468 research outputs found
arules - A Computational Environment for Mining Association Rules and Frequent Item Sets
Mining frequent itemsets and association rules is a popular and well researched approach for discovering interesting relationships between variables in large databases. The R package arules presented in this paper provides a basic infrastructure for creating and manipulating input data sets and for analyzing the resulting itemsets and rules. The package also includes interfaces to two fast mining algorithms, the popular C implementations of Apriori and Eclat by Christian Borgelt. These algorithms can be used to mine frequent itemsets, maximal frequent itemsets, closed frequent itemsets and association rules.
The Local Field Potential Reflects Surplus Spike Synchrony
The oscillatory nature of the cortical local field potential (LFP) is
commonly interpreted as a reflection of synchronized network activity, but its
relationship to observed transient coincident firing of neurons on the
millisecond time-scale remains unclear. Here we present experimental evidence
to reconcile the notions of synchrony at the level of neuronal spiking and at
the mesoscopic scale. We demonstrate that only in time intervals of excess
spike synchrony, coincident spikes are better entrained to the LFP than
predicted by the locking of the individual spikes. This effect is enhanced in
periods of large LFP amplitudes. A quantitative model explains the LFP dynamics
by the orchestrated spiking activity in neuronal groups that contribute the
observed surplus synchrony. From the correlation analysis, we infer that
neurons participate in different constellations but contribute only a fraction
of their spikes to temporally precise spike configurations, suggesting a dual
coding scheme of rate and synchrony. This finding provides direct evidence for
the hypothesized relation that precise spike synchrony constitutes a major
temporally and spatially organized component of the LFP. Revealing that
transient spike synchronization correlates not only with behavior, but with a
mesoscopic brain signal corroborates its relevance in cortical processing.Comment: 45 pages, 8 figures, 3 supplemental figure
LFP beta amplitude is predictive of mesoscopic spatio-temporal phase patterns
Beta oscillations observed in motor cortical local field potentials (LFPs)
recorded on separate electrodes of a multi-electrode array have been shown to
exhibit non-zero phase shifts that organize into a planar wave propagation.
Here, we generalize this concept by introducing additional classes of patterns
that fully describe the spatial organization of beta oscillations. During a
delayed reach-to-grasp task in monkey primary motor and dorsal premotor
cortices we distinguish planar, synchronized, random, circular, and radial
phase patterns. We observe that specific patterns correlate with the beta
amplitude (envelope). In particular, wave propagation accelerates with growing
amplitude, and culminates at maximum amplitude in a synchronized pattern.
Furthermore, the occurrence probability of a particular pattern is modulated
with behavioral epochs: Planar waves and synchronized patterns are more present
during movement preparation where beta amplitudes are large, whereas random
phase patterns are dominant during movement execution where beta amplitudes are
small
Estimating the contribution of assembly activity to cortical dynamics from spike and population measures
The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data
Fatigue Assessment of Wire and Arc Additively Manufactured Ti-6Al-4V
Wire and arc additively manufactured (WAAM) parts and structures often present internal defects, such as gas pores, and cause irregularities in the manufacturing process. In order to describe and assess the effect of internal defects in fatigue design, this research study investigates the fatigue strength of wire arc additive manufactured structures covering the influence of imperfections, particularly gas pores. Single pass WAAM structures are manufactured using titanium alloy Ti-6Al-4V and round fatigue, tensile specimen are extracted. Tensile tests and uniaxial fatigue tests with a load stress ratio of R = 0.1 were carried out, whereby fatigue test results are used for further assessments. An extensive fractographic and metallographic fracture surface analysis is utilized to characterize and measure crack-initiating defects. As surface pores as well as bulk pores are detected, a stress intensity equivalent ∆Keqv transformation approach is presented in this study. Thereby, the defect size of the surface pore is transformed to an increased defect size, which is equivalent to a bulk pore. Subsequently, the fatigue strength assessment method by Tiryakioğlu, commonly used for casting processes, is applied. For this method, a cumulative Gumbel extreme value distribution is utilized to statistically describe the defect size. The fitted distribution with modified data reveals a better agreement with the experimental data than unmodified. Additionally, the validation of the model shows that the usage of the ∆K modified data demonstrates better results, with a slight underestimation of up to about −7%, compared to unmodified data, with an overestimation of up to about 14%, comparing the number of load cycles until failure. Hence, the presented approach applying a stress intensity equivalent transformation of surface to bulk pores facilitates a sound fatigue strength assessment of WAAM Ti-6Al-4V structures
odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments
An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format
- …