3,996 research outputs found

    Cell migration and capillary plexus formation in wounds and retinae

    Get PDF
    Cell migration is a fundamental biological phenomenon that is critical to the development and maintenance of tissues in multi-cellular organisms. This thesis presents a series of discrete mathematical models designed to study the migratory response of such cells when exposed to a variety of environmental stimuli. By applying these models to pertinent biological scenarios and benchmarking results against experimental data, novel insights are gained into the underlying cell behaviour. The process of angiogenesis is investigated first and models are developed for simulating capillary plexus expansion during both wound healing and retinal vascular development. The simulated cell migration is coupled to a detailed model of blood perfusion that allows prediction of dynamic flow-induced evolution of the nascent vascular architectures – the network topologies generated in each case are found to successfully reproduce a number of longitudinal experimental metrics. Moreover, in the case of retinal development, the resultant distributions of haematocrit and oxygen are found to be essential in generating vasculatures that resemble those observed in vivo. An alternative cell migration model is then derived that is capable of more accurately describing both individual and collective cell movement. The general model framework, which allows for biophysical cell-cell interactions and adaptive cell morphologies, is seen to have the potential for a range of applications. The value of the modelling approach is well demonstrated by benchmarking in silico cell movement against experimental data from an in vitro fibroblast scrape wound assay. The results subsequently reveal an unexplained discrepancy that provides an intriguing challenge for future studies

    Experimental validation of a two-dimensional shear-flow model for determining acoustic impedance

    Get PDF
    Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound propagation were generally consistent with those from normal-incidence measurements. However, sensitivity of the grazing-incidence impedance to small measurement or systematic errors in propagation constant varied dramatically over the range of test frequencies

    On the Use of Experimental Methods to Improve Confidence in Educed Impedance

    Get PDF
    Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request

    Implementing A Balanced Scorecard In A Not-For-Profit Organization

    Get PDF
    This paper examines the use of the Balanced Scorecard in a not-for-profit organization (Cattaraugus County ReHabilitation Center).  The ReHabilitation Center has begun using the Balanced Scorecard paradigm in its strategic planning process.  In this paper an overview is presented of the basic concepts of the Balanced Scorecard including the financial perspective, customer perspective, internal process perspective, and learning and growth perspective.  The history and services of the ReHabilitation Center are then summarized.  The application of the Balanced Scorecard approach to the ReHabilitation Center is discussed in detail.  Implications in using the Balanced Scorecard are discussed.  Finally, conclusions regarding the use of the Balanced Scorecard in a not-for-profit organization are presented

    Implementing A Balanced Scorecard In A Not-For-Profit Organization

    Get PDF
    This paper examines the use of the Balanced Scorecard in a not-for-profit organization (Cattaraugus County ReHabilitation Center).  The ReHabilitation Center has begun using the Balanced Scorecard paradigm in its strategic planning process.  In this paper an overview is presented of the basic concepts of the Balanced Scorecard including the financial perspective, customer perspective, internal process perspective, and learning and growth perspective.  The history and services of the ReHabilitation Center are then summarized.  The application of the Balanced Scorecard approach to the ReHabilitation Center is discussed in detail.  Implications in using the Balanced Scorecard are discussed.  Finally, conclusions regarding the use of the Balanced Scorecard in a not-for-profit organization are presented

    Explanation of Anomalous Behavior Observed in Impedance Eduction Techniques Using Measured Data

    Get PDF
    Several enhancements that improve the accuracy and robustness of an impedance eduction technique that use an automatic optimizer are presented. These enhancements are then used to launch an intensive investigation into the cause of anomalous behavior that occurs for a small number of test conditions. This anomalous behavior is investigated for both a hardwall insert and a conventional liner. The primary conclusions of the study are that: (1) for the hard wall insert, the anomalies are due to narrow peaks in the objective function, (2) For the conventional liner, the anomalies are due to the presence of an extremely flat objective function, and (3) the anomalies appear to be triggered by inconsistencies between the duct propagation model and the measured data. At high frequencies, the duct propagation model may need to include the effects of higher-order duct modes, whereas at low frequencies, the effects of the mean boundary layer may have to be included

    Impedance Eduction in Ducts with Higher-Order Modes and Flow

    Get PDF
    An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow

    Two-body non-leptonic decays on the lattice

    Get PDF
    We show that, under reasonable hypotheses, it is possible to study two-body non-leptonic weak decays in numerical simulations of lattice QCD. By assuming that final-state interactions are dominated by the nearby resonances and that the couplings of the resonances to the final particles are smooth functions of the external momenta, it is possible indeed to overcome the difficulties imposed by the Maiani-Testa no-go theorem and to extract the weak decay amplitudes, including their phases. Under the same assumptions, results can be obtained also for time-like form factors and quasi-elastic processes.Comment: 15 pages, 1 Postscript figur

    Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Get PDF
    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner
    corecore