero velocity. At t = 0 the left boundary is set with the density, pressure and velocity
appropriate for a M = 2 shock wave.
In Figure 6, we show the evolution of the shock wave at three times, again corresponding to just before entering the

refine region (left column), after entering the refined region (center), and after exiting the refined region (right). We
examine the same set of three solvers as in the previous test problem.
Beginning with PPM (top row of Figure 6), we see that this method captures the shock in a small number of zones

with only a small amount of oscillation. Upon entering the refined region, the shock finds itself broader than the
natural width of the scheme (since the cell spacing is decreased by a factor of 2), and so the shock front contracts,
causing a slight entropy perturbation in the post-shock gas.
For ZEUS (middle row of Figure 6), the shock is broadened because of artificial viscosity and there are slightly more

post-shock oscillations, although again quite mild. The impact of entering and exiting the refined region is somewhat
larger than in PPM; however, the most noticeable difference is the incorrect position of the shock front. This is due
to the fact that the scheme is not energy-conserving (see also the Sedov problem in Section 11.2.5), and has very little
to do with the passage through the refined region.
Finally, the MUSCL scheme produces a shock that is intermediate in width between the two previous cases. This

method is energy-conserving, and thus correctly reproduces the shock speed. The oscillations are mild except for the
cell immediately outside of the refined region upon exiting.

11.2.4. Double Mach reflection

The double Mach reflection test is a classic two-dimensional test of hydrodynamic algorithms originally described
in Woodward & Colella (1984a) (and more recently in Stone et al. 2008). In this problem, shown in Figure 7, a shock
is injected at an angle to a reflecting surface (the -y-boundary), and a jet appears along the reflecting surface. The
ideal solution is self-similar, and the appearance of this solution is highly sensitive to numerical diffusion. If numerical
noise is present, a Kelvin-Helmholz instability develops along this jet and breaks the self-similarity.
In the test problem shown in Figure 7, a 2D simulation with 960× 240 cells was created with a domain of x = [0, 4]

and y = [0, 1]. We use an ideal gas equation of state of γ = 1.4, a pre-shock density of 1.4, and a pre-shock specific
internal energy of 2.5/1.4 (all in arbitrary units). A Mach 10 shock is initialized with a shock normal that is 30◦

from the x-axis and an initial position on the lower boundary of x= 1/6. The lower y-boundary and right x-boundary
are reflecting; the left x boundary is inflowing, and the upper y-boundary has a time-dependent boundary condition
that allows the shock to propagate into the domain as if it extends to infinity. The simulation starts at t= 0 and
runs until t= 0.205 (arbitrary units), at which point the rightmost extent of the shock should be at roughly x= 3. In
this simulation we use the direct Eulerian implementation of the piecewise parabolic hydrodynamic method with the
diffusion, flattening, and shock steepening all enabled.
It is instructive to compare our Figure 7 to Figure 9 in Woodward & Colella (1984a). By the end of the simulation,

a dense jet is apparent at the leading edge of the shock, propagating along the x-axis. The shape of this jet is sensitive
to numerical diffusion, and our figure compares favorably to those shown in Woodward & Colella.
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Figure 5. This plot shows, for each column, three snapshots at t = 0.2, 0.3 and 0.8 of a linear wave as it propagates through the domain.
A static refined region extends from x = 0.25 to 0.75 and is shown in grey in each panel. The individual cells are also color-coded by level:
blue indicates the root grid, and red is for the refined region. Each row shows the result for a different hydrodynamic solver (top is PPM,
middle is ZEUS, and the bottom is MUSCL). The solid line shows the analytic solution for a linear, undamped wave. Note that we focus
each panel on a small region of the entire domain to better show the wave itself.

11.2.5. Sedov Explosion

The Sedov Blast test (Sedov et al. 1959) models an intense explosion, initiated by depositing thermal energy into a
homogenous distribution of gas. The result is a strong spherical shock wave centered on the point of energy injection.
This problem is a popular test of astrophysical simulation codes for three reasons. First, this problem is representative
of the astrophysical phenomenon of a supernova explosion. Second, an analytical solution to the evolution of the Sedov
blast wave exists, allowing for a direct test of the accuracy of the code. The radius of the shock front as a function of
time is given by

r(t) =

(

E0

αρ0

)1/5

t2/5 (104)

where E0 is the initial energy injection, ρ0 is the background density and α = 1.0 for cylindrical symmetry and an ideal
gas with γ = 1.4; for the full derivation see Sedov et al. (1959). Third, as the spherical shock expands, its symmetry,
or lack thereof, serves to highlight any directional preferences of the hydrodynamics solvers. The test presented here
is the two-dimensional version that is included in the Enzo distribution. The three-dimensional results from this test,
both for Enzo and three other leading astrophysics codes, can be found in Tasker et al. (2008).
In the initial state, the box contains a homogenous distribution of gas at a density of 1 (note that, in the absence

of gravity or radiative cooling, this problem is scale-free and thus without units). Thermal energy is deposited into a
single cell at the center of the box with E0 = 10.0. The problem is run in two dimensions with reflecting boundary
conditions and a box having a length of 1 in both directions. We selecte a top grid of 100× 100 cells and a maximum
of four levels of adaptive refinement, refining by factors of two on shocks and the slopes of the density and total energy
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Figure 6. This plot shows, for each column, three snapshots at t = 0.1, 0.15 and 0.35 of a M = 2 shock as it propagates through the grid
with a static refined region extends from x = 0.25 to 0.75 (shown in grey in each panel). Each row shows the result for a different solver
(PPM/ZEUS/MUSCL from top to bottom). The solid line shows the analytic solution. Note that we focus each panel on a small region
of the entire domain to better show the shock front.
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Figure 7. Density field at the final time in the Double Mach test. A Mach 10 shock is injected into the domain with a shock normal that
is 30◦ from the x-axis with a time-dependent +y-boundary condition that mimics a shock of infinite length. The solution is self-similar,
with the jet and whorls at x ≃ 2.5 − 3.0 in this figure being very sensitive to numerical diffusion. Our results compare favorably to the
higher-order images from Woodward & Colella (1984a).
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Figure 8. Density slices from the Sedov Blast test at t = 0.07. Left: results using the Piecewise Parabolic Method hydro scheme. Right:
results using the ZEUS hydro method. Notably, the ZEUS shock front has progressed less far than in the PPM run. This is due to energy
loss when conserving only internal, and not total, energy.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
r

0

1

2

3

4

5

6

 ρ

PPM
Zeus

0.2 0.25 0.3 0.35 0.4 0.45 0.5
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v

0.2 0.25 0.3 0.35 0.4 0.45 0.5
r

0

2

4

6

8

10

P

0.2 0.25 0.3 0.35 0.4 0.45 0.5
r

10
0

10
1

10
2

U

Figure 9. Radial profiles for the Sedov Blast test at t = 0.07. Clockwise from top-left shows density, velocity, internal energy and pressure.
The black solid line shows the analytic solution. The blue dashed line shows the simulation using the PPM method, and the red dot-dashed
line using ZEUS. The ZEUS result substantially lags the true result due to total energy not being explicitly converged.
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Figure 10. The radial and tangential accelerations measured around a point source placed in a static AMR grid. The solid line shows
the analytic radial profile.

fields. The exception to this scheme is in the initial conditions, where additional refinement is placed directly around
the injection point to better resolve spherical geometry. The results are assessed at t = 0.07, which corresponds to a
time just before the shock reaches the box edge (see Figure 8).
Figure 9 shows the radial profiles for the simulation run with the PPM hydro-solver (blue dashed line) and the

ZEUS hydro-solver (red dash-dot-dot line) together with the analytical solution (black solid line). Clockwise from the
top-left are density, velocity, internal energy and pressure. PPM matches the analytical solution extremely well for
all quantities. However, the shock front in the ZEUS simulation lags behind the analytical position. This can also be
seen in the slices shown in Figure 8. The cause of this discrepancy is that ZEUS shows a substantial energy loss during
the first few timesteps and produces a diamond-shaped, rather than spherical, shockfront during this time. After this,
the code correctly conserves energy but this intial energy loss remains clearly visible in the position of the shock at
t = 0.07. This problem was addressed directly by Clarke (2010), who attributed the source of the issue to this version
of ZEUS solving the internal, rather than total, energy equation. In situations with strong energy gradients, this choice
caused an energy loss and the artificial viscosity produces the direction-dependent shockfront shape. In their paper,
Clarke (2010) present results from an alternative version of ZEUS that conserves total energy. This problem is less
marked for smaller energy gradients and it should be noted that the ZEUS hydro algorithm’s stability and speed make
it a highly competitive choice, despite the disagreements in this test.

11.2.6. Point source gravity test

This is a simple test of the ability of the Poisson solver to correctly reproduce the gravitational acceleration around
a point source without any dynamics. We place a single particle in the center of the unit domain with root grid
dimensions 323 and add a static, nested grid refined by a factor of two that covers the central 1/83 of the domain (i.e.
so the refined grid is only 83). We then place 5000 particles throughout the domain distributed uniformly in angle
and in the logarithm of the radius (from the central point). The measured accelerations are shown in Figure 10. As
is typical for Particle-Mesh based methods, the errors decrease at large distances and peak on roughly the grid scale.
The accelerations are relatively smooth across the top grid/fine grid boundary with the most noticeable impact being
a drop in the amplitude of tangential errors on the fine grid. The force law rolls over at about 1.6 fine cell widths
(equivalent to 0.8 root grid widths in this figure), consistent with the CIC-deposition and interpolation used.

11.2.7. Orbit Test

The “orbit test” simulates the orbit of an effectively massless particle around a massive primary particle and is used
to test the accuracy of both the gravity solver and particle integration. In this problem (shown in Figure 11), a 3D
box with unit size and a 323 grid is created, and a particle with mass 1 is placed at the center of the box (both box
length and particle mass are in arbitrary units). A second “test” particle, with mass of 10−6, is placed at a distance of
0.3 Lbox from the primary particle in the x-y plane (at z = 0.5 Lbox). Both particles are given velocities such that they
will orbit their common center of mass in the x-y plane. The simulation is run for 200 orbits, writing out a dataset
approximately once per orbit (with the particle positions being written out several hundred times per orbit).
The left panel of Figure 11 shows the path of the test particle in the x-y plane (at z=0.5), plotted over the duration

of the simulation. The test particle maintains a path that has effectively unnoticeable deviation from circularity, and
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Figure 11. Test particle behavior in the Orbit problem, which is used to test the gravity solver and particle integration. An effectively
massless test particle is set in circular orbit around a massive central particle, with the gravitational potential calculated on a 3D, 323

grid, and evolved forward in time for 200 orbits. Left panel: path of the test particle in the orbital plane plotted for the duration of the
simulation, with a zoomed box showing a small portion of the orbit to highlight deviations from perfect circularity. Right panel: total
specific energy (kinetic plus potential) for the test particle for the duration of the simulation. The particle’s mean energy (integrated over
the length of the simulation) is represented by a horizontal dashed line, and +/- one standard deviation by horizontal dotted lines. All
quantities are in arbitrary units.

with no discernable drift in either net radius or orbit center over time. The right panel displays the total specific energy
of the test particle (defined as 1

2v
2 + φ, where φ is the gravitational potential at the position of the test particle) as a

function of time, plotted once per orbit. The mean total specific energy is −1.76797 in arbitrary units, with a standard
deviation of 0.004885 (0.276% of the mean value), and with a maximum deviation from the mean of 0.546% of the
mean value. Given that the potential is calculated on 323 cells, the two particles are separated by between 10 and 14
cells depending on their relative positioning in the grid, and the particles are integrated using a second-order leapfrog
method, this level of accuracy is expected and acceptable.

11.2.8. Self-Similar infall test

This test problem is based on the self-similar solutions to the cosmological spherical infall problem found by
Bertschinger (1985). It features a small density perturbation in a homogeneous Ω = 1 universe and is a strong test
of the cosmological evolution, gravity, and hydrodynamic portions of the code. It is a close analogue to cosmological
halo formation.
For the initial conditions, we adopt a 323 top grid with a single, initial subgrid (covering 1/83 of the domain) with

a refinement factor of 2. An overdensity δ = 40 is placed in a single cell near the center of the domain. We begin
at z = 199 and evolve to z = 0, which is a sufficient time for the evolution to largely forget its initial conditions
and approach the self-similar result. An overdensity refinement criteria (δcrit = 1.1 on the top grid) is used to add
additional grids, going up to 5 additional levels beyond the root grid. We use the PPM solver without radiative cooling;
only baryons are used for this problem. An ideal gas law with γ = 5/3 is adopted.
In Figure 12, we show the results, scaled according to the dimensionless variables as defined in equations (2.9) and

(3.2) of Bertschinger (1985). This demonstrates that we can quickly and easily obtain a good solution with only a
fairly modest initial grid. The shock is sharply resolved and the asymptotic profiles at small λ are recovered. At very
small values of λ, the initial conditions have not been fully forgotten and the self-similar solution is not recovered.
This can be seen most clearly in the dimensionless mass. However, this is simply because of the limited amount of
time for which we evolve the solution.

11.2.9. Zel’dovich Pancake

The Zel’dovich pancake (Zel’dovich 1970) is particularly relevant to cosmological simulations, because it includes
many features that are critical to structure formation: hydrodynamics, expansion, and self gravity. This problem
represents the formation of an ideal, isolated caustic, and is thus a useful proxy for much more complicated structures
in full 3-dimensional cosmological simulations, such as the collapse of gas onto a cosmological halo or filament.
The initial conditions are simple, and we follow the prescription of Anninos et al. (1994). Assuming a geometrically

flat cosmology, the density perturbation is given by

ρ(xl) = ρ0

[

1− 1 + zc
1 + z

cos(kxl)

]

(105)
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Figure 12. The results of the self-similar spherical infall test. The panels show, as a function of the dimensionless radius λ, the
dimensionless density D (top left), velocity V (top right), pressure P (bottom left), and enclosed mass M (bottom right). In each case we
show azimuthally averaged profiles from the simulation as circles and the analytic solution for γ = 5/3 as solid lines.

with the internal energy of the gas set so that the entropy is constant throughout. The velocity perturbation is given
by

v(xl) = −H0
1 + zc

(1 + z)1/2
sin(kxl)

k
(106)

In the equations above, ρ0 is the background density, zc is a free parameter and is the redshift where the sheet forms
a caustic (i.e., where it ‘pancakes’), z is the redshift of initialization, xl is the Lagrangian mass coordinate, k = 2π/λ
(where λ is the perturbation wavelength), and H0 is the value of the Hubble constant at z = 0. Note that this solution
is expressed in terms of Lagrangian positions, so one needs to convert this into the Eulerian coordinates, xe, that are
more useful to a grid-based calculation:

xe = xl −
1 + zc
1 + z

sin(kxl)

k
(107)

We note that the solution described above is exact up to the point of caustic formation. In Figure 13, we show
the results of a test of the adaptive mesh version of Enzo’s Zel’dovich Pancake test. A one-dimensional box of length
64 Mpc/h is initialized at z = 20 in an ΩM = 1 universe with h = 0.5 and a background temperature of 100 K, with a
background density of ρ0 = ρc. The simulation is initialized with 64 grid cells, refining by factors of four using criteria
based on cell mass and the presence of shocks, for a maximum of 2 levels (i.e., an equivalent maximum resolution of
1024 grid cells). The simulation is evolved to z= 0 using the PPM hydro method.
The final output of the calculation, with the key features of this test problem, is shown in Figure 13. The strong

shocks and large density gradients are well-resolved, with density and velocity jumps being well-delineated and at the
correct locations. The key features of this test problem can be resolved with far fewer cells – simulations including
a mere 8 cells resolve the key features, as shown in Sections 3.3.4-3.3.5 of Bryan (1996) – but we choose a higher
resolution here for illustrative purposes.

11.2.10. MHD: Orszag-Tang Vortex
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Figure 13. Zel‘Dovich Pancake test shown at z= 0, initialized in a Ωm = 1 universe at z= 20 on a one-dimensional grid having 64 cells,
and further refined by factors of four based on cell mass and the presence of shocks for up to two additional levels of mesh, having a
maximum effective resolution of 1024 grid cells. The top, middle, and bottom rows show density, temperature, and velocity of the gas,
respectively; all are a function of position in units of the box size. The central region (x ≃ 0.45 − 0.55) has been adaptively refined, as
can be seen by the locations of grid points. Shocks and the central density peak are clearly resolved, with well-delineated jumps at the
appropriate locations.

Figure 14 shows the Orszag-Tang vortex problem (Orszag & Tang 1979). The left panel shows the result using
Enzo’s constrained transport MHD method, while the right panel shows the result using Enzo’s implementation of
Dedner MHD. The Orszag-Tang vortex test is a classig MHD test problem, and shows that significant small scale
structure can be generated in MHD from large scale initial perturbations. It is often used to compare the effective
resolution of different MHD schemes. The test begins with uniform density, ρ0 = 25/(36π), and pressure, P0 =
5/(12π) (as with other tests in this section, in the absence of gravity or chemistry/cooling we use dimensionless units).
There is a single rotational mode in the velocity, and two in the magnetic field: v0 = (− sin(2πy)x̂, sin(2πx)ŷ),
B0 = (− sin(2πy)x̂, sin(4πx)ŷ). The simulation is evolved to t = 0.48. One can see that the structures are accurately
represented as compared to, for example, Tóth (2000), and that the resolution of shocks is comparable in both methods.

11.2.11. One-zone collapse test

The one-zone collapse test simulates the collapse of a self-gravitating gas cloud using a semi-analytic model for the
evolution of gas density and adiabatic heat input as a function of time. It is designed to test the chemistry and
cooling modules over a wide range in densities and over physically-motivated timescales. Because this test disables
the hydrodynamic and gravity solvers and uses a simple model for the density evolution, it is far faster than running
a true collapse simulation. The density evolution is based on the self-similar Larson-Penston solution for isothermal
collapse (Larson 1969; Penston 1969) with a modification to account for the efficiency with which the heat introduced
by compression can be radiated away (Yahil 1983). Our implementation, described briefly here, follows the work of
Omukai et al. (2005), and we direct the interested reader to this paper for further details. The evolution of the gas
density, ρ, is given by

dρ

dt
=

ρ

tcol
, (108)

where the collapse timescale, tcol, is

tcol =
tdyn√
1− f

, (109)
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Figure 14. Density field from the Orszag-Tang vortex test, at t = 0.48. Left: solution using constrained transport MHD. Right: solution
using Dedner MHD. The initial conditions are uniform density, with a single rotating velocity structure and two circular magnetic structures.
These initial conditions generate significant small-scale structure in both the CT and Dedner schemes, which have approximately equal
effective resolution.

In this equation, tdyn is the dynamical time for the collapse of a spherical cloud, and is expressed as

tdyn =

√

3π

32Gρ
. (110)

The collapse timescale is altered from the dynamical time by a factor 1/
√
1− f in Equation 109, which is an

approximation of the ratio of the gas pressure to the force of gravity. The value of f depends on the effective adiabatic
index, γef ≡ (∂ ln p/∂ ln ρ), which we linearly extrapolate from derivative values at the two previous timesteps. For
the value of f in this test problem, we use the piecewise function of Omukai et al. (2005), given by

f =







0, γef < 0.83,
0.6 + 2.5(γef − 1)− 6.0(γef − 1)2, 0.83 < γef < 1,
1.0 + 0.2(γef − 4/3)− 2.9(γef − 4/3)2, γef > 1.

(111)

The specific energy evolves as

de

dt
= −p d

dt

1

ρ
− Λ, (112)

where Λ is the cooling rate in units of erg s−1 g−1 and energy, temperature, density, and pressure are related by the
ideal gas law, including effects from molecular hydrogen as appropriate. Figure 15 shows an example of the one-zone
collapse test performed with an initial number density of 1 hydrogen atom per cm−3 and an initial temperature of
100 K using the 12 species chemistry network with H, D, and He species and metal cooling rates calculated with the
Cloudy code. The effects of metal cooling can be clearly seen; as the metallicity increases from zero to 10−2 Z⊙, the
gas rapidly and significantly deviates from the primordial result (black line). Our primordial results compare very well
to those shown in Omukai et al. (2005); however, we use a different metal cooling method, so the lines describing the
evolution of the metal-enriched gas are not directly comparable.

11.2.12. Photo-evaporation of a dense clump

The photo-evaporation of dense clumps of gas is prevalent in radiation hydrodynamics simulations, and this test
problem examines the ionization front propagation into a dense clump, shadowing effects behind the clump, and the
hydrodynamic response on the clump from photo-heating, all using Enzo’s Moray ray-tracing module. The prob-
lem setup is the same as Test 7 in the Cosmological Radiative Transfer Comparison Project (Iliev et al. 2009) and
Wise & Abel (2011). The simulation domain is 6.6 kpc on a side with an ambient medium of pure neutral hydrogen of
density nH = 2×10−4 cm−3 and temperature T = 8000 K. We place a spherical overdensity in hydrostatic equilibrium
with the ambient medium. It has a radius r = 0.8 kpc, hydrogen density nH = 0.04 cm−3 (i.e., overdensity of 200),
and temperature T = 40 K, and is centered at (x, y, z) = (5, 3.3, 3.3) kpc. In Iliev et al. (2009) all of the codes used a
fixed 1283 grid to ease the comparison, but in this test to demonstrate a higher resolution AMR solution, we employ a
1283 grid with two additional levels of refinement by factors of 2 for cells with a baryon mass greater than 1.5 (method
2 in Section 3.6). This test is run for 15 Myr.
The cloud is subject to radiation from a point source at the center of the x = 0 boundary with an ionizing photon

luminosity Ṅγ = 3 × 1051 photons s−1, corresponding to a flux F0 = 106 photons s−1 cm−2 at the clump surface
closest to the radiation source. The radiation source has a spectrum of a T = 105 K blackbody, and we use four
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Figure 15. Evolution of temperature versus number density for a one-zone collapse test for gas at metallicities from 0 to 10−2Z⊙. This
test is based on the results of Omukai et al. (2005), and approximates the collapse of a self-gravitating, cooling gas cloud. This test problem
uses Enzo’s primordial chemistry network with tabulated metal cooling rates calculated with the Cloudy code, and compares favorably to
the results of Omukai et al. (2005).

energy groups with the following mean energies and relative luminosities: Ei = (17.98, 31.15, 49.09, 76.98) eV, Li/L =
(0.23, 0.36, 0.24, 0.06) that are optimized to reduce errors in the solutions with a full spectrum and energy discretization
(Mirocha et al. 2012). (Note that this choice of energy groups is different from those used in Wise & Abel 2011.) We
use a minimum angular resolution of 10 rays per cell and a constant radiative transfer timestep of 25 kyr. Figure 16
depicts the clump at t = 15 Myr with the outer layers expanding after being photo-heated. It also shows the sharp
shadowing effects of the dense clump in the neutral fraction plot that is representative of ray tracing techniques.

11.2.13. Cosmological I-front propagation

This test problem examines Enzo’s flux-limited diffusion radiation transport and associated ionization chemistry
solvers on a cosmological I-front test. This corresponds to test problem 4.6 from Reynolds et al. (2009), run using
the cosmological deceleration parameter q0 = 0.05 and initial redshift zi = 10. In this test problem, the physics of
interest is the expansion of an H II region in a uniform medium around a single monochromatic ionizing source (with
frequency hν = 13.6 eV). The I-front propagates rapidly at first, approaching 90% of the Strömgren radius by a scaled
redshift of − log [(1 + z)/(1 + zi)] ≈ 0.15, before cosmological expansion overtakes ionization, pushing the Strömgren
radius outward faster than the I-front can propagate. The Strömgren radius is analytically given by

rS(t) =

[

3Ṅγ

4παBnH(t)2

]1/3

,

where Ṅγ = 5×1048 photon sec−1 is the strength of the ionizing source, αB = 2.52×10−13 s−1 is the H II recombination
rate, and nH(t) is the proper number density of hydrogen. We then define λ = αB nH,i /H0 /(1+zi), where the subscript
i indicates quantities at the initial redshift. The analytical solution for the I-front position as a function of time is
then

rI(t)= rS,i

[

λe−τ(a)

∫ a(t)

1

eτ(ã)
(

1− 2q0 +
2q0(1 + zi)

ã

)−1/2

dã

]1/3

, where

τ(a)=λ
6q20(1 + zi)

2

F (a)− F (1)
,
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Figure 16. Photo-evaporation of a dense clump using the Moray ray-tracing module. Clockwise from the upper left: slices through the
clump center of density, temperature, neutral hydrogen fraction, and pressure at t = 15 Myr after the initialization of the simulation. A
point source of radiation is at the center of the -x boundary and illuminates the clump with a constant luminosity, casting a clear shadow
behind the clump, as seen in the neutral hydrogen fraction.

F (a)=

[

2− 4q0 −
2qo(1 + zi)

a

] [

1− 2q0 +
2q0(1 + zi)

a

]1/2

,

and a(t) is the cosmological expansion coefficient.
The simulation parameters are: box size Li ≈ 27 kpc, Hubble constant H0 = 100 km s−1 Mpc−1, and cosmological

parameters Ωm = 0.1, ΩΛ = 0, and Ωb = 0.1. The initial values for the simulation are a radiation energy density
Er,i = 10−35 erg cm−3, temperature Ti = 104 K, density ρb,i = 2.35× 10−28 g cm−3, and an ionized hydrogen fraction
nHII/nH = 0.
In Figure 17, we plot profiles of the H I and H II fractions at redshifts z = {6.24, 2.29, 1.02}, as well as the ratio of

the I-front and Strömgren radii throughout the simulation. As seen in the left panel (species fractions as a function of
radius), the I-front is initially quite narrow, but slowly becomes wider as the simulation proceeds due to the diffusion
approximation used by the radiative transfer scheme. However, as seen in the I-front propagation history plot (right
panel), the computed I-front location very accurately matches the exact value.

11.2.14. Anisotropic Thermal conduction

Figure 18 shows a test that demonstrates the correct behavior of anisotropic thermal conduction in Enzo. We
initialize a two-dimensional, 256 × 256 cell simulation having a physical scale of 1 kpc on a side, a uniform density
of 1 proton cm−3 and a background temperature of 106 Kelvin. Magnetic fields with a strength of B0 = 1 µG are
initialized such that the field lines form circles around the center of the simulation volume, such that Bx = −B0 sin(θ)
and By = B0 cos(θ), where θ is the angle measured from the +x direction in a counterclockwise manner. A Gaussian
temperature pulse is injected at (0.75, 0.5) (in units of the box size), with a peak temperature of 108 K and a FWHM of
1/64 of the box size. This initial setup is shown in the left panel of Figure 18. The simulation is then allowed to evolve
with only anisotropic conduction turned on (e.g., no hydrodynamics, radiative cooling, or cosmological expansion),
and with a Spitzer fraction of fsp = 1.
The right panel of Figure 18 shows the state of the simulation after 300 Myr. Heat has clearly been transported

only along field lines – there has been no diffusion perpendicular to the magnetic field setup, which is critical for many
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Figure 17. Ionized fraction profiles and I-front location history for the propagation of an ionization front in an expanding universe, using
Enzo’s flux-limited diffusion radiation transport method. Left panel: profiles of the H I and H II fractions (blue and red lines, respectively)
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Figure 18. Two-dimensional anisotropic conduction test in a uniform, constant temperature background with circular magnetic fields
(indicated by white streamlines) centered on (0.5, 0.5) in a 256 × 256 grid. The background medium has a density of 1 proton/cc and a
temperature of 106 K. At t= 0 (left panel), a Gaussian heat pulse is injected at (0.75, 0.5) with a FWHM of 1/64 (with all numbers given
in units of the box size) and a peak temperature of 108 K, and allowed to evolve without hydrodynamical motion (i.e., static gas) and
no radiative cooling for 300 Myr. At t= 300 Myr (right panel), heat has been transported along magnetic field lines with no significant
diffusion perpendicular to field lines. Furthermore, there are no detectable oscillations in the temperature in regions where the magnetic
field is not parallel with the grids.

studies involving anisotropic thermal conduction. No oscillations are seen in the temperature field in regions where
the fields are not aligned with the grid, suggesting that the flux-limiter is operating as expected (see discussion in
Section 8.1).

12. PARALLEL STRATEGY AND PERFORMANCE

12.1. Parallel Strategy

The current version of Enzo has been parallelized for distributed memory platforms using the Message Passing
Interface (MPI). This is done using a single grid object as the basic unit of parallelization. Each grid object – including
all cell and grid data – is fully contained on a single processor24. Parallelization is accomplished by distributing grids
amongst processors. This is done on the root grid using a simple tiling system, where the root grid is split up into
Nroot tiles, with Nroot typically equal to the number of processors, Np.
Load balancing on levels other than the root level (i.e., grids for which the level l > 0) is different, as the refined

patches are not generally uniformly distributed. Grids on refined levels are first placed on the same processor as their
parent to minimize communication; however, this generally does not result in a well-balanced computational load.
Therefore, the code has a number of options for load balancing the grids on a given level. Each grid is assigned

24 In this context, we use the word processor to mean a basic distribution unit; this could be either a core or a node, depending on details
of the system. Note that the current version of Enzo is not threaded, although a hybrid MPI + OpenMP version is under development.
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an estimated computational load, generally equal to the number of cells in the grid (which, empirically, is a good
estimate of computational cost). The first load-balancing option is to move a grid from the processor with the highest
computational load to the processor with the lowest load, with the proviso that only grids with load factors less than
half the difference between the highest and lowest loaded processors will be moved. This continues until the load ratio
between the most-to-least loaded processor is below 1.05 or until no suitable grid can be found to transfer. A second
load balancing option uses a space-filling Hilbert curve to order the grids by their approximate spatial position. Then,
once the grids have a specific one-dimensional ordering, we can divide up the grids into Np groups (with the division
taking place as equally as possible). Load balancing is done separately for each level. Clearly load balancing is most
successful if there are significantly more grids than processors; however, small grids are less efficient because of the
large number of ghost zones compared to active zones, and so the code uses a simple heuristic in order to split up grids
until there are of order 10 grids per processor. This generally results in good load-balancing while not producing grids
that are wastefully small.
Communication between processors is done using a non-blocking communication strategy that allows overlap of

communication and computation. This can be done efficiently because each processor retains a copy of the entire
hierarchy of grids, except that grids that do not ‘live’ on a given processor only contain meta data (essentially just
the location and size of the grid; such grids are denoted as ‘ghost’ grids). Replicating the hierarchy means that all
communication of data from one grid to another can be identified by each processor independently. The metadata for
‘ghost’ grids are quite small and so the extra memory required is generally not onerous unless very large numbers of
grids are used (more than a few hundred thousand grids). A schematic of this distribution is shown in Figure 1.
Data is transferred through a three-step procedure that takes advantage of the capabilities of the MPI library: (i)

as the code progresses and data is needed from another grid on another processor, the receiving processor posts an
MPI non-blocking receive indicating that it is expecting data; this outstanding receive is recorded in a table, (ii) the
sending processor calls the MPI non-blocking send function, and then finally (iii) the receiving processor, after it has
carried out all the computation it can, waits for any MPI message to arrive. Each message is coded so that it can be
matched with the appropriate receive posted in the first step, and based on that, the appropriate routine is called to
processes the data. Step (iii) is repeated until there are no outstanding receives.

12.2. Performance

12.2.1. Performance Measurement & Instrumentation

Because of the wide variety of simulations, methods, and uses of Enzo, it is difficult to state in general terms which
routines within the code will be most costly during a given simulation. As such, we have designed a lightweight regis-
tering system that has been implemented for the most commonly used routines (such as the hydrodynamic and gravity
solvers) as well as refinement level timers that measure the time spent on each level. Beyond this minimal set of rou-
tines, we have designed a simple way for the user to modify the source by adding TIMER START("Your Routine Name")
and TIMER END("Your Routine Name"). These timers are created and managed individually on each processor in an
asynchronous fashion, and contribute minimal computational, memory, and IO overhead.
At each complete root grid timestep (or less often if specified), each timer is then communicated to the root processor

where it calculates the mean, standard deviation, minimum, and maximum for each of the timers of that name across
all processors. For level timers, there are additional attributes such as the number of cell updates, the current number
of grids, and the average cells updates per second per MPI process. This information is then output to a logfile. This
provides a simplified interface to the user that can be used to diagnose performance issues as well as estimate a given
problem type’s scalability. In addition to the logfile, we have developed a plotting interface for quickly producing
figures that process the data from the logfile. These capabilities are described in the online documentation, along with
further discussion of the performance measurement implementation.

12.2.2. Unigrid scaling

It is advantageous to use Enzo in its “unigrid” (i.e., non-adaptive mesh) mode for a variety of problems, including non-
gravitating turbulence (e.g., Kritsuk & Norman 2002, 2004; Kritsuk et al. 2007, 2009b), the Lyman-α forest (Jena et al.
2005; Paschos et al. 2009), or feedback of metal-enriched gas from galaxies into the intergalactic medium (Norman et al.
2004; Smith et al. 2011). Achieving good scaling of the code in unigrid mode is relatively straightforward – upon
initialization, unigrid simulations are decomposed such that each MPI process has a roughly equal subvolume (and thus
an equal number of grid cells), meaning that work is evenly distributed among computational elements. Communication
patterns for both the gravity solve (which uses a fast Fourier transform) and the fluid solves (which transfer boundary
information between subvolumes) are predictable and straightforward, and rebuilding of the grid hierarchy does not
take place, removing a substantial global operation and a great deal of communication.
Figure 19 shows Enzo weak scaling results for a sequence of scaled unigrid Lyman-α forest calculations. These calcu-

lations include dark matter dynamics, hydrodynamics using the PPM solver, six-species non-equilibrium chemistry and
radiative cooling, and a uniform metagalactic ultraviolet background. In this sequence of test calculations, we perform
a weak scaling test on up to 13,824 MPI tasks on the NICS Kraken XT4 and ORNL Jaguar XT4 supercomputers25.
In this test, each MPI task was given a 1283 root grid tile (i.e., 1283 grid cells containing baryon quantities) and, ini-
tially, approximately 1283 dark matter particles. The number of grid cells on each processor was constant throughout

25 These simulations were performed prior to conversion of both machines to the current-generation systems
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Figure 19. Enzo weak scaling performance for a set of Lyman-α forest cosmology simulations with constant comoving spatial resolution
per grid cell, showing cell updates per second per processor plotted as a function of the number of root grid tiles of dimension 1283 (R) in
each dimension. The number of MPI tasks is N= R3, so R= 16 on this plot corresponds to a 20483 computational mesh running on 4,096
MPI tasks. This plot goes from R= 2 (8 MPI tasks) to R= 24 (13,824 MPI tasks) on two supercomputers – NICS Kraken and ORNL
Jaguar when they were Cray XT4 systems – and using 1, 2 or 4 MPI processes per node, where each compute node contained a single
quad-core AMD Opteron CPU with a speed of 2.1 GHz on Jaguar and 2.3 GHz on Kraken.

the calculation; the number of dark matter particles on each processor varies as they are moved from subvolume to
subvolume as structure evolves. The grid resolution was kept at a constant comoving size of ≃ 40 kpc/h, and as the
core count was increased, so was the simulation volume. On each machine, a compute node contained a single AMD
Opteron quad-core chip (2.1 Ghz on Jaguar; 2.3 Ghz on Kraken) with 2 GB/memory per core (8 GB/total per node).
Both machines used the SeaStar2 interconnect. In the scaling study, calculations were run with 1, 2, or 4 MPI tasks
per node. The figure shows cell updates per second per MPI process; perfect scaling would be a horizontal line.
As can be seen in Figure 19, the unigrid weak scaling performance of the code is extremely good for this problem,

with only a 20% decrease in cell updates per second per MPI task as the code is scaled from 8 to 4,096 MPI tasks, and a
40% decrease in performance overall going from 8 to 13,824 (or 243) MPI tasks. We speculate that this decrease is likely
to be partially due to global MPI communications used to, e.g., calculate the overall timestep of the simulation, and
also likely due to load imbalances due to increasing cosmological power (and thus an increasingly uneven distribution
of dark matter particles between MPI tasks at late times) as the simulation volume grows. We also observe that a
systematic difference in speed can be seen between the two machines, which can be attributed primarily to the slightly
faster CPUs on Kraken at the time (2.3 Ghz, vs. 2.1 Ghz on Jaguar). The difference in speed when using different
numbers of MPI tasks per node can be attributed primarily due to differences in competing usage of shared cache on
the quad-core chips used on this machine.
Broadly, excellent scaling in Enzo’s unigrid mode is seen for a variety of problems as long as each compute core is

given an adequate amount of work to do. For cosmological simulations, this value has been empirically determined to
be roughly 1283 cells per core. If fewer cells per core are used, the CPU is essentially data-starved and poor scaling
is observed due to computing units being idle while waiting for information to be communicated from other processes
(for, e.g., boundary information or gravity solves). Substantially larger cell counts per core would in principle help
scaling by reducing the amount of inter-process communication needed.
As a final point, we observe that scaling at larger core counts has been measured, but only with an experimental

hybrid-parallel (MPI + OpenMP) version of Enzo. Using this version, scaling comparable to that shown in Figure 19
was seen on up to 98,304 cores on the NICS Kraken XT5 (an upgraded version of the XT4 machine used for the
scaling study shown in the figure), using 2-8 OpenMP threads per MPI process. Hybrid parallelism has the potential
to substantially improve scaling by reducing the amount of communication per grid tile, as described in the previous
paragraph.

12.2.3. AMR scaling

Many astrophysical problems, such as cosmological galaxy formation (Hummels & Bryan 2012), high-resolution disk
galaxy simulations (Kim et al. 2011), high-redshift (Turk et al. 2009), and present-day star formation (Collins et al.
2012), involve multi-scale physics that span several orders of magnitude in both space and time. In these situations,
using Enzo in its adaptive mesh refinement mode is beneficial. Because the adaptive grid hierarchy is dynamic, grid
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Figure 20. Left: Strong scaling test of a 5123 AMR cosmological calculation. The root grid scaling is not representative of the true strong
scaling of Enzo because the root grid tiles are not repartitioned when a simulation is restarted with additional cores. The weak scaling
test in Figure 19 is more representative of the scaling on the root level. The performance in the refined levels show good strong scaling up
to 2,048 cores. Right: Time spent in representative major routines in the same AMR calculation.

Table 5
Strong scaling test computational details

Level Ngrid Ncells Nup Ntimesteps

0 512 1.34× 108 1.34× 108 1
1 61,868 4.01× 108 4.01× 108 1
2 91,182 1.99× 108 5.96× 108 3
3 59,932 7.62× 107 5.34× 108 7
4 40,700 3.32× 107 5.65× 108 17
5 28,346 2.76× 107 1.36× 109 49
6 19,771 2.80× 107 5.25× 109 187

Total 302,311 9.03× 108 8.83× 109 –
Note. — Data shown at z = 4 for a root grid timestep of 2.1 Myr. Col. (1): AMR Level. Col. (2): Number of grids. Col.
(3): Number of computational cells. Col. (4): Number of cell updates. Col. (5): Number of timesteps.

boundaries and, thus, communication patterns can be unpredictable, hindering strong scaling to high core counts.
Figure 20 shows strong scaling results from a single 50 Mpc/h cosmology simulation run on Ncore compute cores,

ranging from 128 to 16,384 cores at power-of-two intervals. It was run on the NICS Kraken XT5 supercomputer, which
has two AMD Opteron hexa-core processors with 16 GB of memory per compute node. The simulations that utilized
128, 256, and 512 cores were executed on 128 nodes because of the memory requirements. The higher core count
simulations were run with 8 cores per node. This simulation would not run with 12 cores per node because of the
memory overhead associated with the grid hierarchy being duplicated on each MPI process. However, this overhead
is greatly diminished if a hybrid-parallel (MPI + OpenMP) approach is used.
This simulation includes dark matter dynamics, hydrodynamics using the piecewise parabolic method, six-species

non-equilibrium chemistry and radiative cooling, and a uniform metagalactic ultraviolet background. The simulation
uses the space-filling curve method for load balancing the AMR grids. It has a 5123 root grid that is divided into
512 tiles, and 6 additional AMR levels are used. We perform these scaling tests when the simulation reaches z = 4,
where the AMR grid hierarchy is well-developed and is thus a reasonable representation of AMR simulation behavior
in general. The results shown in Figure 20 come from a single root-level timestep of ∆t = 2.1Myr. At this time, there
are 3.04× 105 AMR grids, 9.03× 108 (∼ 9673) computational cells, and 1.34× 108 dark matter particles in total. The
breakdown of the number of AMR grids, cells, timesteps, and number of cell updates on each level is shown in Table
5.
The left panel in Figure 20 shows the computational and communication time spent on each level. In the AMR

levels, there exists good strong scaling up to 2,048 cores, and marginal speed-ups are found at 4,096 cores. On the
root-grid level, there exists good scaling up to 1,024 cores, but the performance dramatically decreases at higher core
counts. This occurs because the root grid is not re-partitioned into Ncore tiles when the simulation is restarted with a
different core count. This feature can be easily implemented and is planned in the next major release of Enzo, where
scaling results would be similar to the weak scaling shown in §12.2.2. The right panel in Figure 20 shows the time
spent in some representative major routines in Enzo. The local physics routines, for example SolveHydroEquations,
exhibit perfect strong scaling because they involve no communication. By investigating the scaling behavior in each
routine, it is clear that the communication in the SetBoundaryConditions, SolveForPotential (the multi-grid
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solver in AMR subgrids), and RebuildHierarchy are responsible for the lack of strong scaling at Ncore & 4,096 in
this particular simulation. The transpose of the root grid tiles are responsible for the performance decrease because it
is not optimized for situations where the number of tiles is greater than the number of MPI processes. These results
are directly applicable to simulations with similar computational demands. In simulations with fewer computational
cells, strong scaling will cease at a smaller core count because the CPUs will become data-starved more quickly, and
the opposite occurs with larger simulations.

12.2.4. An Approximate Time and Memory Scaling Model

In this section, we develop a simple, approximate model to estimate the computational time and memory required
to complete a given calculation. Note that we are not trying to model parallel performance (which was discussed in the
previous section), but have an even simpler goal: to determine how to scale computational time estimates as we increase
the simulation resolution. This is a straightforward thing to do in codes that use static grids, as the computational
effort per timestep is constant. However, for an AMR calculation, the number of grids that will be generated during the
run is not known in advance, and so the CPU time per problem time can vary drastically throughout the calculation.
For example, at the beginning of a cosmological simulation, when the densities are nearly uniform, only the static grid
is required and the calculation progresses rapidly. However, as structure forms and dense clumps are generated, the
number of grid points swells by orders of magnitude (an increase of 103 is not uncommon) and most of the CPU time
is consumed at late physical time in the simulation. Therefore, simply performing a few steps at the beginning of the
calculation does not produce a good estimate of the required CPU time.
Nevertheless, we can try to determine how the compute time scales for a given run as we increase the resolution.

First, we neglect particles and concentrate on the time taken by the grids, which can be justified both theoretically
and empirically26. Second, we break the problem down slightly, and examine the scaling over a short enough period of
time that the grid structure does not change significantly (i.e. the number of grids at each level remains approximately
constant). We then assume that the whole run scales in the same way, or in other words, that changes in the resolution
affect the simulation in the same way at each timestep. This is usually a good approximation, as the most costly parts
of the calculation typically don’t change their characteristics substantially between timesteps.
To make progress, we assume that the computational cost to advance a single cell by one timestep is a constant.

This can be incorrect if the chemistry solver requires many iterations, but is usually fairly accurate. For a unigrid
calculation, the time would by proportional to N4

root since the number of cells scales as N3
root and, assuming the

Courant condition is the factor that controls the timestep, the number of steps to advance the calculation over a given
time interval is proportional to Nroot. Therefore, to advance a hierarchy a given time interval, we find, accounting for
all levels and using a refinement factor of 2,

tSU = C1

∑

l

flN
4
root2

4l (113)

where C1 is a constant, which can be thought of as the time taken to advance a single cell. The factor fl is the
fraction of the volume on a given level that is actually refined. By definition f0 = 1, and fl ≤ 1. In writing down
this equation, we neglect a number of costs that are not directly proportional to cell count, including communication
between processors, the logN factor for the root grid FFT, cache misses, optimizations, and other costs associated
with processing the hierarchy. The first item on this list, in particular, is clearly important for large processor counts;
however, we neglect parallel considerations in this section.
Note that unless fl/fl+1 < 1/16 (i.e. if less then about 6% of a given level is further refined), the cost per level will

increase with level. A key question, therefore, is the value of fl for each level. Unfortunately, this depends strongly
on the simulation being run. In Figure 21, we show the values of fl for three simulations: two cosmological runs with
varying box size, and a third simulation focusing on a single disk galaxy.
As, the figure demonstrates, the fl values all show a sharp decline with level, dropping as power-laws with the level

l. Focusing first on the “refine-everywhere” cosmological runs, which both show similar behavior despite the different
box sizes and redshifts at which we collect the data. In fact, we find these results are very typical for cosmological
runs, with only slight variations depending on the exact problem that is being simulated. The top-right panel shows
the ratio of fl/fl+1 which, remarkably, hovers around the critical value of 0.0625 determined earlier. This implies that
the relative CPU usage of each level, shown in the lower-left panel, is nearly flat, and that going to additional levels
of refinement only increases the amount of calculation by a factor of roughly 1/lmax. Even in the most extreme case,
the L80 run, the last level adds only 25% to the computation time.
The memory used by each level, on the other hand, scales as

memory = C2

∑

l

flN
3
root2

3l (114)

and the terms in this sum are shown in the bottom-right panel of Figure 21. This demonstrates that the memory
usage is dominated by the top three levels, and adding additional levels adds minimally to the memory usage of the run.
We have empirically tested this scaling for cosmological simulations and found it to be reasonably accurate (although

26 Since the potential is calculated on the grid, the only particle costs are: depositing mass to the grid, interpolating accelerations, and
updating particle positions and velocities. These are relatively computationally inexpensive operations.
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Figure 21. This figure shows (clockwise from upper left), the covering fraction fl of the grids on a given level l, the ratio of fl/fl+1, the
relative memory usage of each level (normalized by the memory usage of level 0), and, in the lower-left panel, the relative CPU usage of
each level, again normalized by l = 0. In each panel, three curves are shown: the solid black and long dashed red are two cosmological
simulations with box sizes of 30 h−1 Mpc and 80h−1 Mpc respectively. The dot-dashed blue line is for a non-cosmological simulation of
a ram-pressure stripped galaxy. In the top-right panel, there is a line at the critical ratio of 0.06, which determines if the next finer level
(l + 1) takes more (above) or less (below) CPU time than level l.

the increase is typically slightly larger than found here, usually 30-50%, probably because of less-than-ideal parallel
scaling).
The physical reason for the fl+1/fl ratios found in the cosmological simulations appears to be due to a combination

of the density structure of individual clouds and to the distribution of the clouds themselves. In particular, we note
that for a ρ ∝ r−2 density profile, the Lagrangian refinement criteria typically used in such simulations produces an
fl+1/fl ratio of 1/8 for a single, resolved cloud. Of course, at some point we would resolve the flat density of individual
clouds and the ratio would climb, making further refinement more costly; however, we are not yet in this regime in
this example.
These conclusions are, however, highly dependent on the type of run being performed. We contrast this cosmological

case to the simulation of a galaxy formation run, as shown by the dot-dashed curves in Figure 21. Note that grid levels
1 and 2 in this simulation are statically refined to ensure that the Lagrangian volume of the galaxy halo is resolved to
at least level 2 at all times. More importantly, the fl+1/fl ratio of the highest levels are systematically slightly larger
than the critical 0.0625 value, indicating that the CPU time is dominated by the most refined levels, as shown in the
bottom-left panel. The memory usage is dominated by levels 2 and 3, the static levels, as the bottom-right panel
demonstrates. In this case, adding more levels of refinement would substantially increase the cost of the simulation.
We have focused thus far on scaling when increasing lmax, but without changing the refinement criteria. However,

we can also keep the levels fixed and modify the refinement criteria. For cosmological runs, this is typically done by
increasing the mass resolution (and simultaneously decreasing the dark matter particle mass), and adding additional
linear small-scale modes to the initial conditions. The effect of this is to boost the fl values at all levels (except for
the root grid where f0 is already 1) by a factor linearly proportional to the increase in the mass resolution. This is
because the refinement criteria typically boosts the number of refined cells on the first and subsequent levels by this
factor. Again, we have empirically tested that this scaling is approximately valid, provided that we keep the maximum
level constant.
Putting this together, we find an approximate scaling for the computational time required for cosmological simula-
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tions:

tSU ∝M−1
res lmax. (115)

This is approximately accurate, and gives users some way to estimate compute times for Enzo calculations.

12.3. GPU parallelization and scaling

Many of today’s leading supercomputers use a heterogeneous computing platform: on a single node of a distributed-
memory platform, a multi-core CPU is often paired with one or more many-core accelerators. One programming model
that has been shown to successfully take advantage of these hardware accelerators is to run the serial component of the
algorithm on the CPU, and the vector-parallel part of the algorithm on the many-core hardware accelerator. Due to
the much higher computational performance of the many-core accelerators, if a code can be ported to effectively utilize
this heterogeneous architecture, massive speedup in simulation performance may be achieved. This heterogeneous
trend is likely to continue in future supercomputers, due to the relatively low energy needs of hardware accelerators as
well as other factors. Thus, to ensure Enzo’s efficiency on future high-end computational platforms, some of the most
time-consuming parts of Enzo have been ported to many-core architecture. Since GPUs are currently the most popular
many-core accelerator, NVIDIA’s CUDA C/C++ programming technology was chosen to port some Enzo modules to
NVIDIA GPUs.
Thus far, the PPM and Dedner MHD solvers (described in Sections 4.1 and 4.2, respectively), have been ported to

take advantage of GPUs using CUDA. Since the CPU and GPU on a node have access to separate pools of RAM, fields
updated by other modules will be transferred to the GPU before calling the GPU fluid solver. Correspondingly, after
calling the GPU solver, the updated fields will be transferred back to CPU. This ensures that the GPU-parallelized
solvers can work correctly with other parts of the code that have not yet been ported to the GPU, as well as with the
communication infrastructure within Enzo. In addition, the GPU solver supports SAMR, which is not a trivial task.
As discussed in Section 3, one of the key steps in Enzo’s AMR implementation is flux correction, which is required
when each level of resolution is allowed to take its own time step. In the GPU version of the solvers, the fluxes are
calculated on the GPU and only the fluxes required for flux correction are transferred back to the CPU. This reduces
data transfer overhead, which can be substantial in a heterogeneous architecture of this sort.
The key step in porting to many-core architectures such as the GPU is exposing the massive parallelism inherent in the

algorithm. Due to the explicit, directionally-split stencil pattern of both the PPM and Dedner MHD solvers, they are
inherently massively parallel and thus should be a good fit for hardware acceleration. Both solvers essentially contain
two parts – computation of fluxes, and a cell update. When computing fluxes, the basic procedure is to compute the
flux at each cell-interface given the inputs from neighboring cells. In the cell update part, the fundamental computation
is updating the cell-centered values using the previously-computed fluxes. In the CPU serial code, a loop over the grid
is used, where the loop body contains these basic computations. In both parts, algorithmically-different loop iterations
are completely independent of each other. Thus, the natural parallelization scheme is to map one GPU thread to
one iteration of the loop. However, the original CPU code, which operates on each grid as a serial process, does not
completely expose this parallelism as some small temporary arrays are reused among loop iterations. This re-use of
arrays introduces data dependency among loop iterations, which is undesirable for GPU parallelization. Because of
this re-use of arrays, the main change in porting the serial CPU solvers to allow massively parallel GPU computation
was replacing those shared temporary arrays by larger temporary arrays that are not shared among loop iterations.
This change exposed the massive parallelism in the algorithm, which could then be accelerated in a straightforward
manner using CUDA.
To illustrate the speedup provided by porting two solvers to GPUs, we show the results of a weak scaling test of

driven MHD turbulence on a uniform mesh in Figure 22. This particular problem type contains no physics other
than the equations of ideal MHD, and thus is representative of the type of calculation than can currently benefit from
the GPU-optimized solvers in Enzo. In this scaling test, we use the Dedner MHD solver, which runs on both CPUs
and GPUs and has been tuned to maximize performance on both platforms. The benchmarking platform is a Cray
XK6 system with a Gemini interconnect. Each node has a 16-core AMD Opteron 6272 CPU and a single NVIDIA
Tesla K20 GPU, which has 2,496 CUDA cores and a maximum theoretical speed of 1.17 Tflops for double-precision
computations. For the CPU run, all the 16 cores in each node are used by launching 16 MPI processes per node. For
the GPU run, 16 MPI processes are also launched per node, and all processes on this node share the single GPU on
that node. This can work because NVIDIA’s MPS (Multi-Process Service) technology allows multiple processes to
concurrently use the same GPU. A series of weak scaling tests were run, varying from 1 to 8 nodes (16 to 128 MPI
processes), with each node containing a cube of 2563 cells (so, a 4-node computation would have a domain that is
512× 512× 256 cells). Figure 22 displays the scaling results in terms of cell updates per second per node – as a result,
ideal weak scaling is a horizontal line. In general, the simulations using the GPU-accelerated MHD solver perform
roughly 5 times better overall on this system than the equivalent CPU-only calculation run on the same number of
nodes. We note, however, that this somewhat mis-represents the speedup obtained by porting the MHD code to GPUs
– in the GPU simulation case, the 16 CPU cores on each node are mostly idle, as they are used only for timestep
calculation and boundary condition transmission (which are both computationally inexpensive compared to the fluid
solve). This means that, effectively, the GPU simulation is 80 times faster than a single CPU core, so a user would
likely see much greater effective speedup on a system where the ratio of CPU cores to GPUs is lower.
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Figure 22. Weak scaling performance of MHD turbulence using the Dedner MHD algorithm, which has both CPU and GPU solvers.
Each node of the machine (a Cray XK6) contains one 16-core AMD Opteron 6272 CPU and 1 NVIDIA Tesla K20 GPU. In this test, there
are 2563 cells/node. The y-axis shows cell updates per second per node, which for ideal weak scaling is a horizontal line. Blue line: CPU
solver. Red line: GPU solver.

13. CODE DEVELOPMENT METHODOLOGY

Over time, Enzo’s development has followed a trajectory toward increasing openness. Started as the graduate
research project of Greg Bryan at the University of Illinois, it was subsequently stewarded by the Laboratory for
Computational Astrophysics (LCA) at the University of California at San Diego, and has transitioned to a distributed,
completely open, and community-driven project. Initially, Enzo was versioned using a series of “snapshots” of the
code base, usually hand-created by the individuals doing development work. These were distributed to collaborators
and colleagues, but the central “trunk” of development was updated primarily by a single person: while patches and
technology were accepted from external developers, the relatively small number of individuals using the code resulted
in a strong centralization of development.
As the stewardship of the code passed to the LCA, the code was released first to “friendly users” and then as a

public open source release. However, while the code was made available with documentation, technology developed in
the broader community of users was typically not re-integrated. This led to a wide dispersal of development, largely
independent, by individuals who downloaded and used the version of the code developed by the LCA.
Following the first public, open source release of Enzo, the code was migrated to the Subversion version control

system. This is a centralized version control system, and the “stable” Enzo source code was made globally readable
following the Enzo 1.5 release. Access to the primary development tree required a password and login for each user,
and providing upstream changes either required this password and the granting of write access or a sequence of
patches and manually-created diffs (much like the original development system). The technical friction of manually
contributing patches and modifications, combined with Subversion’s difficulty with tracking merges, resulted in further
fragmentation of the code base.
A version developed at Penn State and Stanford forked from a version prior to the LCA version and was the

one in which MHD with Dedener divergence cleaning, the MUSCL hydro solvers, the ray tracing radiative transfer
module, relativistic fluid dynamics, the shearing box boundaries and updates to the multi-species chemistry were
included. This version was the one that was eventually merged using the distributed version control system (DVCS)
Mercurial (http://mercurial.selenic.com/) into a branch of the code known as week-of-code, so named after the
in-person development sprint at KIPAC in June 2009 at which it was created. The fundamental, and transformative,
distinction between the previous centralized version control system and mercurial’s distributed version control system
is the elimination of gatekeepers. While there still exists a canonical, central location where stable and development
versions of Enzo can be obtained, changesets and versions can be exchanged between peers without the intervention
of designated gatekeepers. This has the direct effect of enabling local development to be versioned and its provenance
ensured, while still retaining the ability to benefit from “upstream” development. An important, even crucial, side
effect is that the technology used for local versioning provides mechanisms for easily submitting locally-developed
modifications to the community source location. Mercurial internally represents all changes as nodes in a directed,
acyclic graph (DAG), which results in the natural ability to more consistently and easily manage merging development
streams.
Currently, Enzo is developed using the hosted source control platform Bitbucket (http://bitbucket.org/) at

http://bitbucket.org/enzo/. There are two mailing lists, one for usage-focused questions and discussion, and
another for development discussion. Both of these lists are open and publicly archived. Bitbucket provides mechanisms
for inspecting source code, hosting branches and forks of the primary source, and for code review. All proposed source
code changes for Enzo are subjected to a peer review process, where experienced developers read, inspect, test, and
provide feedback on source code changes. All developers, including long-time Enzo contributors and developers, are

http://mercurial.selenic.com/
http://bitbucket.org/
http://bitbucket.org/enzo/
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subject to this process before their code is included in the primary Enzo repository. By using a remote, hosted
system, Enzo is now completely open to contributions from the community. Individuals, who may or may not consider
themselves Enzo developers, are free to “fork” the Enzo code base, develop changes (signed with their own name), and
submit them for review and inclusion into the primary code repository. In contrast to the centralized, gatekeeper-
focused technology used previously, this enables anyone to contribute changes to be evaluated for inclusion in the Enzo

codebase. One challenge that this presents is that the Enzo code is a moving target – to that end, we recommend that
users include the changeset hash of the Enzo repository that generated their simulation data (and also the version of
yt used to analyze the data) in their publications.
While peer review is able to catch many bugs and problems with source code changes, Enzo is also subject to

“answer” testing (described in detail in Section 11.1.1). We have created a set of parameter files and problem types
that exercise the underlying machinery of Enzo. These “test problems” have affiliated “tests,” which consist of scripts
that use yt (Turk et al. 2011b) to produce results such as mass distribution, projections, profiles and so on. The
testing infrastructure then evaluates whether the variation in the new results compared to a “gold standard” of results
has exceeded an acceptable threshold, typically set to roughly the level of roundoff error in single-precision floating
point arithmetic. Optionally, for those test problems that are deemed unsafe to change to any precision, the tests also
produce hashes of the outputs; these hashes will only remain unchanged in the event of bitwise identicality between
results. The results of the gold standard are versioned and stored in Amazon S3, enabling remote testing to proceed.
While the testing process – building, running, analyzing and comparing – is not yet automated against incoming pull
requests, we hope to deploy that functionality in the future. The primary challenge is that of compute time; the tests
are organized into multiple categories, including by the expected run time, but the full suite of tests can take several
days to run.

14. CONCLUSIONS

In this paper, we have presented the algorithms underlying Enzo, an open-source adaptive mesh refinement code
designed for self-gravitating compressible fluid dynamics, including the effects of magnetic fields, radiation transport,
and a variety of microphysical and subgrid processes. In addition, we have described the Enzo code development
process, have shown the outputs of a set of representative test problems, and have provided information about Enzo’s
performance and parallel scaling on recent supercomputing platforms. The Enzo code, its test suite, and all of the
scripts used to generate plots and figures for this paper are open source and are available at the Enzo website, http://
enzo-project.org. Furthermore, the yt toolkit, which is designed to analyze Enzo data (as well as data from a wide
variety of other simulation tools), can be found at its website, http://yt-project.org. Both of these codes have
active user and developer communities, extensive documentation and user support, and strong mechanisms for users
to contribute their changes and fixes to the codebase.
The developers of the Enzo code are currently working on several projects that will extend the functionality, scala-

bility, or overall performance of the code in the near future. Projects that will appear in forthcoming releases of the
Enzo code include:

• The creation of a hybrid-parallel version of Enzo, combining MPI for communication between nodes of a super-
computer and OpenMP for thread-based parallelism within a node. This will reduce on-node memory usage and
improve overall scaling behavior.

• The restructuring of Enzo’s treatment of particles to accommodate a wider range of “active” particles that
can easily interact with each other and with multiple grids, and include sink, source, and particle creation,
destruction, splitting, and merging functionality.

• A new HYPRE-based AMR gravity solver that is faster, more accurate, and more scalable than the current
multigrid solver.

• New infrastructure for problem initialization, enabling users to more quickly and easily create new types of
simulations.

With the continual rapid development of computer hardware, it makes sense to not only review Enzo’s current
capabilities, but to look toward its future development in view of predicted technological trends. These trends in
supercomputing hardware suggest that substantial modifications to Enzo’s core infrastructure, and very possibly some
of the core algorithms, will be required. More specifically, the progression involves the usage of specialized large-
core-count, vectorized computing units such as graphics processing units or chips like the Intel Xeon Phi, as well
as precipitously decreasing amounts of RAM per computing core. The former trend means that the amount of
processing power per compute node will continue to increase, likely much faster than the bandwidth between nodes,
and will require tremendous reduction in inter-node (and possibly inter-CPU) communication in order to maintain
code scalability. Also, much of the current code will need to be rewritten to take advantage of the vector nature of
these CPUs, making assumptions that are quite unlike those made in much of the current codebase. The latter trend
means that duplication of data – for example, the grid hierarchy – must be effectively eliminated to save memory, and
all inter-core and inter-node communication must be carefully thought through to minimize the amount of data moved.
An additional challenge as one goes to core counts in the tens to hundreds of millions (or more) is that the reliability
of individual computing elements will become much more of an issue, requiring robustness to hardware failure to be

http://enzo-project.org
http://enzo-project.org
http://yt-project.org
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built into the code at some level. Furthermore, we are nearing the physical limits of transistor speed and interconnect
latency (Feynman 1999), meaning that simple hardware improvements will not make these challenges disappear, and
careful thought (and the rewriting of a great deal of code) must take place! These challenges are not unique to the
Enzo code, and in fact are faced by effectively all applications that wish to take advantage of new computational
architectures. We therefore anticipate that Enzo (or a code that has the capabilities of Enzo, from a user’s point of
view) will continue to be usable at the largest scales on such machines.
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APPENDIX

INTERPOLATION METHODS

In this appendix, we provide details for the various interpolation methods available in the code. We assume through-
out that we are dealing with Cartesian coordinates and cells of equal sizes, although we allow for an arbitrary refinement
factor r between cells at different levels.

SecondOrderA
This interpolation algorithm is generally second-order, but has monotonicity constraints as described below. In one

dimension, we define the parent values as Q−1, Q0, and Q+1, where the central parent cell has a left edge at x0 and
width ∆x. We first linearly interpolate the parent values to the cell edges: Q−1/2 = (Q0 +Q−1)/2, and similarly for

Q1/2 = (Q0 +Q1)/2, and then compute a monotonic slope: ∆Q0 = minmod
(

Q1/2 −Q0, Q0 −Q−1/2

)

where
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minmod (a, b) =

{

0 if ab < 0
min (|a|, |b|)sign(a) otherwise

(A1)

This slope is then used to compute the interpolated subgrid values. Defining qi to be the subgrid values at cell
centers for the r cells corresponding to parent cell Q0 (for refinement factor r), we can write:

qi = Q0 +
i+ (1 − r)/2

r
fx (A2)

where fx = 2∆Q0 (this notation is used for consistency with the 2 and 3 dimensional cases).
In two dimensions, the procedure is very similar in that we linearly interpolate parent values to the four cell

corners: Q−1/2,−1/2, Q−1/2,1/2, Q1/2,−1/2, Q1/2,1/2 (by averaging parent cell-centered parent values). We then compute
monotonic slopes across the two diagonals, since for a linear function extrema occur at corners:

∆Q0=minmod
(

Q1/2,1/2 −Q0, Q0 −Q−1/2,−1/2

)

(A3)

∆Q1=minmod
(

Q−1/2,1/2 −Q0, Q0 −Q1/2,−1/2

)

(A4)

We then translate these slopes into the grid axes with fx = ∆Q0−∆Q1 and fy = ∆Q0+∆Q1 so that the interpolation
itself can be written simply as

qi,j = Q0 +
i+ (1 − r)/2

r
fx +

j + (1− r)/2

r
fy (A5)

Finally, we write down the three-dimensional version – unfortunately, here the number of monotonicity constraints
is four (the 4 diagonals across the 8 opposing corners of the cube), while the number of slopes is three, so the problem
is over-constrained. Somewhat arbitrarily, we adopt the following procedure. As before, we compute ∆Q0, ∆Q1, ∆Q2,
and ∆Q3 with the minmod limiter across the 4 diagonals. We then define

s =
∆Q1 +∆Q2 +∆Q3

∆Q0
(A6)

which is the value of ∆Q0 that the other slopes (∆Q1, ∆Q2, and ∆Q3) imply, normalized by the desired value of
∆Q0 itself. If 0 < s < 1, then no adjustment needs to be made, as the monotonicity constraints are met. If these
equalities are not met, then, if s < 0 we define χn = 1 if ∆Qn/∆Q0 < 0, and χn = 0 otherwise (if s > 1, this is
reversed, so χn = 1 if ∆Qn/∆Q0 > 0, and 0 otherwise). These weights are used to determine which slopes to modify
to match the ∆Q0 constraint. We then compute the amount of adjustment required:

f = −∆Q0s
′ +
∑

n(1− χn)∆Qn
∑

χn∆Qn + ǫ
(A7)

where s′ = min(max(s, 0), 1) and ǫ is a small number to prevent numerical errors. We then use this adjustment
fraction to compute the new, adjusted ∆Qn (for n = 1, 2, 3) that match the ∆Q0 constraint as closely as possible with

∆Qn = fχn∆Qn + (1− χn)∆Qn (A8)

Finally, these are converted to the grid axes with fx = ∆Q2 +∆Q3, fy = ∆Q1 +∆Q3, fz = ∆Q1 +∆Q2. We then
do the interpolation itself with

qi,j,k = Q0 +
i+ (1− r)/2

r
fx +

j + (1 − r)/2

r
fy +

k + (1− r)/2

r
fz (A9)

SecondOrderB
We also provide a variant on the above procedure, with two changes. The first is that the slopes across the

diagonals (∆Q0, etc.) are computed directly rather than with the minmod limiter (e.g. ∆Q0 = (Q1/2,1/2,1/2 −
Q−1/2,−1/2,−1/2)/2). To ensure positivity in the resulting interpolation when applied to positive conserved quantities,
the slopes are limited so that the smallest corner value is 0.2 of the cell center value. The procedure described above
is then applied to turn these four slopes into a linear interpolation.

SecondOrderC
This is a completely different second-order interpolation scheme, which is based on Cloud-In-Cell (CIC) interpolation

(Hockney & Eastwood 1988). In one dimension, we define the parent values as Q0, and Q+1, where the left parent
cell has a cell center at x0 and width ∆x. Then, the interpolated value for a subgrid cell qi with a cell left edges at
xi = x0 + i∆xp/r, where i runs from 0 to r − 1 for refinement factor r, is given by:
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qi =
2r − 1− 2i

2r
Q0 +

1 + 2i

2r
Q+1 (A10)

The extension to two and three dimensions is straightforward, with weights in the other dimensions computed in
the same way and then multiplied to get a total of 4 and 8 weights for the 2 and 3 dimensional cases, respectively.
This scheme preserves monotonicity, but is not conservative.

ThirdOrderA
This interpolation method provides third-order accuracy based on the Triangular Shaped Cloud (TSC) methodology

(Hockney & Eastwood 1988). As usual, in one dimension, we define the parent values as Q−1, Q0, and Q+1, where
the central parent cell has a left edge at x0 and width ∆x. Then, the interpolated value for a subgrid cell qi with a
cell left edges at xi = x0 + i∆xp/r where i runs from 0 to r − 1 for refinement factor r, is given by:

qi = aiQ−1 + biQ0 + ciQ+1 (A11)

and the weights are given by:

a(i) =
(r − i)3 − (r − i− 1)3

6r3
; c(i) =

3i2 + 3i+ 1

6r3
(A12)

and b(i) = 1/r−a(i)−c(i). The extension to two and three dimensions is straightforward with the weights computed
in the same way as for the one-dimensional case but then multiplied to determine the 9 and 27 factors necessary for
the 2 and 3 dimensional cases, respectively.
One problem with this interpolation technique is that it is not conservative. In particular, the sum of the interpolated

subgrid values:

Q̃0 =

r−1
∑

i=0

qi (A13)

is not, in general, equal to Q0. We can retain conservation by adding the factor (Q0− Q̃0)/r to the interpolated values

(or by multiplying the interpolated values by the ratio Q0/Q̃0). Unfortunately, the result of this procedure does not
preserve monotonicity – it can introduce local minima and maxima at parent cell boundaries. We can then attempt to
correct that by taking a weighted average between the interpolated values on the subgrid and the parent value, with
weights computed such that the interpolated values at the edge of the parent cell are not local maxima compared to
the interpolated values in the neighboring parent cell.

FirstOrderA
Finally, for completeness, we include a first-order accurate piecewise constant interpolator for which, using the same

definitions as in the previous case, we take qi = Q0, for i = 0 to r − 1.
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Dedner, A., Kemm, F., Kröner, D., Munz, C., Schnitzer, T., &

Wesenberg, M. 2002, Journal of Computational Physics, 175,
645

Duffell, P. C., & MacFadyen, A. I. 2011, ApJS, 197, 15
Eisenstein, D. J., & Hut, P. 1998, ApJ, 498, 137
Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659
Falgout, R. D., & Yang, U. M. 2002, Lecture Notes in Computer

Science, Vol. 2331, Computational Science – ICCS 2002 Part
III (Springer-Verlag), 632–641

—. 2012, HYPRE User’s Manual, 2nd edn., Center for Applied
Scientific Computing, Lawrence Livermore National
Laboratory, http://www.llnl.gov/casc/hypre/software.html

Fang, T., & Bryan, G. L. 2001, ApJ, 561, L31
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W.,

Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761
Feynman, R. 1999, Feynman lectures on computation

(Cambridge, Mass: Perseus Books)
Frenk, C. S. et al. 1999, ApJ, 525, 554
Fryxell, B. et al. 2000, ApJS, 131, 273
Galli, D., & Palla, F. 1998, A&A, 335, 403
Gardiner, T. A., & Stone, J. M. 2005, Journal of Computational

Physics, 205, 509
Gelato, S., Chernoff, D. F., & Wasserman, I. 1997, ApJ, 480, 115
Gingold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375
Glover, S. C. O., & Abel, T. 2008, MNRAS, 388, 1627
Gnedin, N. Y. 1995a, ApJS, 97, 231
—. 1995b, ApJS, 97, 231
Gnedin, N. Y., & Ostriker, J. P. 1997, ApJ, 486, 581
Godunov, S. K. 1959, Matematicheskii Sbornik, 47, 271
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