18 research outputs found

    TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury

    Perinatal Exposure to Environmentally Relevant Levels of Bisphenol A Decreases Fertility and Fecundity in CD-1 Mice

    Get PDF
    Bac k g r o u n d: Perinatal exposure to low-doses of bisphenol A (BPA) results in alterations in the ovary, uterus, and mammary glands and in a sexually dimorphic region of the brain known to be important for estrous cyclicity. Objectives: We aimed to determine whether perinatal exposure to environmentally relevant doses of BPA alters reproductive capacity. Met h o d s: Female CD-1 mice that were exposed to BPA at 0, 25 ng, 250 ng, or 25 µg/kg body weight (BW)/day or diethylstilbestrol (DES) at 10 ng/kg BW/day (positive control) from gestational day 8 through day 16 of lactation were continuously housed with proven breeder males for 32 weeks starting at 2 months of age. At each delivery, pups born to these mating pairs were removed. The cumulative number of pups, number of deliveries, and litter size were recorded. The purity of the BPA used in this and our previous studies was assessed using HPLC, mass spectrometry, and nuclear magnetic resonance. Res u l t s: The forced breeding experiment revealed a decrease in the cumulative number of pups, observed as a nonmonotonic dose–response effect, and a decline in fertility and fecundity over time in female mice exposed perinatally to BPA. The BPA was 97 % pure, with no evidence of contaminatio

    Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity

    Get PDF
    Background: T-cell tolerance of allergic cutaneous contact sensitivity (CS) induced in mice by high doses of reactive hapten is mediated by suppressor cells that release antigen-specific suppressive nanovesicles. Objective: We sought to determine the mechanism or mechanisms of immune suppression mediated by the nanovesicles. Methods: T-cell tolerance was induced by means of intravenous injection of hapten conjugated to self-antigens of syngeneic erythrocytes and subsequent contact immunization with the same hapten. Lymph node and spleen cells from tolerized or control donors were harvested and cultured to produce a supernatant containing suppressive nanovesicles that were isolated from the tolerized mice for testing in active and adoptive cell-transfer models of CS. Results: Tolerance was shown due to exosome-like nanovesicles in the supernatants of CD81 suppressor T cells that were not regulatory T cells. Antigen specificity of the suppressive nanovesicles was conferred by a surface coat of antibody light chains or possibly whole antibody, allowing targeted delivery of selected inhibitory microRNA (miRNA)–150 to CS effector T cells. Nanovesicles also inhibited CS in actively sensitized mice after systemic injection at the peak of the responses. The role of antibody and miRNA-150 was established by tolerizing either panimmunoglobulin-deficient JH2/2 or miRNA-1502/2 mice that produced nonsuppressive nanovesicles. These nanovesicles could be made suppressive by adding antigen-specific antibody light chains or miRNA-150, respectively. Conclusions: This is the first example of T-cell regulation through systemic transit of exosome-like nanovesicles delivering a chosen inhibitory miRNA to target effector T cells in an antigen-specific manner by a surface coating of antibody light chains

    Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients is Associated with Microbial Translocation and Bacteremia

    Get PDF
    Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19

    Blood handling and leukocyte isolation methods impact the global transcriptome of immune cells

    No full text
    Background Transcriptional profiling with ultra-low input methods can yield valuable insights into disease, particularly when applied to the study of immune cells using RNA-sequencing. The advent of these methods has allowed for their use in profiling cells collected in clinical trials and other studies that involve the coordination of human-derived material. To date, few studies have sought to quantify what effects that collection and handling of this material can have on resulting data. Results We characterized the global effects of blood handling, methods for leukocyte isolation, and preservation media on low numbers of immune cells isolated from blood. We found overall that storage/shipping temperature of blood prior to leukocyte isolation and sorting led to global changes in both CD8+ T cells and monocytes, including alterations in immune-related gene sets. We found that the use of a leukocyte filtration system minimized these alterations and we applied this method to generate high-quality transcriptional data from sorted immune cells isolated from the blood of intracerebral hemorrhage patients and matched healthy controls. Conclusions Our data underscore the necessity of processing samples with comparably defined protocols prior to transcriptional profiling and demonstrate that a filtration method can be applied to quickly isolate immune cells of interest while minimizing transcriptional bias. Keywords: Immune profiling; Peripheral blood mononuclear cells; Transcriptome; RNA-seqNational Institute of Neurological Diseases and Stroke (U.S.) (Grant 5R01NS097728–02)National Cancer Institute (U.S.) (Grant P30-CA14051

    Divergent Functions of Tissue-Resident and Blood-Derived Macrophages in the Hemorrhagic Brain

    No full text
    Background and Purpose: Brain tissue-resident microglia and monocyte-derived macrophages (MDMs) are innate immune cells that contribute to the inflammatory response, phagocytosis of debris, and tissue repair after injury. We have previously reported that both microglia and MDMs transition from proinflammatory to reparative phenotypes over days after an intracerebral hemorrhage (ICH). However, their individual functional properties in the brain remain largely unknown. Here we characterized the differences between microglia and MDMs and further elucidate their distinct activation states and functional contributions to the pathophysiology and recovery after ICH. Methods: Autologous blood injection was used to model ICH in mice. Longitudinal transcriptomic analyses on isolated microglia and MDMs from mice at days 1, 3, 7 and 10 after ICH and naive controls identified core transcriptional programs that distinguish these cells. Imaging flow cytometry and in vivo phagocytosis assays were used to study phagocytic ability of microglia and MDMs. Antigen presentation was evaluated by ovalbumin-OTII CD4 T-cell proliferation assays with bone marrow–derived macrophages and primary microglia cultures. Results: MDMs had higher phagocytic activity and higher erythrophagocytosis in the ICH brain. Differential gene expression revealed distinct transcriptional signatures in the MDMs and microglia after ICH. MDMs had higher expression of MHCII (major histocompatibility complex class II) genes than microglia at all time points and greater ability to induce antigen-specific T-cell proliferation. Conclusions: The different ontogeny of microglia and MDMs lead to divergent responses and functions in the inflamed brain as these 2 cell populations differ in phagocytic functions and antigen-presenting capabilities in the brain after ICH. </jats:sec

    Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection

    Get PDF
    Commensal flora can promote both immunity to pathogens and mucosal inflammation. How commensal driven inflammation is regulated in the context of infection remains poorly understood. Here, we show that during acute mucosal infection, Ly6C(hi) inflammatory monocytes acquire a tissue specific regulatory phenotype associated with production of the lipid mediator prostaglandin E(2) (PGE(2)). Notably, in response to commensals, Ly6C(hi) monocytes can directly inhibit neutrophil activation in a PGE(2)-dependent manner. Further, in the absence of inflammatory monocytes, mice develop severe neutrophil-mediated pathology that can be controlled by PGE(2) analog treatment. Complementing these findings, inhibition of PGE(2) led to enhanced neutrophil activation and host mortality. These data demonstrate a previously unappreciated dual action of inflammatory monocytes in controlling pathogen expansion while limiting commensal mediated damage to the gut. Collectively, our results place inflammatory monocyte derived PGE(2) at the center of a commensal driven regulatory loop required to control host-commensal dialogue during inflammation

    Leukocyte dynamics after intracerebral hemorrhage in a living patient reveal rapid adaptations to tissue milieu

    No full text
    Intracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here, we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Hemorrhage Evacuation trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-Seq (scRNA-Seq), this is the first report to our knowledge that characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution. Our analysis revealed shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic rebleed that our transcriptional data indicated occurred prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods such as scRNA-Seq would enable greater understanding of complex intracerebral events
    corecore