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Abstract 

Cell migration is a fundamental biological phenomenon that is critical to the 

development and maintenance of tissues in multi-cellular organisms.  This thesis 

presents a series of discrete mathematical models designed to study the migratory 

response of such cells when exposed to a variety of environmental stimuli.  By applying 

these models to pertinent biological scenarios and benchmarking results against 

experimental data, novel insights are gained into the underlying cell behaviour. 

The process of angiogenesis is investigated first and models are developed for 

simulating capillary plexus expansion during both wound healing and retinal vascular 

development.  The simulated cell migration is coupled to a detailed model of blood 

perfusion that allows prediction of dynamic flow-induced evolution of the nascent 

vascular architectures – the network topologies generated in each case are found to 

successfully reproduce a number of longitudinal experimental metrics.  Moreover, in the 

case of retinal development, the resultant distributions of haematocrit and oxygen are 

found to be essential in generating vasculatures that resemble those observed in vivo. 

An alternative cell migration model is then derived that is capable of more accurately 

describing both individual and collective cell movement.  The general model 

framework, which allows for biophysical cell-cell interactions and adaptive cell 

morphologies, is seen to have the potential for a range of applications.  The value of the 

modelling approach is well demonstrated by benchmarking in silico cell movement 

against experimental data from an in vitro fibroblast scrape wound assay.  The results 

subsequently reveal an unexplained discrepancy that provides an intriguing challenge 

for future studies. 
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Chapter 1 

 

Introduction 

 

 

 

1.1. Background 

The field of mathematical biology has grown immeasurably over recent decades and 

seen the development of theoretical models describing many diverse biological 

phenomena.  The true potential of such models for providing novel insights into 

biological systems, however, has only recently been recognised on a broad scale.  

Indeed, there is a growing trend for biological and biomedical investigations to involve 

mathematical modellers working in close collaboration with those running pertinent 

experimental programmes.  Such an approach is inherently advantageous to both 

parties: mathematical models can be informed and validated by the latest experimental 

data, whilst the corresponding in silico results can serve to reduce experimentation and 

focus future laboratory studies. 

In this thesis, we utilise a range of in vivo data obtained from such an experimental 

collaboration, and set out to study the process of angiogenesis with particular focus on 

the role played by blood flow in the evolution of nascent vascular architectures.  The 

cellular processes orchestrating the growth of these structures are also of great 

importance, however, and we follow this study by presenting a further model that 

incorporates these mechanisms in a more physically realistic manner.  We begin, 

therefore, by firstly providing a brief introduction to the cell biology that is fundamental 

to our mathematical models. 
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1.2. Cellular Mechanisms of Development, Maintenance and 

Disease 

The development of multi-cellular eukaryotic organisms from initial germ or somatic 

cells is a complex and fascinating biological phenomenon; a fully developed adult 

human body, for example, contains upwards of 200 different types of cells and 

approximately 10
13

 cells in total.  In spite of the unavoidably intricate spatial and 

temporal interplay required between gene expressions, molecular interactions and cell 

movements, it is clear that the phenomenon of biological development is, in general, 

tightly controlled and, as a result, highly-reproducible.  Although many of the molecular 

mechanisms driving such developmental cascades are yet to be fully elucidated, at a 

cellular level there exists a variety of well-known universal processes such as 

differentiation, migration, proliferation, adhesion and apoptosis.  Notably, however, 

these features are not entirely unique to development; they also play a prominent role in 

tissue maintenance (e.g. wound healing) and in disease.  For example, uncontrolled 

proliferation and invasive cell migration, which can ultimately lead to metastatic spread, 

are two of the hallmarks of cancer (Hanahan and Weinberg, 2000). 

Although all five of these crucial cell behaviours will be considered at some stage in 

the mathematical models presented in this thesis; proliferation, migration and adhesion 

are the three of greatest relevance.  Therefore, before proceeding to review pertinent 

mathematical modelling literature, we shall begin by summarising some of the basic 

biology characterising each of these processes.  Note, however, that the following 

discussion is intentionally brief; the intention is not to explicitly detail the vast 

underlying molecular dynamics, but simply to provide a general survey of the key 

processes that drive the cellular responses in our models.  Various biological scenarios 

are investigated in this thesis, and more problem-specific discussions will be embarked 

upon where necessary in succeeding chapters. 

 

1.2.1. Cell Migration 

The action of cell migration, or locomotion, can be loosely classified into two 

categories: cell swimming and cell crawling.  In general, swimming refers to the 

movement of cells through a fluid, whilst crawling refers to movement across a solid 

substrate or through a fibrous matrix.  The mechanical and molecular mechanisms of 
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these two types of movement vary extensively and, for the purposes of this thesis, we 

shall choose to focus entirely on the latter phenomenon of cell crawling. 

The crawling of cells has been typically studied in vitro, either on planar substrates 

or within deformable matrices.  Much of the existing knowledge of this process has 

been collected by investigating the behaviour of, amongst other cell types, amoebae, 

leukocytes and fibroblasts.  Such studies are of great importance because crawling is 

also known to be at the heart of a wide range of in vivo cell migration events.  In late 

vertebrate embryonic development, for example, extensive cell migration is required to 

direct cells towards appropriate regions of the emerging body structure.  Furthermore, 

tissue maintenance and the immune response in later life require the active migration 

and function of a menagerie of cell types, including fibroblasts, neutrophils and 

lymphocytes. 

In the absence of external signals, cells have been shown to perform random walks; 

such a scenario, however, is not generally applicable for in vivo cell movements.  

Indeed, a variety of factors have been found to impose bias in the direction of migration 

of a cell within its microenvironment, including responses to gradients of adhesion 

(haptotaxis), diffusible chemicals (chemotaxis) and, perhaps more obscurely, light 

(phototaxis).  As will be seen, the first two responses mentioned here are of great 

importance to the mathematical models of cell movement that will be presented in this 

thesis. 

Whilst migrating randomly or in response to an external signal, it is important to 

understand the exact means by which a crawling cell propels itself forward in a chosen 

direction.  The process that we shall therefore describe has been termed “fibroblast 

locomotion”, but the general framework, presented diagrammatically in Figure 1.1, is 

believed to depict the basis of active migration for any type of crawling cell.  The 

forward propulsion first requires the extension of a protrusion from the front of the cell 

over the underlying substrate; such protrusions may take the form of blunt pseudopodia, 

flat lamellipodia or slender filopodia.  Such cellular processes are believed to be formed 

by the rapid construction of a dense filamentous meshwork of polymerised actin in the 

cell cytoskeleton, thus forcing the plasma membrane to advance outwards.  These 

protrusions subsequently attach to the substrate in front of the cell by forming points of 

adhesion, mediated primarily by a family of transmembrane proteins known as 

integrins.  The absolute strength of these adhesions is known to vary from cell to cell, 

with the overall result seemingly that weakly-adhering cells are likely to migrate much 
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more quickly.  Finally, the cell utilises the newly formed anchorages at its front to 

support contraction of its body, and attachments at the rear of the cell are released to 

ultimately produce translocation of the cell and all of its intracellular components.  The 

precise molecular mechanisms of this contraction remain a mystery, although it is 

widely believed that the actin cortex in the cytoskeleton again plays a prominent role. 

 

 

Figure 1.1: Schematic diagram illustrating the key features of cell crawling on a 

substratum.  The temporal sequence of events entails (from top to bottom): extension of 

a protrusion from the front of the cell; attachment of the protrusion to the underlying 

surface; contraction of the cell body to pull the cellular contents forwards; release of 

surface adhesions at the back of the cell to produce an overall forward translocation.  

Image taken from Palsson (2001). 

 

1.2.2. Cell Division 

The division of cells is the fundamental process by which living organisms can develop 

and thrive.  Tissue growth and organogenesis, in particular, rely on the repeated 

reproduction of particular cell types, whilst during adulthood proliferation is also 

required in order to replace cells that are damaged or have become obsolete.  The 
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sequence of events underpinning the division of all eukaryotic cells has been widely 

studied and, owing to its well-characterised recurring nature, has been termed the cell 

cycle.  During this cycle the parent cell must duplicate all of its internal cytoplasmic 

organelles.  More importantly, however, the DNA carried by the cell must also be 

accurately replicated in order that each of the two resulting daughter cells is genetically 

equivalent. 

The standard cell cycle is conventionally split into a number of distinct phases, each 

of which demarcates a particular set of mechanical and molecular events during cell 

division; these phases, listed in order of occurrence, are known as G1, S, G2 and M.  In 

addition, there also exists a state of quiescence, known as G0, which a cell may enter 

during passage through G1 if it withdraws from the natural progression of its cell cycle.  

A diagram of the typical progression of the cell cycle is presented in Figure 1.2.  The 

various transitions between the respective states are regulated by a series of 

sophisticated molecular checks, known as the cell cycle control system.  A cell may fail 

to pass a particular checkpoint if, for example, the necessary molecular machinery has 

failed to properly assemble or the local chemical environment is deemed unfavourable.  

Indeed, the composition of the local environment is believed to be of particular 

importance, since in vitro studies have predicted that cells will generally fail to 

proliferate in the absence of diffusible growth factors, whilst sufficient adhesion to an 

underlying substrate is also deemed to be a critical factor.   

Most of the necessary cell cycle checks are made during the appropriately named gap 

phases, G1 and G2, where the cell may also be undergoing a small amount of growth.  

Once a cell has committed to S phase a great deal more activity is required, since this is 

the stage at which DNA is replicated in the nucleus.  Furthermore, formation of the 

molecular machinery required during M phase is also initiated at this stage.  Due to its 

inherently dynamic nature, M phase is by far the most complex and dramatic phase of 

the cell cycle.  As such, we can further categorise this into two additional stages: 

mitosis, where the cell nucleus is divided, and cytokinesis, where two distinct daughter 

cells are formed by cleavage of the cytoplasm.  The mechanical progression of mitosis 

requires the assembly of a microtubule-based structure known as the mitotic spindle.  

Following the breakdown of the nuclear envelope, this spindle captures the newly-

replicated chromosomes of DNA and manoeuvres them towards opposite ends of the 
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Figure 1.2: Schematic diagram showing the sequence of phases a cell will pass through 

during its division cycle; the cell splits into two daughter cells during the M phase.  A 

cell may withdraw from its cycle and enter the quiescent G0 phase if it fails to satisfy 

the conditions of the cell cycle control system.  Aside from G0, which may last an 

indeterminate amount of time, the lengths of the arrows give an indication of the 

relative time spent within each phase. 

 

cell (i.e. towards the spindle poles).  The mitosis stage is complete when two distinct 

nuclear envelopes begin to re-form, each containing identical sets of DNA.  The final 

act, cytokinesis, requires the influence of a further cytoplasmic mechanical mechanism.  

As for cell migration above, this so-called contractile ring requires the assembly of actin 

filaments; however, a further protein known as myosin also plays an important role.  

The contractile ring initially forms close to the plasma membrane around the middle of 

the cell, and subsequent contraction pulls the membrane inwards to create a cleavage 

furrow that ultimately splits the cell in two.  A diagram illustrating the key phases of 

both mitosis and cytokinesis is presented in Figure 1.3. 

 

1.2.3. Cell-Cell Adhesion 

In the discussion above, we remarked that adhesion to an underlying substrate is of 

great importance to the successful initiation or progression of both cell division and cell 

migration; however, it is also widely known that the formation of adhesion bonds from 
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 (a) (b) (c) (d) (e) (f)  

 

Figure 1.3: Schematic diagram showing the sequence of events undertaken by a cell 

during mitosis and cytokinesis: (a) DNA chromosomes have successfully replicated and 

the nuclear envelope begins to break down; (b) the bipolar mitotic spindle forms and 

captures the chromatid pairs; (c) chromatids are aligned at the cell equator; (d) sister 

chromatids are split and maneuvered towards opposite ends of the cell by the mitotic 

spindle; (e) two nuclear envelopes containing identical DNA begin to reform and a 

cytoplasmic contractile ring is formed in-between; (f) cell division is complete.  Image 

taken from Vader et al. (2008). 

 

one cell to another is a crucial factor in mediating both the initial assembly and long-

term maintenance of tissues.  During development, for example, selective adhesion 

between differing cell types allows migrating cells, upon reaching their terminal 

destination, to associate with appropriate neighbours and thus generate defined tissue 

structures.  It is believed that the ultimate function of cell-cell adhesion is to hold two 

cell membranes sufficiently close together, in order that a range of complex structures 

known as cell junctions can subsequently be formed.  Broadly speaking, three different 

types of cell junction are known to exist: occluding junctions (e.g. tight junctions), 

which allow neighbouring membranes to be tightly sealed together to create a largely 

impermeable cell layer; anchoring junctions (e.g. adherens junctions), which provide 

strong mechanical attachment between the cytoskeletal elements of two cells (or a cell 

and its substrate); and communicating junctions (e.g. gap junctions), which mediate the 

intercellular passage of either chemical or electrical signals. 

From a molecular point of view, the basis of adhesion between two cells is a family 

of transmembrane proteins known as cadherins.  In order for two cells to form adhesion 

bonds, cadherin molecules from each cell must undergo some form of extracellular 

association.  It has been postulated that there are three distinct extracellular mechanisms 

by which this process may occur (Figure 1.4): homophilic binding, whereby two 

equivalent molecules from each cell combine; heterophilic binding, whereby two 

different molecules from each cell combine; and the rarely occurring phenomenon of 
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extrinsic molecule-mediated binding.  Cadherins are believed to associate via the 

extracellular homophilic mechanism, but a further set of intracellular proteins known as 

the catenins are required for successful completion of this process.  Indeed, it has been 

shown that catenin-mediated anchorage within the actin cortex is crucial to cell-cell 

adhesion, since cells lacking such cytoplasmic binding domains cannot be held together. 

The above summaries provide a brief introduction to some of the cellular behaviour that 

is relevant to the mathematical modelling performed in this thesis; a great deal more 

information can be found in the excellent texts by Lackie (1986), Bray (2001) and 

Alberts et al. (2002). 

 

 (a) (b) (c)  

 

Figure 1.4: Schematic diagram illustrating the available mechanisms of cell-cell 

adhesion, namely: (a) homophilic binding, (b) heterophilic binding, and (c) binding 

through an extracellular molecule. 

 

1.3. Angiogenesis 

One pertinent biological scenario that we shall discuss here, however, is angiogenesis: 

the sprouting of new blood vessels from a pre-existing vasculature.  Not only is this 

biological phenomenon of great relevance to three of the coming chapters; it is also a 

process largely co-ordinated by an interaction between the cell migration, adhesion and 

division mechanisms detailed above.  The relevant cell type undergoing these events 

during angiogenesis is the endothelial cell (EC), which line the lumen of established 

blood vessels.  There are a variety of developmental and reparative situations in which 

this process will occur, including during embryogenesis, organ growth and wound 

healing.  In each of these cases angiogenesis will most likely occur for only a brief 

period; however, persistent uncontrolled angiogenesis may be exhibited in association 
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with a variety of pathological scenarios such as arthritis, diabetic retinopathy and solid 

tumour growth (Folkman and Shing, 1992). 

Angiogenesis is initiated when ECs are induced to sprout, proliferate and 

subsequently migrate away from the parent vasculature (Risau, 1997).  A major 

contributing factor in the onset of vascular sprouting is the existence of tissue hypoxia 

(i.e. insufficient oxygen) – a problem encountered when a colony of cells lies too far 

from the nearest blood vessels.  The hypoxic cells will secrete diffusible chemicals 

known as growth factors (a typical example being vascular endothelial growth factor, 

VEGF), and the increased growth factor concentration in the locality of the vessels will 

induce EC sprouts to form by breaking down the pre-existing vessel basement 

membrane (Carmeliet and Jain, 2000).  In addition, the chemical gradient that is 

concurrently formed during growth factor secretion will act as a chemoattractant for the 

newly-formed endothelial tip cells, causing them to subsequently migrate towards the 

region of greatest hypoxia.  It should be made clear, however, that this migration 

process, and the ultimate formation of new capillary tubes, is intrinsically coupled to a 

process of cell division.  The tip cells sense local growth factor gradients by outwardly 

extending fine filopodia, and consequently respond by initiating their migratory 

machinery.  ECs behind the tip cells, known as stalk cells, are then stretched through 

cell-cell adhesive contacts and subsequently divide to lengthen the nascent capillaries 

(Bentley et al., 2008).  Migration of angiogenic ECs is also facilitated by matrix 

metalloproteinases (MMPs), also known as matrix degrading enzymes, which are 

produced by the endothelial tip cells themselves.  These enzymes diffuse into the 

extracellular matrix (ECM) and degrade it to produce gradients which the ECs traverse 

in order to enhance ECM attachment (Davis et al., 2000; Yan et al., 2000; Hidalgo and 

Eckhardt, 2001; Sternlicht and Werb, 2001).  

Through sustained angiogenesis, new capillary tubes and capillary loops, known as 

anastomoses, will form allowing functional blood flow to be established in the neo-

vasculature.  As required, significantly greater quantities of oxygen and nutrients can 

now be delivered to the previously hypoxic tissue.  Particularly in non-pathological 

cases of angiogenesis, a direct consequence of increased oxygen delivery is the down-

regulation of growth factor production.  It is believed that VEGF, in particular, is a 

survival factor for ECs; hence, its oxygen-induced down-regulation below a critical 

level may make surplus neo-vessels vulnerable to apoptosis (Dor et al., 2001).  In direct 

contrast to this, functional stability is lent to vascular networks by the recruitment of 
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perivascular mesenchymal cells (pericytes) to endothelial tubes within the plexus 

(Gerhardt et al., 2003; Mitchell et al., 2006).  Through the manifestation of these two 

competing events, the long-term plexus structure ultimately resembles a “mature” tree-

like vasculature exhibiting a range of vessel sizes (Risau, 1997).  An illustrative 

summary of many of the facets of angiogenic progression is presented in Figure 1.5. 

 

 

Figure 1.5: Schematic diagram illustrating the key processes in angiogenesis initiation 

and progression: (1) VEGF transcription and secretion by hypoxic cells; (2) VEGF 

binding on the surface of pre-existing vasculature; (3) increase in vessel permeability; 

(4) activated endothelial tip-cells break down the basement membrane; (5) sprouts 

extended by stalk cell proliferation; (6) tip-cells release MMPs to degrade the local 

ECM and enhance migration.  Image taken from Qutub et al. (2009). 

 

1.4. Review of Modelling Studies 

Mathematical modelling of cellular behaviour has become widespread over the last 20-

30 years, in line with various significant advancements in the biological and 

biomolecular sciences.  A myriad of mathematical approaches have been proposed and 

developed in order to enhance understanding of the mechanisms underlying numerous 

developmental and pathological scenarios involving a wide range of cell types.  The 

choice of a particular modelling style depends both on the biological scenario to which 
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the model will be applied, and the desired aspects of this scenario that are to be 

investigated (e.g. microscopic or macroscopic features).  Continuum models can be 

applied, for example, when the cell type of interest is sufficiently abundant, but if this is 

not the case a discrete cell model may be required. 

In the interest of the work presented in this thesis we shall firstly focus our attention 

on providing a general overview of the vast field of discrete cell modelling, before 

proceeding to explore modelling work performed in the specific context of 

angiogenesis.  It is worthwhile to note that a number of existing studies fall under the 

umbrella of both categories, but we shall approach the topics independently and 

endeavour to discuss a broad scope of adopted methodologies in each case. 

 

1.4.1. Discrete Cell Modelling 

Discrete models of cell behaviour can be classified into two general categories: lattice-

based and lattice-free.  As suggested by the nomenclature, lattice-based refers to a style 

of modelling whereby the in silico cells can only occupy, or migrate between, a finite 

set of discrete spatial positions.  Such models, often known as cellular automata (CA), 

are driven by a set of appropriately defined “rules” and tend to be relatively simple to 

implement because concepts such as cell shape are generally neglected, whilst cell size 

is intrinsically encapsulated by the extent of the assumed lattice spacing. 

A typical application of CA modelling is in the growth of multi-cellular colonies, 

such as tumours, where cells are assumed to undergo proliferation but do not migrate 

between lattice points.  Interesting results can be generated from such models by 

imposing particular conditions on cell division such as the availability of nutrients 

(Gerlee and Anderson, 2007), spatial restrictions (Alarcon et al., 2005a) or level of 

micro-environment acidity (Patel et al., 2001).  Powathil et al. (2011) have, for example, 

recently used such a model where cells compete for available oxygen in order to 

examine the implications of tumour therapies that target cells at particular stages in their 

cell cycle.  Many CA models have, of course, also been proposed where cells undergo a 

combination of proliferation and migration.  The assumed rules for transitions between 

grid points may allow for random stochastic motion, but continuum descriptions of 

macroscopic microenvironmental variables also provides the opportunity for biased 

random walks via chemotaxis (Beyer et al., 2002) or haptotaxis (Anderson et al., 2000).  

It is also possible for cell-cell interactions to be introduced; Anderson et al. (2005), for 

example, proposed an adhesion mechanism whereby a cell will cease migration when in 
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the presence of a critical number of neighbouring cells.  One perceived problem with 

representing the growth and movement of 2D cell populations on a lattice is the 

potential for numerical artefacts induced by the grid regularity.  This issue was 

addressed by Block et al. (2007) who proposed a strategy in which an initial regular 

lattice is perturbed by randomly re-positioning each grid site within a square of side 

equal to the grid length and centred at the original site.  Subsequently, constructing a 

Voronoi tessellation (i.e. delineating sets of spatial points that are closer to a particular 

site position than to any other site position) allows for a stronger representation of cell 

shape and cell-cell adhesion effects by defining polygonal surfaces that can share 

boundaries with more than the four possible nearest neighbours on the original regular 

lattice.  A slight twist on traditional lattice-based discrete cell models are those that 

allow for the occupation of a single lattice site by multiple cells.  Such an approach has 

been used, for example, to represent contact-inhibited fibroblast migration during 

healing of an in vitro scrape wound (Cai et al., 2006), and also in the context of tumour 

growth to mimic the experimental finding that tumour cells tend to follow each other 

along pathways of degraded host tissue (Mansury and Deisboeck, 2003).  A further sub-

set of models following this type of assumption are lattice-gas cellular automata 

(LGCA), wherein multiple occupancy of a node is allowable on the basis that each 

individual cell is associated with a particular distinct “channel”.  Each channel could be 

assumed to represent, for example, a movement direction or a zero velocity resting 

state; see Tektonidis et al. (2011) for a recent example or the text by Deutsch and 

Dormann (2005) for a more general treatment of LGCA modelling. 

Lattice-free modelling refers to methods where the position of a cell can be assigned 

to any point in continuous space, and is not restricted to discrete nodal grid values.  In 

this regard, the type of lattice-free model that is most immediately comparable to 

general CA models are those in which each cell is represented by a discrete spatial 

point, maintaining the notion that cell shape and cell-cell interactions are not of great 

importance.  This approach has typically been applied when studying in vivo movement 

of cell types residing within the relatively sparsely populated ECM; see, for example, a 

recent model of receptor-ligand driven neutrophil migration in competing 

chemoattractants (Wu and Lin, 2011).  A model of this type that is of great importance 

to the work in this thesis, however, is a study of fibroblast migration during dermal 

wound healing, as developed in a series of papers (Dallon et al., 1999; Dallon et al., 

2000; Dallon et al., 2001; McDougall et al., 2006a).  This work, which investigated the 
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mechanisms of scar formation by coupling the cell movement to production and re-

orientation of fibres within the collagen matrix, has attracted much recent attention 

(Fomovsky et al., 2012).  Indeed, modifications to the original framework include a 

revised stochastic differential equation for determining cell positions (Groh and Louis, 

2010), an extension to 3D (Groh and Wagner, 2011), and the introduction of simple 

cell-cell interactions via assumed inelastic collisions when two cells come within a 

particular distance (Cumming et al., 2010). 

A large number of models have been proposed that deal with cell behaviour and cell-

cell interactions in a much more sophisticated manner, often through biophysical or 

mechanical assumptions that are strongly grounded in the underlying physics.  Many 

models of this form typically assume that each cell occupies a spheroidal region of 

space about a central point.  Moreover, each cell may also be capable of surface 

deformations in response to forces or stresses experienced through interaction with its 

environment, substrate or neighbouring cells.  The physical balance between the 

adhesion and repulsion of cells in close proximity, for example, is often represented by 

a form of potential function that allows for both stretching and compression of the 

notional cell boundary.  The multi-scale approach of Ramis-Conde et al. (2008a) 

expanded upon such a representation of cell-cell adhesion by explicitly including a 

molecular sub-model describing the cadherin-catenin kinetics discussed in Section 

1.2.3.  Mechanical and biophysical models of spheroidal cells have been used to 

investigate a wide range of biological phenomena including avascular tumour growth 

(Drasdo and Hoehme, 2003), in vitro aggregate formation (Galle et al., 2005; Byrne and 

Drasdo, 2009), cellular mechanisms of early development (Drasdo and Forgacs, 2000), 

cancer cell invasion of tissue (Ramis-Conde et al., 2008a; Ramis-Conde et al., 2008b; 

Ramis-Conde et al., 2009) and development of the breast cancer precursor known as 

ductal carcinoma in situ (DCIS) (Norton et al., 2010; Macklin et al., 2012).  Mechanical 

models have also been proposed to describe the dynamics of cells that assume off-

spheroidal, elongated morphologies.  Palsson and Othmer (2000) modelled cells as 

ellipsoids that deform in a viscoelastic manner under “active” forces experienced during 

migration and “passive” forces applied by neighbouring cells.  This work was used to 

examine how the features of collective cell behaviour, such as adhesion-driven sorting 

and Dictyostelium discoideum (Dd) slug translocation, can be explained entirely by the 

movements of, and interactions between, individual cells (Palsson, 2001; Dallon and 

Othmer, 2004).  Models that incorporate a more detailed representation of cell shape 
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have also been developed within a mechanical framework.  The immersed boundary 

method, for example, assumes that each in silico cell is delineated by an elastic plasma 

membrane composed of a series of discrete points connected to each adjacent point by a 

linear spring (Rejniak et al., 2004).  Cell-cell adhesion in this model can be introduced 

quite naturally by similarly linking points on neighbouring cells by further linear 

springs, while cell division can also be represented realistically by imposing contractile 

forces on points at opposing sides of the elastic membrane.  Such models do not, 

however, tend to explicitly consider cell migration; typical applications involve 

scenarios of cell population growth and aggregation such as early tumour growth 

(Rejniak and Dillon, 2007; Rejniak, 2007) and in vitro epithelial acini formation 

(Rejniak and Anderson, 2008a; Rejniak and Anderson, 2008b).  Other off-lattice 

mechanical models incorporating complex representations of cell shape include the 

approaches of Schaller and Meyer-Hermann (2005) and Brodland and Veldhuis (2002) 

where individual membrane boundaries are determined, and updated over time, by a 

Voronoi tessellation. 

A further approach that is, in some sense, a hybrid of lattice-based and lattice-free 

modelling is the cellular Extended Potts model, where each individual uniquely-shaped 

cell is represented by several adjacent discrete points on an appropriately spaced grid.  

Also known as the Graner-Glazier-Hogeweg (GGH) model, the stochastic evolution of 

cell movements and configurations in this methodology is driven by the assumption 

that, in general, cells act to minimise their energy expense.  This is described by a 

Hamiltonian expression that may consider the gain or loss of energy related to changes 

in, for example, cell volume or shared cell-cell surface contact (Graner and Glazier, 

1992).  Extensions to this original model have included proposed representations of cell 

proliferation (Stott et al., 1999), death (Hogeweg, 2000), differentiation (Savill and 

Sherratt, 2003), chemotaxis (Savill and Hogeweg, 1997) and haptotaxis (Turner and 

Sherratt, 2002) in order to study a range of pathological and developmental scenarios.  

A similar approach to the Extended Potts model is the “hyphasma” model developed by 

Meyer-Hermann and Maini (2005) to study lymphocyte motility.  In this formulation 

each cell is still represented by a group of lattice points, but these are categorised into 

central immobile sub-units surrounded by bordering movable sub-units.  The movement 

direction is pre-determined at each time step, and the cell translocates by stochastically 

adjusting its movable sub-units.  The advantage of this approach is that cell volume can 
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be completely conserved during migration, unlike for the Potts model where movement 

is necessarily associated with, at best, a transient volume increase. 

The final sub-set of “discrete” cell modelling that we shall consider is a group of 

models that investigate, in a detailed manner, the processes driving the migration and 

conformational changes of single cells.  The value of such models lies in the ability to 

study the poorly understood intracellular molecular dynamics that drive the typical cell 

behaviours that can be observed under a microscope in vitro.  An example of this 

approach is the cytomechanical model proposed by Stephanou et al. (2004) to examine 

the role of actin polymerisation and depolymerisation in generating the spontaneous 

pulsatile membrane deformations seen in resting cultured fibroblasts.  This model was 

later generalised to incorporate migration by assuming that, under certain conditions, 

the membrane protrusions adhere to the underlying substrate and provide sufficient 

traction for translocation of the cell body (Stephanou et al., 2008).  This model is 

similar in concept, but mathematically very different to the work of Neilson et al. 

(2011) who modelled migration of a single cell that was represented by a temporally 

evolving finite element-based boundary.  Cell movement in this model is directed 

towards pseudopod-like protrusions of the boundary, which are extended or retracted 

according to the solution of a reaction-diffusion system of activators and inhibitors on 

the notional cell surface.  Further models of this type have also been developed; see, for 

example, Rubinstein et al. (2005) as an additional illustration of the range of adopted 

methodologies. 

 

1.4.2. Angiogenesis Modelling 

In the preceding section we discussed at length various modelling approaches whereby 

cells are treated as discrete entities; such a discussion is pertinent since the 

methodologies of the models adopted in this thesis are based on the same assumption.  

This is, of course, not to discount the importance of continuum approaches, which 

remain widely used due to their greater amenability to systematic mathematical 

analysis.  Indeed, continuum models have been proposed to tackle a range of problems 

in both single cell and cell population dynamics; see the work of Gracheva and Othmer 

(2004), Painter and Sherratt (2003) and Armstrong et al. (2006) for some interesting 

examples.  As will be seen in the forthcoming discussion, one particular application of 

continuum models that has been extensively explored is the migration and expansion of 

EC populations during angiogenic progression. 
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Over recent decades mathematical modelling of vascular network development has 

focussed pre-dominantly on the role played by ECs during tumour-induced 

angiogenesis.  Typically, these models will consider the important mechanisms of EC 

proliferation, and EC migration in response to gradients of soluble growth factors and 

insoluble matrix macromolecules present in the tumour microenvironment.  In early 

models, a popular choice for reproducing these interactions was by using systems of 

non-linear PDEs that describe the outward expansion of a capillary network from a 

parent vessel towards a solid tumour.  One of the earliest models of this type was the 

continuum approach attributable to Balding and McElwain (1985), whose three species 

system incorporated a capillary density, a sprout tip density and a concentration of 

diffusible tumour angiogenic factor (TAF).  In this model sprout tips are formed from 

existing capillaries and move in response to the TAF, with new capillaries assumed to 

form naturally in their wake.  This type of assumption has been repeated in many other 

angiogenesis models (Byrne and Chaplain, 1995; Gaffney et al., 2002; Schugart et al., 

2008; Xue et al., 2009; Aubert et al., 2011), and it has a number of inherent strengths: 

(i) it accounts for the experimental observation that EC proliferation pre-dominantly 

occurs immediately behind the migrating tip (c.f. Section 1.3); (ii) it facilitates a 

continuum representation of the discrete physical phenomena of tip branching and 

anastomosis; (iii) it allows differentiation between the unique responses of capillaries 

and tip-cells to their local chemical environment (e.g. growth factors bound by tip-cells 

only).  In the absence of this formulation, a single equation is often used to simply 

represent the overall EC density (Chaplain and Stuart, 1993; Anderson and Chaplain, 

1998a; Anderson and Chaplain, 1998b; Plank and Sleeman, 2004a).  This approach was 

taken in the model of Orme and Chaplain (1996a) where tumour vascularisation and 

invasion was initiated by an assumed tactic response of tumour cells to EC gradients.  

Continuum models of varying complexity have also been derived to investigate the 

process of capillary sprouting from pre-existing vasculature; a necessary pre-requisite to 

angiogenic network formation (Orme and Chaplain, 1996b; Levine et al., 2000; Levine 

et al., 2001a; Levine et al., 2001b). 

More recently, much attention has been focussed on developing extended forms of 

such continuum tumour angiogenesis models, by adopting a discrete approach that 

allows the progress of individual endothelial tip-cells and capillaries to be tracked in 

space and time.  One of the first models of this type was developed by Stokes and 

Lauffenburger (1991) where 2D off-lattice vessel sprouts, under the influence of a 
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chemoattractant, were spatio-temporally characterised by solving a stochastic 

differential equation for the velocity of the sprout tip.  An alternative approach was later 

proposed in which the starting point was a continuum PDE model of EC migration 

incorporating the combined effects of diffusion, chemotaxis and haptotaxis.  

Discretisation of the equations in 2D provided a set of movement weightings informed 

by the chemical environment that were subsequently used to generate tip-cell transitions 

between points on an appropriately scaled lattice (Anderson and Chaplain, 1998b).  

Furthermore, aspects such as capillary branching and anastomoses, absent from the 

continuum description, were included in the discrete simulations by prescribing 

appropriate phenomenological rules.  Importantly, this so-called hybrid discrete-

continuum approach will provide the basis of the angiogenesis modelling to be 

presented in this thesis; it has also, however, been applied frequently by the wider 

modelling community (Wu et al., 2008; Owen et al., 2009; Pons-Salort et al., 2012).  

Indeed, this was the basis of the angiogenesis model applied by Zheng et al. (2005) in 

one of the first studies to explicitly couple tumour growth to tumour vascularisation.  

Other discrete tumour-induced angiogenesis models have also been proposed: Plank et 

al. (2004b) considered both lattice-based and lattice-free models, deriving their 

equations on the alternative basis of reinforced random walks (Othmer and Stevens, 

1997); whilst Bauer et al. (2007) have proposed a Potts model of angiogenic sprout 

extension. 

A major advancement in discrete tumour-induced angiogenesis modelling came with 

the implementation of blood flow simulation through in silico capillary structures 

(McDougall et al., 2002).  In this study, vascular architectures generated by the 

Anderson and Chaplain (1998b) model were perfused under the assumption that each 

EC lattice element represents a rigid cylindrical vessel supporting a local Poiseuille 

flow regime.  Including blood flow in this manner paved the way for novel 

investigations of the likely implications of network architecture, blood rheology and 

flow-induced structural adaptation of capillaries on the delivery of both nutrients and 

cancer therapies to the vascularised tumour (Stephanou et al., 2005; McDougall et al., 

2006b; Stephanou et al., 2006; McDougall et al., 2010).  A natural extension of this 

methodology is to couple a model of perfused tumour-induced angiogenesis to the 

growth of the tumour itself.  Existing approaches of this type can be placed into two 

categories: those that assume vessel sprouting and growth towards a distal nutrient-

starved tumour (Macklin et al., 2009; Cai et al., 2011; Pons-Salort et al., 2012), and 
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those that assume localised sprouting for a tumour developing within a priori 

vascularised tissue (Welter et al., 2008; Owen et al., 2009; Shirinifard et al., 2009; 

Welter et al., 2009; Perfahl et al., 2011).  Many dynamic feedbacks between the growth 

of the tumour and the evolution of the vasculature have been proposed, including 

mechanical considerations such as the intra-tumour, pressure-induced vessel occlusion 

reported by Macklin et al. (2009). 

A second popular and important application of angiogenesis modelling concerns the 

healing of dermal wounds.  As has been acknowledged (Chaplain and Byrne, 1996), 

many of the processes involved in tumour-induced angiogenesis are recapitulated in the 

much more physiologically desirable wound healing case.  Accordingly, the many 

mathematical models reported to date tend to follow continuum PDE approaches 

comparable to those discussed above; for instance, Pettet et al. (1996a) derived a three 

species model incorporating endothelial tip-cells, blood vessels and a macrophage-

derived chemoattractant source (c.f. Balding and McElwain, 1995).  More extensive 

models were soon developed, however, variously including continuum representations 

of regenerating ECM, fibroblast migration and oxygen delivery (Pettet et al., 1996b; 

Olsen et al., 1997).  Pettet and McElwain (2000) also proposed a somewhat different 

approach, representing the wound healing process as a Lotka-Volterra system where the 

capillary tips (i.e. predator) seek out the chemoattractant (i.e. prey).  Analysis of this 

system allowed predictions to be made regarding necessary conditions for “healing” to 

be completed.  After an apparent dip in interest, recent years have seen a raft of 

publications in this field; presumably due to the growing clinical need for effective 

therapeutic strategies to treat both chronic and diabetic wounds (Sen et al., 2009).  

Indeed, the potential benefits (and pitfalls) of clinically realistic oxygen 

supplementation therapies (Thackham et al., 2008) have been studied in a range of 

models of varying complexity (Schugart et al., 2008; Flegg et al., 2009; Flegg et al., 

2010; Flegg et al., 2012).  An eight species mechanochemical model of chronic wound 

healing, incorporating both angiogenesis and oxygen delivery, has also been developed 

where wound closure is measured by tracking the progression of a viscoelastic ECM 

(Xue et al., 2009; Friedman et al., 2010; Friedman et al., 2011).  An omission with 

regard to the existing models in this field is that, in direct contrast to the case of tumour-

induced angiogenesis, we are currently unaware of any models that take into account 

discrete aspects of the angiogenic response to injury. 



Chapter 1: Introduction 

 

19 

 

In addition to studies of wound healing and cancer, there have also been a small 

number of models reported in the literature concerning vascular growth in the eye.  

Discrete approaches have been proposed for modelling angiogenic growth in the cornea 

(Tong and Yuan, 2001; Jackson and Zheng, 2010); the aim of the latter was to develop a 

multi-scale mechanical model capturing the key relationships between EC proliferation, 

sprout extension and capillary maturation.  In terms of the retina, pathological 

angiogenesis has been explored by Maggelakis and Savakis (1996, 1999) via a simple 

continuum PDE model designed to investigate the interplay between VEGF, oxygen 

and nascent capillary density.  Aubert et al. (2011) have recently reported 1D PDE 

simulations of cell migration in the murine retinal vascular plexus (RVP), and this 

appears to be the first attempt to model capillary plexus formation in the retina during 

normal physiological development.  As highlighted above for the scenario of wound 

healing angiogenesis, it would appear that no models of discrete capillary growth in the 

retina have been reported to date. 

The final modelling studies that we shall briefly consider focus on the small-scale 

dynamics at the advancing front of an angiogenic capillary plexus.  Combining agent-

based mathematical modelling with a complementary experimental programme, Bentley 

et al. (2008) investigated the mechanisms by which the Notch-Dll4 signalling pathway 

regulates retinal endothelial tip-cell selection, and filopodial extension, in response to 

VEGF.  This model was later extended to include a mechanical EC representation in 

order to simulate the extension and adhesion properties exhibited during cell-cell 

anastomosis formation (Bentley et al., 2009).  A study of the physiological properties of 

“blind-ended” vessels at the leading front of an expanding network has also been carried 

out by Guerreiro-Lucas et al. (2008), who applied lubrication theory to examine plasma 

flow patterning within closed, permeable axi-symmetric structures. 

Finally, it should be noted that angiogenesis can also occur via an alternative 

mechanism to capillary sprouting: intussuceptive or splitting angiogenesis describes the 

poorly-understood rearrangement of ECs in existing vasculature to create additional 

capillaries.  Some models of this process have been proposed (Szczerba and Szekely, 

2005; Szczerba et al., 2009), including a study that compares the efficacy of oxygen 

delivery in both sprouting and splitting modes of angiogenesis (Ji et al., 2006).  In this 

thesis, however, we shall be concerned exclusively with network expansion by 

sprouting and migration.  For the interested reader, many more examples of the 
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angiogenesis modelling approaches discussed above can be found in the review papers 

of Mantzaris et al. (2004), Peirce (2008) and Qutub et al. (2009). 

 

1.5. Thesis Overview 

As is apparent from the abundance of investigative mathematical modelling studies 

outlined above, the desire to obtain a deeper understanding of the individual and 

collective cell movements involved in development, maintenance and disease 

commands significant research interest.  Strikingly, however, a great deal of effort 

remains focussed on understanding the mechanisms of solid tumour growth and 

invasion.  The literature survey has revealed that, despite a variety of discrete modelling 

techniques being available, very few have been applied in contexts such as wound 

healing and retinal development.  This is a situation that is remedied with the models 

developed in this thesis.  The intention, however, is not simply to “fill a gap in the 

market” – by extending established models and tying our results to pertinent 

experimental data we gain novel insights into the systems that we study. 

We begin in Chapter 2 by detailing a numerical technique for simulating the highly 

dynamic process of blood flow and structural adaptation in the microvasculature.  Using 

some simple, idealised vascular architectures we proceed to demonstrate the vital 

importance of this methodology, which incorporates some of the latest advancements in 

vascular research.  The perfusion model is subsequently fed directly into two 

experimentally-informed models of angiogenesis.  In Chapter 3, we study the re-

establishment of functional vasculature in a healing wound by adapting an existing 

hybrid PDE-discrete model of tumour-induced angiogenesis.  Validation of this 

modelling approach is achieved by comparing the generated in silico vascular 

architectures with quantitative longitudinal data obtained from an in vivo murine burn 

wound assay.  An extended form of the hybrid angiogenesis model is then used in 

Chapter 4 to model development of the murine retinal vasculature.  This study is found 

to provide a significant test of all aspects of the modelling approach; the extended blood 

flow model, in particular, proves to be critical in generating nascent capillary structures 

that closely resemble those observed in the laboratory. 

Although the studies of angiogenesis involve the simulation of discrete cell 

migration, the cells themselves are treated as essentially volumeless points.  As a first 

step towards a more realistic representation of individual and collective cell movement, 
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we revisit a discrete-point model originally derived to investigate fibroblast migration 

and scar formation during dermal wound healing.  In Chapter 5, we begin to generalise 

this model with a view to developing a tool for studying 2D cell migration in a variety 

of contexts.  Firstly, the discrete-point formulation is extended by incorporating a 

realistic representation of stochastic cell movement, before the model is further 

developed by the introduction of physically-sized spherical cells that undergo 

biophysical cell-cell interactions.  The concept of physical cell morphology is addressed 

in a more detailed manner in Chapter 6: we allow our migrating cells to exhibit 

ellipsoidal forms that dynamically contract or elongate in response to local 

environmental stimuli.  The potential of the complete model for studying both 

individual and collective cell behaviour is subsequently demonstrated by in silico 

benchmarking of real experimental data from an in vitro fibroblast scrape wound assay.  

Finally, in Chapter 7, we discuss our results and their implications before considering 

the future utility of our models, both individually and in combination. 
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Chapter 2 

 

Simulating Blood Flow in the Microvasculature 

 

 

 

2.1. Introduction 

The fundamental purpose of the vasculature in any living organism is the delivery to 

cells of various crucial metabolites, such as oxygen and nutrients.  This delivery takes 

place across the thin walls of the smallest blood vessels, known as capillaries, which 

thus play a critical role in the ability of the cardiovascular system to achieve its ultimate 

objective (Levick, 2000).  The precise manner by which this metabolic delivery is 

achieved depends critically on the architecture of the capillary network, the flow 

properties of the blood contained in the capillaries and, furthermore, the flow-induced 

adaptive response of the capillaries.  In this chapter we summarise some of the key 

biology of these inter-connected factors, introduce the method of blood flow simulation 

utilised in this thesis, and present a variety of simple results illustrating the key features 

of the modelling approach. 

 

2.2. Biology of the Microvascular Circulation 

Blood is a non-Newtonian biphasic fluid, consisting of a variety of cell types carried in 

plasma.  Although white blood cells and platelets are present, from a mechanical and 

haemodynamic viewpoint their contribution is negligible compared to that of the 

oxygen-carrying red blood cells (RBCs).  The volume fraction of RBCs in the blood is 

termed haematocrit, and typically takes the value 45% in human blood (Pries et al., 
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1996).  A number of biophysical phenomena exist that govern the distribution of RBCs 

within individual vessels and, moreover, haematocrit across the wider network.  These 

distributions strongly affect the flow properties of the blood and, hence, impact 

significantly on the efficacy of oxygen delivery. 

It is well known that cell-cell and cell-vessel wall interactions have a significant 

impact on flow resistance and flow distribution within a vascular network (Pries et al., 

1996).  Cell-wall interactions tend to result in reduced RBC presence at the vessel wall 

with most cells congregating at the vessel centre – an effect termed “axial migration” 

(Bayliss, 1959; Goldsmith and Mason, 1961).  Since the flow velocity of a fluid in a 

tube increases from zero at the tube wall to a maximum at the centre, axial migration 

results in an average RBC velocity that is larger than the corresponding average blood 

velocity.  As a consequence of this the haematocrit contained inside the tube is reduced 

relative to the haematocrit leaving the tube (discharge haematocrit, HD) – a phenomenon 

known as the Fahraeus effect (Fahraeus, 1929).  Experimental investigations carried out 

with HD ≈ 0.4 have found the ratio of these values to reach a minimum of around 0.7 in 

tubes with radii of 5 – 10 μm (Fahraeus, 1929; Barbee and Cokelet, 1971; Albrecht et 

al., 1979). 

A further phenomenon, the Fahraeus-Lindqvist effect, was first observed during the 

investigations of Martini et al. (1930) and Fahraeus and Lindqvist (1931).  Experiments 

involving blood flow in glass tubes demonstrated a decrease in calculated blood 

viscosity with decreasing tube diameter, thought to be due to the “single file” cell 

motion that is encouraged by both RBC deformation and rouleaux formation at the tube 

centre.  Later studies predict that the minimum viscosity occurs in tubes of radius 3.5 

μm with an increase in smaller tubes (Pries et al., 1992).  This clearly suggests that 

blood viscosity is influenced by interactions between the blood and the tube system 

through which it flows, and has thus been termed “apparent viscosity” (Pries et al., 

1996).  This name also gives rise to the term “relative apparent viscosity”, defined as 

the apparent blood viscosity divided by the plasma viscosity.  The Fahraeus-Lindqvist 

effect becomes more intriguing with the experimental measurements of Lipowsky et al. 

(1978, 1980) who reported that in vivo relative apparent viscosity is significantly larger 

than that reported in vitro.  This was supported by a later study which predicted a 

minimum viscosity in vessels of radius 20 μm, and greater haematocrit dependence over 

a wide range of radii (Pries et al., 1994). 
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Various possibilities have been proposed to explain the discrepancy between in vivo 

and in vitro flow resistance in narrow tubes.  These include the presence of white blood 

cells (generally removed during in vitro experiments), the irregularity of blood vessel 

cross-sections or the existence of a thin flow-retarding endothelial surface layer (Pries et 

al., 1990; Pries et al., 1994).  One further possible explanation is the dissipation of 

energy due to enforced re-organisation of RBCs at vascular branch points.  When the 

blood flow in a feeding vessel is split into two daughter vessels separated by a particular 

angle and with potentially very different diameters, the components of the blood may be 

distributed in different proportions – a process known as phase separation (Pries et al., 

1996).  Hence the haematocrit levels and viscosities in the daughter vessels may differ 

significantly relative to that in the parent vessel.  Due to axial migration of RBCs, it is 

thus possible that a small side branch of a parent vessel may be perfused simply by 

plasma picked up from the cell-free layer at the parent vessel wall.  This phenomenon is 

known as “plasma skimming”, as termed by Krogh (Pries et al., 1996). 

Clearly, the occurrence of phase separation at each individual branch point of a 

vascular network will have consequences for the network-wide haematocrit distribution.  

RBCs will, in general, follow the higher flow pathway at a bifurcation thus resulting in 

a positive correlation between haematocrit and flow velocity.  In analogy to the single 

vessel phenomenon, this result has been termed the “network Fahraeus effect” since 

average capillary discharge haematocrit is reduced with respect to the haematocrit in the 

feeding arteriole (Pries et al., 1986).  A further consequence of phase separation and, in 

particular, plasma skimming is that consecutive small side branches from a main 

arteriole may take little or no RBCs from the flow.  This results in a build-up of 

haematocrit as the flow makes its way along the arteriolar vessel tree towards the 

capillaries.  Hence there is an increased likelihood of red blood cells undertaking long 

flow pathways through the network, and accordingly this is termed the “pathway effect” 

(Pries et al., 1989a; Pries et al., 1992). 

The above description of a number of aspects of blood flow in the microcirculation 

make it clear that this biological system is extremely complex.  The situation is further 

complicated, however, by the fact that these vascular networks are not inert, but are in 

fact subject to constant structural changes in order to maintain sufficient perfusion and 

meet the functional needs of surrounding tissues.  At a cellular level, this 

angioadaptation is achieved through the contraction (vasoconstriction) or relaxation 

(vasodilatation) of vascular smooth muscle cells, which reside beyond the ECs in the 
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vessel wall.  Prominent vasodilatation can be elicited under a variety of circumstances 

such as during sustained exercise, pathological inflammation or reactive hyperaemia 

due to the release of a compressed artery (Levick, 2000).  Under less extreme 

conditions, a number of factors have been reported to be capable of inducing changes in 

microvessel radii such as temperature, blood pressure, wall shear stress and metabolic 

conditions.  Given that these factors are coupled variously with the blood flow and 

haematocrit in the network, it is therefore clear that the whole microvasculature is 

subject to a continuous dynamic feedback loop. 

 

2.3. Network Modelling and Theoretical Studies of the 

Microvasculature 

The technique of network modelling was first introduced over 50 years ago in the 

context of pore-scale fluid transport within the interstices of petroleum reservoirs (Fatt, 

1956).  The fully interconnected 2D lattice utilised in this early work was naturally 

extremely small (200-400 elements), but increased computational power has more 

recently led to the advent of 3D networks potentially containing hundreds of thousands 

of bonds (McDougall and Sorbie, 1997).  Indeed, network modelling at the pore-scale 

has been widely studied; a comprehensive overview of relevant literature can be found 

in the text by Dullien (1992).  The relevance of network modelling in the context of this 

thesis, however, pertains to its more recent application in the theoretical study of blood 

flow and related microvascular phenomena.  Although the fields of petroleum 

engineering and microcirculatory investigation would seem entirely disparate, the cross-

over lies in the assertion that modelling of the movement of oil through interconnected 

pores within solid rock structures is analogous to the simulation of blood flow through 

capillaries within a host tissue. 

A widely employed strategy in the theoretical study of microvascular dynamics is to 

investigate the biomechanical properties of the constituent blood vessels and cells; see 

Schmid-Schoenbein (1999) for a review.  Typical topics of investigation include 

analysis of the impact of RBC aggregation on blood viscosity (Sutton and Schmid-

Schoenbein, 1994), viscoelastic modelling of vessel compliance (Price and Skalak, 

1995) and prediction of the haemodynamic implications of RBC deformation during 

single-file flow through narrow capillaries (Secomb and Hsu, 1996; Secomb and Hsu, 

2001).  Two other methodologies that are of great relevance to the work contained in 
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this thesis are analyses of the flow-induced phenomena of RBC dispersal and structural 

adaptation in microvascular networks.  Theoretical studies of the former have been 

presented by, for example, Levin et al. (1986) and Alarcon et al. (2005b) in order to 

investigate the implications of non-uniform haematocrit distribution in capillary 

networks.  An extremely detailed model has also been proposed recently, where blood 

rheological properties were examined in a flowing branched network where each RBC 

is represented as an individual entity (Pozrikidis, 2009; Davis and Pozrikidis, 2011).  

Structural adaptation has been considered by a number of groups (Honda and 

Yoshizato, 1997; Goedde and Kurz, 2001), but much attention has recently been drawn 

to the work of Pries and colleagues (Pries et al., 2010).  The combined experimental and 

theoretical studies performed by this group have led to the proposal of a series of 

mathematical representations of haemodynamic and metabolic stimuli that contribute to 

the evolution of vessel diameter and wall thickness in established vascular networks 

(Pries et al., 1998; Pries et al., 2001; Pries et al., 2005).  Various other aspects of this 

process have also been investigated, including long-term vessel adaptation dynamics in 

response to a reduction in blood supply (Gruionu et al., 2005), heterogeneity between 

the behaviour of normal and tumour vasculature (Pries et al., 2009), and the precise 

mechanisms of oxygen sensing in metabolic adaptation responses (Reglin et al., 2009).  

Interestingly, a recent stability analysis performed on some of these empirical 

adaptation equations for single vessels has predicted complex dynamics, with the 

potential existence of limit-cycle oscillations and multiple equilibria (Shafer et al., 

2011).  As will be seen in due course, much of the work performed by Pries and 

colleagues has proved to be invaluable in the development of our own model of 

angiogenesis and microvascular blood flow. 

 

2.4. Modelling Foundations 

The mathematical modelling of angiogenesis to be presented in this thesis takes its 

inspiration from the dynamic adaptive tumour-induced angiogenesis (DATIA) 

modelling of McDougall et al. (2006b).  In this work, discrete capillary sprouting and 

growth from a parent vessel was coupled with simulation of blood flow and structural 

adaptation in order to assess the implications and efficacy of drug delivery to solid 

tumours.  A typical quasi-steady state vascular network resulting from this study,
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(a)  (b)  

 

Figure 2.1: Typical example of a DATIA simulation from McDougall et al. (2006b), 

depicting a tortuous vasculature that has sprouted from a parent vessel (top of domain), 

grown towards a notional hypoxic solid tumour (bottom of domain), and remodelled 

structurally in response to a range of flow-related stimuli.  Specifically, the images 

show distributions of (a) capillary radii and (b) haematocrit, where the lack of 

heterogeneity in each case is of particular note. 

 

indicating the distributions of capillary radii and haematocrit, is presented in Figure 2.1.  

Inspection of these images reveals a number of limitations of the earlier modelling 

approach.  Firstly, a homogeneous distribution of haematocrit is exhibited with all 

vessel segments mirroring the value at the network inlet.  This is the consequence of an 

assumption that haematocrit is split in the same proportion as flow at bifurcations, at 

odds with the situation outlined in Section 2.2 where phase separation could be 

expected to produce significant heterogeneity.  Secondly, the distribution of radii also 

lacks heterogeneity with vessels almost exclusively assuming either a fully constricted 

or fully dilated morphology.  The dilated “backbone” was shown to carry a significant 

proportion of the flow and results in poor delivery of chemotherapeutic drugs or, 

conversely, nutrients.  Although some recent publications have suggested that such 

angioarchitectures are realistic for tumour vasculature, non-cancerous vascular networks 

could be expected to exhibit a larger degree of structural heterogeneity (Maini et al., 

2007; Pries et al., 2010).  Hence, it is clear that a number of amendments to the blood 

flow simulation are required in order to more realistically reproduce the features of the 

real biological system. 



Chapter 2: Simulating Blood Flow in The Microvasculature 

 

28 

 

The full blood flow model utilised in this thesis is now summarised, including details 

of the components introduced to address the issues outlined above. 

 

2.5. Blood Flow Simulation Model 

 

2.5.1. Basic Flow Calculation 

The basis of the blood flow simulation model is the assumption of pseudo single-phase 

flow, where the blood in each capillary is treated as a homogeneous, non-Newtonian 

fluid with averaged bulk properties.  Therefore, at the scale of a single capillary element 

of length L and radius R with respective pressures at each end denoted by P1 and P2, the 

approximate relationship between the capillary pressure gradient ΔP (i.e. P2 – P1) and 

flow Q takes the form of a Poiseuille-like expression: 
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where μapp is the apparent blood viscosity, which depends on the local blood 

haematocrit HD, vessel radius and plasma viscosity μplasma.  Varying as it does with both 

capillary radius and haematocrit, accurate experimental measurement of blood viscosity 

in living microvessels is non-trivial.  We therefore apply the empirically-derived 

relationship (Pries et al., 1994): 
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where μrel is the relative apparent blood viscosity, μ0.45 is the value corresponding to a 

typical haematocrit of 0.45 and C describes the shape of the viscosity dependence on 

haematocrit.  The relationship between in vivo relative apparent blood viscosity and 

vessel radius is illustrated graphically in Figure 2.2 for a range of haematocrit values.  

Having decided upon a local flow law, the next step of the modelling approach is to 
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calculate the distribution of pressure and flow within an interconnected vascular bed.  

By fixing inlet and outlet pressures and assuming mass conservation (i.e. flow in equals 

flow out) at each node of the network, we arrive at a set of linear equations for the nodal 

pressures which can be solved numerically (by successive over-relaxation (SOR), for 

example).  Calculating appropriate ΔP values from these solutions allows the flow in 

each capillary element to subsequently be determined from Equation 2.1 (note that 

additional details regarding the numerical implementation of this calculation can be 

found in Appendix A).  This method of blood flow calculation has been utilised in a 

number of recent angiogenesis modelling publications (McDougall et al., 2002; Alarcon 

et al., 2003; Stephanou et al., 2005; Alarcon et al., 2006; Ji et al., 2006; McDougall et 

al., 2006b; Stephanou et al., 2006; Welter et al., 2008; Macklin et al., 2009; Owen et al., 

2009; Welter et al., 2009; Perfahl et al., 2011).  In the next section we introduce a 

further component that addresses one of the issues highlighted in Section 2.4. 

 

 

Figure 2.2: Plot of Equation 2.2 showing the empirically-derived relationship between 

in vivo relative apparent viscosity and vessel radius for different haematocrit (HD) 

values (Pries et al., 1994). 

 

2.5.2. Phase Separation 

The Fahraeus effect, whereby the average RBC velocity through a tube is found to be 

larger than the corresponding average blood velocity, is known to be a direct 

manifestation of lateral variation in flow velocity and axial migration of RBCs.  Since 

we elect to simulate blood as a pseudo single-phase fluid with averaged bulk properties, 

our perfusion model currently lacks the detail to explicitly reproduce such features.  



Chapter 2: Simulating Blood Flow in The Microvasculature 

 

30 

 

However, much of the influence of the Fahraeus effect can be implicitly captured in the 

model by introducing the phenomenon of phase separation at vascular bifurcations. 

Separation of plasma and red blood cells at bifurcations in the microvasculature has 

been widely studied both in vivo (Schmid-Schoenbein et al., 1980; Klitzman and 

Johnson, 1982) and in vitro (Yen and Fung, 1978; Fenton et al., 1985; Carr and 

Wickham, 1991; Enden and Popel, 1994).  One such study conducted by Pries et al. 

(1989b) examined the behaviour at 65 simple branch points in the rat mesentery, 

yielding a parametric description of phase separation in vivo: 
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where FQB is the fraction of bulk blood flow received by a daughter vessel, FQE is the 

corresponding fraction of erythrocyte (RBC) flow, while the parameters A, B and X0 

determine the behaviour for a particular distribution of feeding and daughter vessel 

radii, and feeding vessel haematocrit.  Note that pure plasma skimming (i.e. FQE ≡ 0) is 

assumed to occur whenever FQB is less than the threshold value X0.  By linear 

regression, Pries et al. (1989b) found the best fit for these parameters to be: 
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where Rα, Rβ, Rf are, respectively, the diameters of the two daughter branches and the 

feeding vessel, and HD is the discharge haematocrit of the feeding vessel.  Note the 

introduction of the subscript α in the first equation to denote that this is the form used to 

calculate FQE in daughter vessel α.  The calculation for vessel β requires reciprocation 

of the Rα and Rβ values, that is Aα = -Aβ. 

The above equations adequately describe situations where a parent vessel splits into 

two daughter vessels, but angiogenic vascular plexuses, particularly prior to capillary 

pruning and maturation, may not be so hierarchical.  Consequently, this phase 

separation formulation must be extended to include non-uniform combinations of vessel 

connectivity, flow direction, vessel radii, and feeding vessel haematocrit.  A 

generalisation that is more widely applicable to heterogeneous vascular architectures, 
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yet also maintains the key characteristics of the hierarchical model, is proposed here.  

Such a generalisation can be achieved through modification of the parameters in 

Equation 2.4, viz: 
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where ‹HDin› is now the average discharge haematocrit over all feeding vessels (i.e. 

nodal supply), and ‹Rin› is the corresponding average feeding vessel diameter.  Under 

the assumption of n daughter vessels we also have: 
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where Ai must be calculated for each daughter vessel downstream of the nodal supply.  

Using these new parameters along with the appropriate FQB values, Equation 2.3 can 

then be applied to determine FQE for each daughter vessel.  It should be noted that, 

unlike the original parameterisation, the FQE values obtained are not guaranteed to sum 

to unity.  Therefore, where necessary, these values must subsequently be normalised to 

determine the ultimate FQE values at each bifurcation.  As will be seen, inclusion of this 

generalised phase separation mechanism in the blood flow simulation is found to have 

profound consequences for vascular development, haematocrit transport and oxygen 

delivery. 

 

2.5.3. Structural Adaptation and Shunt Prevention 

As discussed in Section 2.2, a consequence of phase separation in microvascular 

networks is the sizeable proportion of RBCs following major flow pathways (Pries et 

al., 1992).  Depending upon the topology of the network, this may prove highly 

disadvantageous with respect to oxygen delivery to the tissue since small terminal 

vessels may receive little or no haematocrit.  In healthy tissue, however, 

angioadaptation tends towards the prevention of large shear stresses, and so high flow 

shunts are relatively uncommon.  Using data obtained from six rat mesenteric networks, 

Pries et al. (2001) have conjectured the existence of four main stimuli that contribute to 
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the regulation of vessel radii in the microvasculature.  Two of these, the so-called 

“conducted” and “convected” stimuli, contribute to the prevention of shunt formation 

by favouring the vasodilatation of segments that are part of long flow pathways.  Many 

previous mathematical models (McDougall et al., 2002; Alarcon et al., 2006; Stephanou 

et al., 2005; Stephanou et al., 2006; McDougall et al., 2006b; Macklin et al., 2009; 

Owen et al., 2009; Alarcon et al., 2003; Perfahl et al., 2011) have neglected these 

stimuli and instead applied a stimulus relying solely on local flow conditions without 

reference to the position of a vessel within a connected vascular bed (Pries et al., 1998).  

As seen in Figure 2.1, in the absence of the conducted and convected stimuli, models 

predict the formation of dilated, inefficient shunt pathways.  We firstly outline the 

rationale of the previous model, before describing the extended model incorporating the 

shunt-preventing stimuli. 

The stimuli employed previously include the effects of wall shear stress Swss, 

intravascular pressure Sp and a metabolic mechanism based on the local RBC volume 

flow rate Smet (Pries et al., 1998).  The model assumes that the radial perturbation ΔR in 

a flowing vessel over a time step Δt is proportional to both the total stimulus acting on 

the vessel Stot and to its radius prior to stimulation R, viz: 
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This equation shows that the vessel radius increases with increasing wall shear stress ηw 

calculated from: 
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while ηref is a small constant included to avoid singular behaviour at low shear rates.  It 

is further assumed that vessel radii adapt in order to maintain a pre-set relationship 

between wall shear stress and intravascular pressure P (taken here to be the average of 

the nodal pressures at either end of each capillary segment).  Therefore the pressure 

response is based on the expected level of wall shear stress ηe, defined by: 



Chapter 2: Simulating Blood Flow in The Microvasculature 

 

33 

 

 

  ( )               ,    (    ( ))-   .   (2.9) 

 

In addition, Qmet defines a typical reference flow value, whilst kp and kmet characterise 

the relative intensity of the pressure and metabolic stimuli, respectively. Finally, the 

parameter ks represents the natural shrinking tendency of a vessel: proposed to reflect 

the requirement for positive growth stimuli in the maintenance of cell mass and vessel 

diameter (Pries et al., 1998). 

As previously mentioned, the updated model introduces two shunt-preventing stimuli 

to replace the local metabolic stimulus in the above formulation (Pries et al., 2001).  

The first of these, the convected stimulus, is assumed to act by the addition of a 

metabolite to the blood at a rate that depends on the partial pressure of oxygen PO2 in 

each segment.  Thus, Pries et al. (2001) proposed that the convective flux of metabolite 

Jm increases as blood perfuses downstream and that the contribution from each vessel 

segment of length Ls can be calculated according to: 
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whenever the intravascular PO2 falls below the reference level PO2,ref.  Here, Jm
down

 

refers to the flux of metabolite leaving a vessel segment and Jm
up

 corresponds to its 

upstream feeder flux.  In our model, we approximate the intravascular PO2 level by 

considering the volume flow of red blood cells QHD in each segment.  Hence, Equation 

2.10 becomes: 
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where (QHD)ref is a reference value for erythrocyte volume flow.  Furthermore, we 

assume that the flowing metabolite splits in a flow-weighted fashion at diverging 

bifurcations. 

This procedure can be used to determine a unique value for Jm in each flowing vessel 

segment.  In general, this can be achieved by evaluating the convective flux at the 
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segment mid-point by using the equation Jm = (Jm
down

 + Jm
up

) / 2 (Pries et al., 2001); 

however, since the in silico vasculatures that we consider are comprised of many short 

capillary elements of broadly similar length, we simply choose Jm = Jm
down

.  Thus, the 

total convected metabolic stimulus Sm for local radial perturbation is calculated by the 

equation: 
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where Qref is a small reference flow value included to prevent singular behaviour in 

segments with low flows. 

Complementary to this we also include the conducted stimulus that is assumed to act 

via cell-cell communication by changes in electrical potential through gap junctions 

between smooth muscle and endothelial cells (Pries et al., 2001; Pries et al., 2010).   

Algorithmically, this response is assumed to arise in each vessel segment in proportion 

to the convection-derived Sm value in that segment.  Specifically, the conducted 

response is passed upstream, against the flow, undergoing exponential decay, and the 

contribution from each vessel segment of length Ls is calculated according to: 
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where Lc is the decay length constant.  Here, Jc
up

 and Jc
down

 refer, respectively, to the 

conducted signal strengths at the upstream and downstream ends of the vessel.  In 

addition, the conducted signal is assumed to be split in equal proportions at diverging 

bifurcations. 

Analogous to the case for the convected stimulus outlined above, we also determine 

a unique value Jc for each segment to represent the particular conducted signal strength 

in that vessel.  Once again, rather than choosing to evaluate at the segment mid-point, 

we simply assume Jc = Jc
up

.  The total conducted metabolic stimulus Sc in each segment 

is then governed by the saturable response: 
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where J0 is the saturation constant. 

Combining these shunt-preventing stimuli with the earlier wall shear stress and 

pressure responses, the final updated algorithm for the radius change ΔR of a vessel of 

radius R over a time-step Δt takes the form (Pries et al., 2001): 

 

           , 

        [            ,       -    ]   , 
(2.15) 

 

where the parameters km and kc are introduced to characterise the relative intensity of the 

shunt-preventing stimuli.  It will be seen in due course that the inclusion of these 

conducted and convected stimuli in the perfusion model, as well as the introduction of 

phase separation, has a profound effect on the evolution of the various vasculatures that 

we consider. 

 

2.6. Results 

 

2.6.1. Phase Separation at Complex Vessel Junctions 

In the summary of the blood flow simulation model, we noted that it was necessary to 

generalise the method of phase separation at bifurcations in order to be capable of 

handling non-uniform combinations of vessel connectivity and flow direction.  In 2D 

modelling of tortuous angiogenic vasculatures prior to capillary pruning, for example, 

we may encounter scenarios where up to four vessel segments are associated with a 

single node.  Consequently, the scenarios of particular interest are those where two 

vessels flow into the node and two vessels flow out or, alternatively, one vessel flows 

into the node and three vessels flow out. 

In the former scenario, the situation is equivalent to the original model for simple 

bifurcations with the average feeding vessel radius and haematocrit now used to 

determine the downstream behaviour.  An example of this scenario is presented in 

Figure 2.3a, where the fractional erythrocyte flow FQE is plotted against the fractional 

blood flow FQB in each daughter vessel for a particular combination of feeding vessel
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(a) 

 

(b) 

 

(c) 

 

Figure 2.3: Caption overleaf. 
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Figure 2.3: Plots of the phase separation effect at a junction where two parent vessels 

feed two daughter vessels, showing the fractional erythrocyte flow (FQE) versus the 

fractional blood flow (FQB) in each daughter branch, as governed by Equations 2.3, 2.5 

and 2.6.  The daughter vessel radii are fixed at 5µm (blue line) and 7µm (red line).  Plot 

(a) utilises parent vessels of radius 12µm and 9µm with haematocrits of 0.45, whilst 

plots (b) and (c) show the impact of reducing either the parent vessel radii (8µm and 

6µm) or haematocrits (both 0.1), respectively.  In the absence of phase separation, all 

data would lie on the line of identity (dashed black line). 

 

radii, daughter vessel radii and inlet haematocrits (see the caption for specific details of 

values used).  The linear dotted line indicates where both of these plots would lie in the 

absence of phase separation (i.e. FQE ≡ FQB).  The additional graphs indicate that the 

phase separation effect is accentuated with decreasing size of the feeding vessels 

(Figure 2.3b vs. Figure 2.3a) and decreasing inlet haematocrit (Figure 2.3c vs. Figure 

2.3a), as has been observed experimentally (Schmid-Schoenbein et al., 1980; Fenton et 

al., 1985; Pries et al., 1989; Carr and Wickham, 1991; Enden and Popel, 1994). 

The case where one feeding vessel splits into three daughter vessels is much more 

complex, and also troublesome to represent graphically.  In order to examine the phase 

separation dynamics predicted by the generalised model, we fix the value of FQB in one 

of the daughter branches (i.e. FQB1) and allow the other two (i.e. FQB2 and FQB3) to 

vary over all other possible values, subject to the mass conservation constraint FQB1 +

FQB2 + FQB3 = 1 (i.e. for any FQB2 ∈ ,0, 1 – FQB1] we have FQB3 = 1 – FQB1 – FQB2).  

For a particular combination of vessel radii and inlet haematocrit values (full details in 

the caption), Figures 2.4a and 2.4d plot FQE for each daughter vessel (i.e. FQE1, FQE2 

and FQE3, respectively) against FQB2 with fixed values FQB1 = 0.3 and FQB1 = 0.6, 

respectively.  Again, the linear dotted lines indicate where each plot would lie in the 

absence of phase separation (i.e. FQE1 ≡ FQB1, FQE2 ≡ FQB2 and FQE3 ≡ FQB3).  Due to 

the specific nature of the radii values used, it is difficult to provide a precise quantitative 

assessment of the results; however, it is interesting to note that, even though FQB1 is 

fixed, the value of FQE1 varies depending on the distribution of flow in the two other 

daughter branches.  As in the above case, we also examine the impact of decreasing the 

feeding vessel radius (Figure 2.4b vs. Figure 2.4a and Figure 2.4e vs. Figure 2.4d) and
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(a) 

 

(b) 

 

(c) 

 

Figure 2.4: Caption overleaf. 
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(d) 

 

(e) 

 

(f) 

 

Figure 2.4: Caption overleaf. 
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Figure 2.4: Plots of the normalised phase separation effect at a junction where one 

parent vessel feeds three daughter vessels, as governed by Equations 2.3, 2.5 and 2.6.  

The fractional erythrocyte flow in each daughter branch (FQE1, FQE2 and FQE3, 

respectively) is plotted against all possible values of the fractional blood flow in vessel 

2 (FQB2), subject to the value of the fractional blood flow in vessel 1 (FQB1) being fixed 

at either (a-c) 0.3 or (d-f) 0.6.  Note that these assumptions impose a condition on the 

fractional blood flow in vessel 3, i.e. FQB3 = 1 – FQB2 – FQB1.  The daughter vessel 

radii are fixed throughout at 7.5µm (vessel 1, red line), 5µm (vessel 2, blue line) and 

2.5µm (vessel 3, green line). Plots (a, d) have a parent vessel of radius 12µm with 

haematocrit of 0.45, whilst plots (c, e) and (d, f) show the impact of reducing the parent 

vessel radius (8µm) or haematocrit (0.1), respectively.  In the absence of phase 

separation, all data would lie on the dashed lines. 

 

the feeding haematocrit (Figure 2.4c vs. Figure 2.4a and Figure 2.4f vs. Figure 2.4d) – 

noting that each of these changes again accentuates the phase separation effect.  Given 

the lack of experimental evidence on the phase separation behaviour at such complex 

vessel junctions, it is satisfactory to confirm that the generalised model conserves the 

key qualitative features that have been observed experimentally in simple bifurcations. 

 

2.6.2. Phase Separation in a Simple Network 

Having confirmed the behaviour of the phase separation model at various isolated 

vessel junctions, we now proceed to examine the impact of repeated occurrences within 

a vascular network.  Pozrikidis (2009) recently developed a model to numerically 

simulate separate plasma and red blood cell dynamics in tree-like branching 

microvascular capillary networks.  This study examined the implications of phase 

separation and the Fahraeus effect on cell residence times and the dispersion of 

haematocrit throughout the network.  Although our continuum representation of flowing 

blood lacks this level of detail, using a similar branching network we can generate our 

own prediction of haematocrit distribution.  The results are presented in Figure 2.5, 

where we employed a simple, sequentially branching, static (i.e. no angioadaptation) 

vessel network with a physically realistic input haematocrit of 0.45 (Figure 2.5a).  The 

network features six “generations” of vessels, where the radius of each individual
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(a)  (b) 

 

Figure 2.5: Numerical simulation showing the effect of phase separation on segment 

haematocrits in a flowing static vessel network with sequential bifurcations.  The 

network employed, shown in (a), was generated by randomly selecting segment radii 

from pre-defined intervals.  Defining segments from left to right by increasing 

“generation” (G), the following intervals were defined: G1 = 12.0-9.5µm; G2 = 10.5-

8.0µm; G3 = 9.0-6.5µm; G4 = 7.5-5.0µm; G5 = 6.0-3.5µm; G6 = 4.5-2.0µm.  Graph (b) 

plots the haematocrit in each segment against its generation; the input haematocrit was 

0.45, and the range of segment haematocrits is seen to increase with increasing 

generation. 

 

segment was chosen randomly from pre-defined intervals of equal size whose maximum 

value decreases with increasing generation (see the figure caption for specific values).  

From Figure 2.5b we observe that at steady-state the variation in segment haematocrit 

values increases with increasing generation, resulting in a wide distribution (~ 0.1 - 0.6) 

within the outlet segments.  We can mainly attribute this behaviour to the radii 

distribution, with the flow, and therefore the haematocrit, favouring the least resistive 

pathways through the network. 

Recall that our perfusion model is designed to represent blood as a continuum, 

without explicit separation into its constituent parts.  Consequently, the results presented 

here are strongly encouraging; this simplifying assumption affords a huge 

computational saving, and the model still predicts significant heterogeneity in the 

distribution of haematocrit throughout the network. 
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2.6.3. Shunt-Prevention in a Simple Network 

The other major advance made in the blood flow simulation model is the rigorous 

inclusion of the previously neglected conducted and convected stimuli in the 

angioadaptation algorithm.  These two important stimuli are assumed to act in a manner 

that allows the transfer of metabolic information both upstream and downstream 

through vascular networks.  As a result of this modification we could thereby expect our 

simulated vessel networks to evolve more realistic radii distributions with, in particular, 

an absence of dilated capillary shunts.  This is confirmed by the comparison made in 

Figure 2.6, where we use a hypothetical looping network with topology reminiscent of 

an arterial-venous “petal” as found in the retinal vasculature. The network is initially 

uniform with all vessel segments of radius 4 µm, but is subsequently remodelled via 

flow-induced stimuli by either Equation 2.7 with a local metabolic response, or 

Equation 2.15 with the conducted and convected metabolic responses.  Phase separation 

was also used in each of the simulations.  The resultant steady-state network in Figure 

2.6a was achieved using the same remodelling parameters as in Figure 2.1 (see figure 

caption for specific values) and we note the effective shunt that has been produced.  The 

constricted vessels in the lower loop remain significantly smaller than all those above 

and, as such, will carry a significantly reduced flow.  The haematocrit distribution in 

Figure 2.6c confirms this - the vessel segments are seen to be completely devoid of 

RBCs due to plasma skimming.  Clearly, if this network were to appear in vivo, the 

distribution of radii would prove to be inefficient in the supply of oxygen and nutrient, 

with the lower tissue regions reliant on diffusion from the distal dilated vasculature.  

The corresponding radii and haematocrit distributions obtained by applying the shunt-

preventing stimuli are shown in Figures 2.6b and 2.6d, respectively (see figure caption 

for parameter values).  We now observe a significantly more robust response, with the 

network displaying a wide variety of vessel radii and, crucially, a conspicuous absence 

of shunting.  Extensively dilated vessels are now far less numerous, and those that do 

exist are either supplying or draining a large number of other segments.  The 

haematocrit distribution confirms that all flow pathways, including the lower loop, 

contain a significant haematocrit and therefore a significant flow.  In contrast to the 

earlier situation, it seems that this scenario is much more physically realistic, with all 

surrounding tissue potentially having a proximal oxygen and nutrient filled source. 
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(a) (b)  

 

(c) (d)  

 

Figure 2.6: Comparison of the steady-state radii and haematocrit distributions produced 

by previous (Equation 2.7) and updated (Equation 2.15) radii adaptation algorithms 

upon flow simulation in an idealised vessel network.  Snapshot (a) shows the radii 

distribution produced under the previous methodology (parameters: ks = 0.35, kp = 0.1, 

kmet = 0.07, ηref = 0.103 dyn ∙ cm
-2

, Qmetab = 1.9096 × 10
-11

 m
3
 ∙ s

-1
), whilst (b) shows the 

equivalent result produced by the new methodology (parameters: ks = 1.7, kp = 0.8, km = 

0.5, kc = 2.8, J0 = 250, ηref = 0.5 dyn ∙ cm
-2

, Qref = 1.0 × 10
-18

 m
3
 ∙ s

-1
, (QHD)ref = 6.75 × 

10
-14

 m
3
 ∙ s

-1
, Lc = 7.0 × 10

-3
 m).  The corresponding haematocrit distributions are shown 

in (c) and (d), respectively.  Phase separation was used in both simulations. 

 

2.7. Discussion 

A flowing vasculature is critical to living organisms since it provides an efficient means 

of oxygen and nutrient delivery throughout the body.  In development, tissue repair and 
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various pathological scenarios, such vasculatures are formed by the process of 

angiogenesis when ECs from existing vessels are induced to migrate in response to 

growth factors secreted by cells deprived of these crucial metabolites (Risau, 1997).  

The subsequent extent and distribution of oxygen delivery from the generated neo-

vasculature depends on a variety of factors, including the ultimate architecture of the 

vessel network and the flow properties of the blood within it.  The system is inherently 

complex, however, since these factors are determined by a variety of inter-connected 

biophysical phenomena such as angioadaptation, non-Newtonian effects and phase 

separation at microvascular bifurcations.  Many previous perfusion models have 

neglected to consider some aspects of these phenomena that contribute to the evolution 

of vessel networks (c.f. Figure 2.1).  In this chapter we have shown that the inclusion of 

both phase separation and shunt-preventing angioadaptation stimuli are vital to the in 

silico generation of non-pathological capillary architectures that exhibit realistic 

distributions of vessel radii and haematocrit. 

In general, phase separation is the term used to describe the non-uniform distribution 

of plasma and erythrocytes at vascular bifurcations.  The most extreme instance of this 

phenomenon is the occurrence of plasma skimming whereby small capillary side-

branches may even be completely starved of RBCs.  An empirical relationship 

describing these features at a solitary bifurcation was derived by Pries et al. (1989b), 

and a generalisation has been proposed here to handle the dynamics of phase separation 

at vessel junctions comprising irregular combinations of vessel connectivity and flow 

direction.  At junctions comprising two feeder and two daughter vessels, or one feeder 

and three daughter vessels, the generalised model was, importantly, found to conserve 

the main features of the original model.  A significant consequence of phase separation 

in vivo is that its repeated occurrence at a series of junctions can have important 

implications for the overall haematocrit distribution within a network.  In order to 

investigate the ability of the model to reproduce such behaviour, we created an idealised 

branching network, where the radius of each vessel segment decreased with increasing 

generation.  Although the blood is modelled as a continuum with averaged bulk 

properties, we found significant heterogeneity in the haematocrit distribution, with 

greatest variation in the terminal vessels. 

Angioadaptation, the structural remodelling of blood vessels, is driven by the 

contraction or relaxation of vascular smooth muscle cells.  Through investigation of rat 

mesenteric networks, Pries et al. (2001) have developed another empirical model in 
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which vessel radii regulation is predicted to be governed by four distinct flow-induced 

responses – namely wall shear stress, intravascular pressure and two metabolic stimuli 

that act to prevent shunt formation.  These so-called “conducted” and “convected” 

stimuli transfer information upstream and downstream, respectively, favouring the 

vasodilatation of vessels that feed and/or drain extensive networks.  The conducted 

stimulus is assumed to act via cell-cell communication in the vessel walls, while the 

convected stimulus acts by metabolite addition to the blood (Pries et al., 2001; Pries et 

al., 2010).  A number of previous mathematical models of blood flow and 

angioadaptation have neglected these two stimuli (McDougall et al., 2002; Alarcon et 

al., 2006; Stephanou et al., 2005; Stephanou et al., 2006; McDougall et al., 2006b; 

Macklin et al., 2009; Owen et al., 2009; Alarcon et al., 2003; Perfahl et al., 2011), 

applying instead a simple local metabolic response (Pries et al., 1998).  Using a typical 

network of interconnected loops, the results presented here (c.f. Figure 2.6) clearly 

demonstrate the disparity in the steady-state vasculatures generated by replacing the 

local stimulus by the conducted and convected stimuli.  The updated model results in a 

diversity of vessel radii, haematocrit perfusion within all segments and, most 

importantly, no dilated shunt pathways.  From the standpoint of efficient oxygen 

delivery to surrounding tissues, these highly desirable features were in stark contrast to 

those seen using the simple local response. 

From the biological details discussed throughout this chapter, accurate modelling of 

the various interactions between blood flow and angioadaptation in vivo could involve 

an almost arbitrary level of complexity.  Indeed, when summarising one publication, 

Pries et al. (2005) state that “the model used... may seem overly complicated” but admit 

that “the complexity... seems to reflect the inherent complexity of the biological system 

it represents”.  However, although the modifications made to the earlier perfusion model 

significantly increase computational complexity, the results obtained here – from a 

variety of simple scenarios – suggest that such changes are required for the model to 

reproduce the evolution of non-pathological vasculatures observed in vivo.  This 

statement will be tested to the full in the coming chapters, as all of the features of the 

microvasculature discussed here will be combined to investigate selected scenarios of 

vessel network formation. 
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Modelling Wound Healing Angiogenesis 

 

 

 

3.1. Introduction 

The first model of vessel network formation we present investigates the dynamics of 

wound healing angiogenesis in the specific context of a thermally-induced injury to the 

panniculus carnosus (pc) muscle of a mouse.  Such an injury ablates the pre-existing 

vasculature within the wounded region.  Throughout this study the model development 

was strongly coupled to an in vivo experimental programme investigating various 

aspects of the microvascular re-growth.  The pc, a thin (30 – 50 μm wide) skeletal 

muscle layer on the dorsum of the mouse, is supplied by an isotropic and effectively 2D 

regular microvascular network.  Wounds induced in this muscle layer heal in a 

centripetal fashion (Guerreiro-Lucas et al., 2008), and a gradual reorganisation of the 

microvascular architecture aims to ensure the re-establishment of the metabolic 

requirements of the regenerating tissue.   

Numerous in vivo laboratory models of wound healing exist, measuring specific end 

points such as closure, vascular density and tensile strength (reviewed by Gurtner et al., 

(2008)).  Laboratory models that collect longitudinal data from the same animal over 

time, however, are limited (Bluff et al., 2006; Ichioka et al., 1997).  The model applied 

here involves the use of a dorsal skin-fold window chamber (DSWC; see Figure 3.1) 

such that the functional vasculature in the wounded region can be visualised in a single 

animal throughout the healing process.  As such, various parameters can be quantified 
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both temporally and spatially within a single lesion. The nature of this data (and the 

effective 2D vascular network structure) suggests that the in vivo experimental system is 

ideal for a mathematical bench-marking study. 

Prior to describing the experimental system and the mathematical model in detail, we 

will first outline the basic structure of the skin and its underlying constituents, before 

providing some key biology of the healing process.  In due course, a variety of results 

from the mathematical model will be presented for healing under normal conditions.  

Finally, by introducing an anti-angiogenic treatment into the experimental system, the 

robustness and predictive capability of the mathematical model is assessed. 

 

 

Figure 3.1: Image showing the rationale of the dorsal skinfold window chamber 

(DSWC) wound healing assay.  The window chamber is implanted on the dorsum of the 

mouse, thus isolating a region of tissue for wounding and subsequent visualisation of 

the re-generating vasculature. 

 

3.2. Anatomy of the Skin 

Mammalian skin can loosely be described as comprising two distinct layers: the dermis 

and the epidermis.  The thin outer epidermis, only a few cell layers thick, is avascular 

and dominated by continually renewing keratinocyte cells, which provide a first line of 

defence against pathogen invasion.  The more acellular dermis, composed largely of 

connective tissue, is separated from the epidermis by a thin layer of fibres known as the 

basement membrane.  Some cells do exist in the dermis, however, including fibroblasts 

and the endothelial cells that comprise the dermal vasculature.  Diffusion of nutrient 

from these vessels serves the metabolic requirements of both the dermis and the 

epidermis.  Beneath the dermis lies the hypodermis, or subcutaneous tissue, the role of 
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which is to provide attachment to the underlying bone and, of particular pertinence here, 

muscle layers including the pc.  A simple diagram depicting the layered structure of the 

skin is presented in Figure 3.2. 

 

 

Figure 3.2: Schematic diagram illustrating the composition of mammalian skin.  Image 

taken from Metcalfe et al. (2007). 

 

3.3. Biology of Wound Healing 

Wound healing is an essential and innate response to injury.  Due to the inherent 

fineness of the epidermal layer, the majority of wounding events will cause some degree 

of damage to the underlying tissue.  In such cases the healing process can be 

characterised by a sequence of overlapping events.  Immediately post-wounding, 

bleeding from broken blood vessels results in the formation of a fibrin blood clot that 

temporarily closes the wounded region: a process known as haemostasis (Jennings and 

Hunt, 1991).  This process is succeeded by three further phases which can loosely be 

termed inflammation, proliferation and repair (Clark, 1996).  Figure 3.3 depicts a 

typical time course of dermal wound healing, summarising the key events in each phase 

and emphasising their overlapping nature. 

The inflammatory stage sees the beginning of the influx of a number of cell types 

into the wound site, encouraged initially by the release of platelet-derived growth factor 

(PDGF) from platelets in the blood clot (Haugh, 2006).  Dilation and increased
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Figure 3.3: Schematic plot of the temporal sequence of events that characterise dermal 

wound healing.  Image taken from Schwacha (2009). 

 

permeability of the local vasculature allows monocytes (a type of white blood cell) to 

extravasate from vessels and, in response to the chemical stimulus, differentiate into 

macrophages (Singer and Clark, 1999; Sherratt and Dallon, 2002).  Different types of 

macrophages, performing different roles, are known to be expressed during the healing 

process (Riches, 1996).  Importantly, however, macrophages act to remove bacteria 

from the wound site and also secrete chemical stimuli such as transforming growth 

factor-beta (TGF-β) and additional PDGF (Singer and Clark, 1999; Robson et al., 

2001). 

These growth factors allow the commencement of the proliferative phase by 

attracting fibroblasts and triggering an angiogenic response to recruit ECs to the wound 

site (Pettet et al., 1995; Clark, 1996).  Fibroblasts migrate towards the wound site from 

the surrounding tissue using the fibrin clot as a scaffold.  Over a period of many 

months, during the final repair phase, this scaffold is gradually replaced by fibroblast-

derived collagen fibres (Arnold and West, 1991).  The new tissue is likely to differ in 

collagen composition and orientation from the pre-existing tissue and this is the basis of 

scar formation (Ehrlich and Krummel, 1996).  Under the influence of chemical stimulus 

and mechanical stress, fibroblasts may also perform differentiation to become 

myofibroblasts (Wipf and Hinz, 2008; Wipf and Hinz, 2009).  This fibroblast phenotype 

is primarily involved in wound closure by exerting a traction force around the wound 

edges (Grinnell, 1994). In conjunction with collagen fibre deposition and wound 
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contraction in the dermis, the epidermal surface also undergoes a procedure of closure 

and regeneration.  Although normal epidermal cells generally display an immotile, 

quiescent phenotype, it is known that this aspect of healing is driven by the migration 

and proliferation of epidermal cells in the periphery of the wounded region. The precise 

behaviour and mechanisms of these cellular processes are not fully understood but they 

are believed to be initiated by a combination of reduced contact inhibition and increased 

presence of growth factors near the wound edge (Clark, 1996). 

Another key component of the tissue repair system is wound healing angiogenesis, 

which allows for the rapid re-establishment of a functional vasculature.  This is critical 

since, not only is oxygen delivery inherently diminished by wounding, but oxygen 

demand is also increased beyond normal levels to drive the healing process.  Extreme 

hypoxia can result in compromised healing or even tissue loss, and is thus a critical 

factor in the failure of healing in chronic or diabetic wounds (Sen, 2008).  As discussed 

previously (c.f. Section 1.3), angiogenesis leads to a vascular network which is far more 

dense than would be observed in undamaged tissue.  Thus, during the repair phase, 

portions of the initial wound area will experience a reduction in vessel density 

(Hashimoto and Prewitt, 1987). 

 

3.4. Wound Healing Modelling Studies 

In the literature review provided in Section 1.4 we made reference to a number of 

theoretical studies that have investigated the wound healing process.  In keeping with 

the key themes of this thesis, however, we mentioned only those that have either taken a 

discrete approach to wound-induced cell migration, or investigated the angiogenic 

response to injury.  As detailed in the above section, wound healing is characterised by 

a variety of inter-connected events and, accordingly, a much wider range of approaches 

have been adopted to model the many different aspects of this complex process.  

Therefore, before proceeding to discuss our hybrid modelling approach to wound 

healing angiogenesis, we shall first briefly review a selection of pertinent studies. 

Some of the earliest mathematical modelling performed in this field considered 

healing of epidermal wounds, using a relatively simple approach with respect to the 

more complex interactions in the regenerating dermis (Sherratt and Murray, 1990; 

Sherratt and Murray, 1991; Sherratt and Murray, 1992).  In these models the 

mathematical representation utilised two simple coupled PDEs to describe the evolution 
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of epidermal cell density and a mitosis-regulating chemical factor.  An extension to this 

model was later proposed to examine the molecular dynamics of the cross-talk between 

the dermis and epidermis during epidermal wound healing (Wearing and Sherratt, 

2000).  Models very similar to the original approach of Sherratt and Murray have also 

been developed to examine epidermal healing in the cornea (Dale et al., 1994; Gaffney 

et al., 1997; Gaffney et al., 1999), whilst mechanical models have been proposed to 

investigate the process of actin-driven epidermal healing in the developing embryo 

(Sherratt et al., 1992; Sherratt, 1993). 

As mentioned in Section 3.3, dermal wound healing commences with a phase of 

inflammation in which macrophages infiltrate the wound site.  In diabetic wound 

healing the inflammation phase is known to persist; potential mechanisms and 

therapeutic interventions for this problem were investigated by Waugh and Sherratt 

(2006, 2007) by assuming that there is a competition between two different wound 

macrophage phenotypes.  A simple mathematical analysis suggested that persistence of 

inflammation may exist due to a self-reinforcing imbalance between reparative and 

inflammatory macrophages. 

Following the inflammatory phase in normal wound healing, the proliferative phase 

proceeds via the simultaneous processes of angiogenesis and tissue regeneration. 

Fibroblasts are the key cell type in the latter and, as such, a number of mathematical 

models have been developed to investigate their interaction with the wound 

microenvironment.  Haugh (2006), for example, developed a multi-scale continuum 

PDE model of fibroblast dermal wound invasion incorporating a representation of local 

PDGF gradient sensing through assumed quasi-steady cell surface receptor activation.  

More commonly studied, however, is the deposition of collagen by infiltrating 

fibroblasts as modelled by Dale et al. (1996, 1997), who investigated the possible 

mechanisms by which the scarring apparent in adult dermal healing is found to be 

entirely absent in the foetal analogue.  Collagen production by fibroblasts in the ECM is 

known to be stimulated in the presence of nitric oxide (NO), a highly reactive molecule 

produced naturally by certain cell types but up-regulated extensively during the wound 

healing process.  Therefore, the possible role of NO in the development of problematic 

hypertrophic or keloid scars has also been investigated in a seven species ODE model 

that incorporates representations of both blood vessel growth and oxygen delivery 

(Cobbold and Sherratt, 2000).  Another important factor in the development of dermal 

scarring is the cell-flux and tissue-stress induced alignment of the ECM fibres within, 
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and surrounding, the wounded region.  This process has been modelled in a 2D 

continuum fashion by assuming the ECM density in the vicinity of a virtual wound to 

consist of a combination of two spatially orthogonal components (Olsen et al., 1999).  

Indeed, this macroscopic scale model provided the starting point for the discrete cell 

microscopic models of fibroblast migration and fibre alignment discussed earlier in 

Section 1.4.1 (c.f. Dallon et al., 1999; Dallon et al., 2000; Dallon et al., 2001; 

McDougall et al., 2006a). 

A similar family of models to those discussed above are mechanochemical 

approaches, which have been used to investigate the mechanical and chemical events 

contributing to dermal tissue contraction and wound closure.  One of the earliest 

approaches of this type was proposed by Olsen et al. (1995), whose model incorporated 

a novel spatio-temporal representation of myofibroblast density that contributed to the 

traction force in the assumed force balance equation for tissue displacement.  This type 

of methodology has attracted interest again in recent years (Murphy et al., 2011; 

Murphy et al., 2012), where the mechanisms initiating the phenotype change from 

fibroblasts to myofibroblasts have been investigated in a model which also implements 

a moving boundary to demarcate the wounded and unwounded compartments of the 

healing lesion.  Other models that represent wound closure by a spatially and temporally 

evolving interface include those proposed by Vermolen et al. (2006) and Javierre et al. 

(2009). 

One final approach to the problem of wound healing that deserves mention concerns 

models that specifically focus on improving therapeutic interventions.  For example, 

Jones et al. (2004) attempted to make a quantitative assessment of the level of tissue 

debridement required to enhance healing rates, whilst others have examined the 

biomechanical stresses associated with wound suturing in order to propose optimal 

surgical strategies (Chaudhry et al., 1998; Lott-Crumpler and Chaudhry, 2001).  

Comprehensive summaries of the modelling strategies outlined above, along with many 

more, can be found in the review papers of Sherratt and Dallon (2002), Fusi et al. 

(2009) and Geris et al. (2010).      

 

3.5. In vivo Wound Healing Angiogenesis Assay 

The unique aspect of the experimental wound healing angiogenesis system studied here 

is the ability to produce both spatial and temporal data from a single lesion.  A brief 
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outline of the experimental procedure is given below, followed by a summary of the 

experimental data detailing its key features.  The experiments described below were 

performed by Maria Machado and Dr Andrea Devlin under the supervision of Dr 

Christopher Mitchell in the School of Biomedical Sciences at the University of Ulster. 

 

3.5.1. Experimental Set-Up and Image Analysis 

Initially the dorsal skinfold window chamber (DSWC) was implanted and, after 3 days, 

the mouse was anaesthetised before a single 100°C, 10 second contact wound was 

applied directly to the exposed pc taking care to avoid large blood vessels and 

neurovascular bundles.  Visualisation of perfused vessels was achieved using a confocal 

microscope and intravenous injection of the plasma marker FITC-conjugated dextran.  

This was performed prior to wounding, immediately post-wounding, and 3, 6 and 9 

days post-wounding. 

Analysis of the captured images allowed the quantification of 3 important 

experimental parameters – wound area, vessel density (μm per 10
6 

µm
2
) and vessel 

junction density (number per 10
6 

µm
2
).  Wound area was determined directly as the area 

devoid of FITC-dextran perfused vessels, whereas modified “Petri-metric” stereology 

techniques were used to determine both vessel density and vessel junction density 

(Howard and Reed, 2005).  At each time point, measurements were obtained at the 

geometric centre of the wound and at 250 µm intervals directly north, south, east and 

west up to a distance of 750 µm.  The analysis excluded areas of poor focus and those 

including large arterioles, large venules or crossed neurovascular bundles.  The mean ± 

SEM values at each interval for each time point were determined. 

 

3.5.2. Experimental Results 

A summary of pertinent experimental results is presented in Figures 3.4 and 3.5.  A 

more detailed analysis will be considered after the mathematical model has been 

introduced – here we simply draw attention to a number of important features of the in 

vivo system.  Figure 3.4 shows a typical example of an imaged vessel network prior to 

wounding, and at days 3, 6 and 9 post-wounding.  The regular parallel arrangement of 

the capillaries in the murine pc muscle is confirmed by Figure 3.4a, whilst Figures 3.4b-

d confirm the centripetal healing progression.  The quantitative results obtained from a 

number of experimental realisations (at least 6 mice in each case) are given in Figure 
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3.5 where each individual data point is plotted to emphasise the inherent noisiness of the 

data.  Vessel densities (Figures 3.5a, c, e) and vessel junction densities (Figures 3.5b, d, 

f) are plotted at various distances from the wound centre on days 3, 6 and 9 post-

wounding, respectively.  The wound area data is presented in Figure 3.5g, where a 

notable feature from a mathematical modelling viewpoint is that the injury generates a 

wound with highly reproducible size (1.02 ± 0.1 mm
2
 at day 0).  However, it is 

important to note that the maximal wound area occurs by day 3 (1.25 ± 0.1 mm
2
) - a 

phenomenon attributable to the contraction of muscle fibres within the surrounding pc. 

 

 (a) (b)  

 

 (c) (d)  

 

Figure 3.4: Confocal images of FITC-dextran perfused vessels in the panniculus 

carnosus muscle within the dorsal skin-fold window-chamber.  Images were obtained 

from the same animal pre-wound (a) and at days (b) 3, (c) 6 and (d) 9 post-wounding.  

Scale bar = 250 μm. 
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 (a) (b)  

 

 (c) (d)  

 

 (e) (f)  

 

(g) 

 

Figure 3.5: Caption overleaf. 
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Figure 3.5: Quantitative longitudinal data obtained from the dorsal skin-fold window-

chamber assay.  Plots show measurements of (a, c, e) vessel density and (b, d, f) vessel 

junction density on days 3, 6 and 9 post-wounding, respectively, at distances of 0, 250, 

500 and 750 μm from the wound centre.  Measurements of wound area on days 0, 3, 6 

and 9 post-wounding are shown in plot (g).  At least 7 data points are plotted in each 

case. 

 

3.6. Mathematical Model of Wound Healing Angiogenesis 

In recent years a number of mathematical models have been produced describing the 

healing of both epidermal and dermal wounds, most of which focus on a particular stage 

of the healing process.  Here, we introduce the novel approach of explicitly growing a 

new vasculature via angiogenesis and intermittently passing blood through the 

regenerating network.  Specifically, the mathematical model of angiogenesis that we 

employ utilises a hybrid PDE-discrete approach, first proposed by Anderson and 

Chaplain (1998b) but since supported by the work of various groups (McDougall et al., 

2002; Anderson, 2005; Zheng et al., 2005; Wu et al., 2008; Owen et al., 2009; Pons-

Salort et al., 2012).  The model incorporates discrete capillary sprouting from the 

surviving vasculature, induced by a VEGF gradient (Gerhardt et al., 2003), and EC 

migration determined by random motility and sensing of local environmental cues.  

Sprout tip branching and fusion are included allowing the formation of anastomoses 

and, subsequently, simulation of blood flow in the nascent networks (McDougall et al., 

2006b).  The modelling assumptions are outlined below, followed by specific 

simulation details and a description of the in silico “image analysis” process.  Note that 

additional details regarding the implementation of the angiogenesis modelling approach 

can be found in Appendix A. 

 

3.6.1. Hybrid PDE-Discrete Model of Endothelial Cell Migration 

Since the DSWC isolates a thin tissue region, a two-dimensional mathematical model 

provides an adequate representation of the pc microvascular network.  The EC 

migration model assumes that the tip cells of new vessels have the ability to migrate 

through (i) random motility (diffusion), (ii) chemotaxis in response to VEGF released 

by macrophages, and (iii) haptotaxis in response to gradients in the ECM.  The 

haptotactic response is manifested by EC production of matrix metalloproteinases 
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(MMPs), which diffuse and locally degrade the ECM.  Although the full molecular 

details of this process in vivo are not well understood, we adopt an informed 

generalisation of a model previously used in the context of tumour-induced 

angiogenesis (Anderson et al., 2000; Levine et al., 2001b; McDougall et al., 2006b; 

Stephanou et al., 2006), whereby MMPs, produced by endothelial tip-cells, reduce the 

local concentration of matrix-bound proteins (Karagiannis and Popel, 2006; Yana et al., 

2007).  Denoting by n the EC density per unit area, the non-dimensional equation 

describing EC conservation is given by: 
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where the parameters D, χ and ρ quantify random motility, chemotactic sensitivity to 

VEGF (denoted c) and haptotactic response to gradients of ECM density (denoted f), 

respectively.  Furthermore, the parameter δ reflects a decrease in chemotactic sensitivity 

with increasing VEGF concentration (Lapidus and Schiller, 1976).  

The hybrid PDE-discrete system is completed by three further non-dimensional 

equations.  Firstly, VEGF is bound by ECs at the plexus leading edge according to: 
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where η represents the rate of uptake.  The variable ni is defined at each grid point on 

the discrete 2D lattice, and assumes a Boolean value in order to indicate the presence or 

absence of a tip cell at each spatial position.  This is described by the equation: 
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 , no tip cell present at (l, m) 

 
 , tip cell present at (l, m) 

 
  

where l and m are positive parameters specifying particular nodal positions (i.e. x = lx 

and y = my).  Therefore, more specifically, binding of VEGF is assumed to occur only 

at spatial locations where discrete endothelial tip cells are present. 
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Finally, we have two equations describing the interaction between tip-cell produced 

MMPs and the underlying ECM: 
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where f represents the ECM density and m the MMP concentration.  The parameters α 

and β characterise, respectively, tip-cell production of MMPs and ECM.  Meanwhile, 

MMP diffusion is quantified by ε, whilst MMPs degrade the ECM at a rate governed by 

γ and ν is the MMP decay constant. 

Clearly, however, Equation 3.1 is a continuous PDE and cannot therefore be 

immediately used to track discrete ECs or capillary vessels.  Such entities are of 

paramount importance here as, not only do we wish to compare our simulations with the 

in vivo experimental results, but also the extent of blood perfusion depends crucially 

upon the underlying architecture of the developing vascular plexus.  Hence, we proceed 

to discretise Equation 3.1 and permit the migration of individual EC sprout tips. 

Following the hybrid approach outlined in Anderson and Chaplain (1998b), we apply 

the Euler finite difference approximation (Mitchell and Griffiths, 1980) to Equation 3.1.  

The EC density at a particular spatial position can subsequently be expressed as a linear 

combination of the densities at positions within one grid length at the previous time-

step, viz: 

 

    
          

          
          

          
          

 
, (3.6) 

 

where l, m and q are positive parameters specifying either the position of the cell on a 

2D lattice (i.e. x = lx and y = my) or the current point in time (i.e. t = qt).  The 

migration of an individual EC is then determined by the set of coefficients Pi: these 

coefficients are related to the likelihood of the cell remaining stationary (P0), or moving 

to the left (P1), right (P2), up (P3) or down (P4).  Naturally, these coefficients combine 

the effects of random movement and the local chemical environment (i.e. matrix-bound 
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protein and growth factor concentration gradients).  Any negatively-valued coefficients 

are set to zero, and the absolute value is added to the directly opposing coefficient.  By 

then scaling such that the coefficients sum to unity, the particular migration direction of 

each sprout tip is determined stochastically from a set of normalised movement 

weightings. 

 

3.6.2. Coupling Flow and EC Migration through Tip-Cell Branching 

and Anastomoses 

The EC migration model outlined above is an appropriate starting point for the 

development of an in silico model of wound healing angiogenesis in the murine pc.  

However, in isolation, the inert capillary structures generated by the model are unlikely 

to be reliable indicators of healing efficacy.  As discussed extensively in Chapter 2, 

oxygen delivery to the wound site depends critically upon the architecture of the 

developing neo-vasculature and the distribution of RBCs within it.  Hence, we apply the 

method of blood flow simulation detailed in Section 2.5 (Equations 2.1 and 2.2), 

including the generalised phase separation algorithm (Equations 2.3, 2.5 and 2.6) and 

the structural adaptation model with shunt-preventing stimuli (Equation 2.15).  By 

coupling EC migration and perfusion in this manner we can begin to simulate the 

wound healing response of ECs, at a vascular level, to migratory guidance cues and 

flowing network angioadaptation stimuli.  In order to simulate blood flow, however, we 

require the migrating tip-cells to form closed capillary loops, known as anastomoses.  

Although these emerge naturally from the model when a tip-cell encounters another tip-

cell or an existing capillary, the likelihood of this is occurring is enhanced by the 

inclusion of tip-cell branching whereby an additional tip-cell is added to the migrating 

capillary front.  Biologically, the formation of new capillary loops at the leading edge of 

the endothelial plexus is controlled by VEGF-induced filopodial extension from tip cells 

via the complex intra-cellular Dll4/Notch1 signalling pathway (Bentley et al., 2008).  

To approximate this in vivo observation at a discrete level, the generation of new tip-

cells from existing tip-cells is included phenomenologically, with branching dependent 

upon local VEGF concentration (see Table 3.1 for specific values).  One further caveat 

to this methodology is that branching can only occur in tip-cells that have reached a 

certain level of maturation (i.e. new tip-cells cannot immediately undergo further
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VEGF Concentration (c) Branching Probability 

c ≤ 0.3 0.009 

0.3 < c ≤ 0.8 0.01 

0.8 < c ≤ 0.98 0.011 

c > 0.98 0.012 

 

Table 3.1: Sprout tip branching probabilities as a function of local VEGF concentration 

used in simulations of normal healing. 

 

branching), which we define by the parameter tbranch.  It should also be noted that side 

branching induced by wall shear stress in perfused vessels (McDougall et al., 2006b) is 

not considered here.  Our simulations predict maximum wall shear stresses in the 

wound neo-vasculature of approximately 0.5 Pa – such small stresses would not be 

expected to produce additional branching in perfused vessels. 

 

3.6.3. Model Parameterisation and Simulation Details 

The domain is a square of length 2 mm with an initial circular wound of radius 0.68 mm 

positioned at its centre – this wound size takes account of the observed post-wound 

muscle fibre contraction.  Large parent vessels are positioned at the upper and lower 

edges of the domain separated by 24 evenly spaced small parallel parent vessels that 

have been ablated within the wound area.  The vascular network grows from the small 

parent vessels, with sprouts initiated at evenly spaced positions where the VEGF 

concentration exceeds the critical value ccrit (Figure 3.6).  Initially, we assume the 

existence of a domain-spanning uniform ECM density (i.e. f(x, y, 0) = 0.4), and a 

radially symmetric VEGF concentration profile that decreases from the wound centre 

according to: 

 

 ( )    
  

 , 

 

(3.7) 

 

where r is the normalised distance from the centre of the domain (ω = 0.85).  The in 

vivo study showed that, 3 days post-wounding, the wound site was flooded with 

macrophages (data not shown); hence, this assumed chemical profile effectively mimics
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 (a) (b)  

 

Figure 3.6: Initial conditions for the wound healing angiogenesis simulations showing 

(a) the intact post-wound vasculature with evenly-spaced initial sprouts and (b) the 

radially decreasing VEGF concentration profile given by Equation 3.7 (values 

correspond to the colour bar).  Note that sprouts are only initiated in positions where the 

VEGF concentration exceeds the critical value ccrit. 

 

the net result of VEGF-producing macrophage infiltration during the inflammatory 

phase of the healing response.  No MMPs are present initially under the assumption that 

these are only produced once capillary sprouting has begun.  Further to these initial 

conditions, zero-flux boundary conditions are imposed for all variables on all 

boundaries of the domain. 

The experimental data (c.f. Figures 3.4 and 3.5) suggest a significant delay in the 

onset of angiogenesis after injury. Therefore, angiogenic sprouting is assumed to 

commence at day 2.0 post-wounding.  Due to the difference in characteristic timescales, 

however, vascular network growth and blood flow cannot be simulated simultaneously.  

The nascent networks are therefore perfused to quasi-steady state at regular intervals of 

24 hours – allowing the model to provide daily predictions of wound neo-vascular 

architecture throughout the healing process.  Throughout perfusion, a fixed inlet 

haematocrit HD
in

, inlet pressure Pin and outlet pressure Pout are assumed in all parent 

vessels.  Prior to wounding it is assumed that all parent vessels are capable of flow, and 

post-wounding the ablated vessels may regain flow due to reconnection via the 

angiogenic process.  For all of the simulation results the radii of the 2 large parent 

vessels are held fixed at Rmax, but the 24 smaller parent vessels and all neo-vessels are 

allowed to undergo angioadaptation.  The radii of these vessels are permitted to remodel 
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from a minimum of Rmin up to a maximum of Rmax.  The vessel remodelling parameters 

were chosen such that, prior to wounding, the radii of the small parallel parent vessel 

segments would remodel to steady-state values in the range 3 – 4 μm, in line with 

experimental observations.  All capillary sprouts emerging from the parent vessels are 

assigned an initial radius of Rmin prior to perfusion.  Unless otherwise indicated, the 

parameter values used in all simulations are summarised in Table 3.2. 

 

3.6.4. In silico Image Analysis Protocol 

For direct comparison with the in vivo data, spatial values for vessel density and vessel 

junction density were calculated throughout each simulation.  Three annular regions 

were constructed with boundaries defined 80 μm either side of contours set at 250, 500 

and 750 μm from the wound centre, respectively.  Additionally, a circular region of 

radius 80 μm was constructed at the wound centre.  The total length of all vessel 

segments and the number of vessel junctions within each of these four regions were 

calculated and the values appropriately normalised by the area of the region.  In order to 

approximate the in silico wound area, the mathematical domain was split into 32 

regions of equal angle about the wound centre and the distance from the wound centre 

to the nearest vessel was determined in each segment.  These 32 values were then 

averaged to produce a surrogate “wound radius”, and the area of a circle characterised 

by this radius is taken to represent the approximate wound area. 

 

3.7. Numerical Simulation Results 

 

3.7.1. Qualitative Comparison of in vivo and in silico Architectures 

Combining all components of the mathematical model we can generate vascular 

architectures that closely resemble those observed in vivo.  In Figure 3.7, simulated 

capillary networks are compared to vital imaging micrographs obtained experimentally 

at days 3, 6 and 9 post-wounding.  Specifically, the images show in vivo wound neo-

vasculatures (Figures 3.7a, d, g) and in silico distributions of both capillary radii 

(Figures 3.7b, e, h) and haematocrit (Figures 3.7c, f, i).  On day 3, we note the strong 

angiogenic response both in vivo and in silico producing a dense mesh of vascular 

sprouts around the wound perimeter (Figure 3.7a, b).  In the model a number of sprouts
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Parameter Definition Value 

D EC random motility coefficient 3 × 10
-5 

χ EC chemotaxis coefficient 0.098 

δ EC chemotactic receptor saturation factor 0.6 

ρ EC haptotaxis coefficient 0.3 

η VEGF uptake rate by EC tips 0.1 

β ECM production rate by EC tips 0.05 

γ ECM degradation rate by MMPs 0.1 

α MMP production rate by EC tips 1 × 10
-5

 

ε MMP diffusion coefficient 0.01 

ν MMP decay rate 0.3 

Lc Length constant for conducted stimulus decay 0.01 m 

ks Relative intensity rate of vessel shrinkage 1.7 

kp Relative intensity rate of the pressure stimulus 0.8 

km Relative intensity rate of the convected stimulus 0.38 

kc Relative intensity rate of the conducted stimulus 3.68 

J0 Saturation constant for the conducted stimulus 250 

ηref Reference wall shear stress 0.5 dyn ∙ cm
-2

 

(QHD)ref Reference RBC flow rate 3.6 × 10
-15

 m
3 

∙ s
-1 

Qref Reference flow rate 1 × 10
-18

 m
3 

∙ s
-1

 

tbranch Threshold age for EC tip branching 3.84 hours 

Pin Inlet blood pressure 3260 Pa 

Pout Outlet blood pressure 2060 Pa 

Rmin Minimum permissible vessel radius 3.0 × 10
-6

 m 

Rmax Maximum permissible vessel radius 1.2 × 10
-5

 m 

μplasma Bulk plasma viscosity 1.2 × 10
-3

 Pa ∙ s 

HD
in 

Inlet haematocrit value 0.45 

ccrit Critical VEGF concentration for initial sprouting 0.33 

 

Table 3.2: Parameter values used in all simulations of normal healing. 
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(a) (b)  (c)  

 

(d) (e)  (f)  

 

(g) (h)  (i)  

 

Figure 3.7: Qualitative comparison of experimental and numerical wound healing at 

days (a-c) 3, (d-f) 6 and (g-i) 9 post-wounding.  Images show (a, d, g) FITC-dextran 

perfused in vivo capillary plexuses (scale bar = 250 μm) alongside in silico distributions 

of (b, e, h) capillary radii and (c, f, i) haematocrit. 

 

have re-connected existing parent vessels and numerous occurrences of phase separation 

can already be seen, particularly on the right hand side of the domain (Figure 3.7c).  A 

notable feature of the in vivo vasculature at day 3 is the conspicuous dilation of the 

vessels surrounding the wound (Figure 3.7a) – this is attributable to the initial 

inflammatory response and, as such, is not directly replicated by the modelling 

assumptions.  The first signs of vascular remodelling are, however, observable in the 

simulation with dilated parent vessel segments emerging immediately above and below 

the wounded region (Figure 3.7b).  This is a manifestation of the fact that these vessels 
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are now part of lengthy flow pathways that drain and supply newly re-connected parent 

vessels.  We would expect this dilation to increase the blood flow across the network 

and improve the delivery of oxygen to the hypoxic wound.  By day 6, an angiogenic 

plexus proceeds towards the wound centre and many more vessels populate the wound 

area both in vivo and in silico (Figure 3.7d, e).  Many fusions and anastomoses 

formations have now occurred, with the model displaying dilated pathways that traverse 

the wound boundary and carry a significant proportion of the haematocrit to the 

detriment of more distal parent vessels (Figure 3.7e, f).  These pathways appear 

decidedly “shunt-like”, but for the available vessel architecture this is arguably the most 

effective means of delivering oxygen to the vessel-free zone.  It seems likely that this 

effect would persist until the formation of wound-spanning vessels occurs, producing 

shorter flow pathways, reduced vessel dilation and less pronounced phase separation 

effects.  Compared to pre-wound, uninjured tissue, the in vivo and in silico wound 

architectures at day 9 are highly disorganised and composed of several dilated capillary 

loops (Figure 3.7g, h; c.f. Figure 3.4a).  Despite this, however, the model predicts that 

on average intra-wound haematocrit remains low with a number of smaller low-flow 

loops carrying little or no RBCs (Figure 3.7i). 

 

3.7.2. Quantitative Comparison of in vivo and in silico Architectures 

Although the simulated vascular architectures of Figure 3.7 compare favourably with 

the experimental images, a more quantitative comparison is required to provide a more 

rigorous test of their validity.  In Figure 3.8 we present a series of graphs comparing the 

experimental values for vessel density (Figures 3.8a, c, e), vessel junction density 

(Figures 3.8b, d, f) and wound area (Figure 3.8g) with the simulated numerical values.  

The experimental results are plotted as the mean with standard error, whilst the lines 

displaying the in silico results represent the average behaviour from a series of 10 

simulations.  As can be seen, the model predictions compare very favourably both 

spatially and temporally with the in vivo data.  The model predicts vessel junction 

densities slightly above or below the experimental values on each day at 500 µm from 

the wound centre but, otherwise, most data points are in excellent agreement over the 

course of the simulation.  In particular, the quantitative rate of in vivo wound closure 

between days 3 to 9 is successfully reproduced (Figure 3.8g).  Note that the day 9 

experimental data suggests the wound is beginning to enter the repair phase of healing.
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 (a)  (b)  

 

 (c)  (d)  

 

 (e)  (f)  

 

(g) 

 

Figure 3.8: Caption overleaf. 
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Figure 3.8: Quantitative comparison of longitudinal wound healing data obtained by 

experiment (symbols with error bars) or simulation (solid lines).  Plots show 

measurements of (a, c, e) vessel density and (b, d, f) vessel junction density on days 3, 6 

and 9 post-wounding, respectively, at distances of 0, 250, 500 and 750 μm from the 

wound centre.  Measurements of wound area on days 0, 3, 6 and 9 post-wounding are 

shown in plot (g).  Experimental data are plotted as mean ± SEM of at least 6 

measurements, whilst numerical data represent mean values from 10 independent 

simulations. 

 

The mean vessel density at 750 μm from the wound centre (Figure 3.8e), and the mean 

vessel junction density at 500 μm (Figure 3.8f), both undergo a slight decrease 

suggesting that some vascular pruning may have occurred.  Due to the lack of statistical 

significance in these variations, however, the evidence is somewhat inconclusive and 

therefore vascular pruning was not considered in the mathematical model. 

 

3.8. Anti-angiogenic Wound Treatment 

Under normal healing circumstances, the wound healing angiogenesis model has thus 

far been shown to be capable of generating a variety of qualitative predictions, whilst 

also quantitatively reproducing a number of experimental metrics.  In order to confirm 

both the robustness and predictive capability of the model we now study the impact of 

introducing into the system an angiogenesis-perturbing treatment. 

 

3.8.1. TNP-470 

We consider the effect of the anti-angiogenic agent TNP-470 (also known as AGM-

1470): a potent synthetic analogue of fumagillin (Ingber et al., 1990).  TNP-470, 

previously shown to decrease the rate of murine cutaneous wound healing in a dose-

dependent manner (Klein et al., 1999), is known to obstruct EC proliferation by 

inhibiting the action of the metalloproteinase methionine aminopeptidase (metAP-2) 

following protein synthesis in the cell (Griffith et al., 1997).  The experimental 

procedures employed were identical to those outlined in Section 3.5.1, with the only 

exception that each animal was injected subcutaneously every other day with 30 mg/kg 

TNP-470 (Rutland et al., 2005) beginning on the day of wounding (i.e. day 0). 
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3.8.2. Mathematical Model Modifications 

In order to predict the effect of TNP-470 application, only minor modifications to the 

model outlined in Section 3.6 are required. Since the anti-angiogenic agent is known to 

target EC proliferation, capillary tip branching probabilities are reduced by a constant 

factor with respect to their previous values (see Table 3.3 for details).  This is not, 

however, the only representation of EC proliferation in the model: in order for the 

sprout tips to undergo migration, it is implicitly assumed that proliferation must have 

occurred in the trailing ECs.  Therefore, since chemotaxis is the dominant migratory cue 

in the healing process, we further assume that the impact of TNP-470 is indirectly 

realised by a reduction in sprout tip chemotactic sensitivity to VEGF.  As such, we 

adjust the appropriate parameter value to χ = 0.075.  All other parameter values and 

model assumptions remain unchanged. 

 

VEGF Concentration (c) Branching Probability 

c ≤ 0.3 0.0063 

0.3 < c ≤ 0.8 0.007 

0.8 < c ≤ 0.98 0.0077 

c > 0.98 0.0084 

 

Table 3.3: Sprout tip branching probabilities as a function of local VEGF concentration 

used in simulations considering the anti-angiogenic treatment, TNP-470. 

 

3.8.3. Results 

As for the untreated wound simulations, in Figure 3.9 we again compare the in vivo 

wound neo-vasculatures (Figures 3.9a, d, g) with the in silico distributions of capillary 

radii (Figures 3.9b, e, h) and haematocrit (Figures 3.9c, f, i) at days 3, 6 and 9 post-

wounding.  Fewer neo-vessels are observed around the wound periphery on day 3 

compared to untreated animals (Figure 3.9a vs. Figure 3.7a), and this also holds for the 

simulation results (Figure 3.9b vs. Figure 3.7b).  As expected, at day 6 the reduced 

angiogenic response in TNP-470 treated animals leads to an increase in the size of the 

vessel-free region both in vivo (Figure 3.9d vs. Figure 3.7d) and in the virtual wound 

(Figure 3.9e vs. Figure 3.7e).  A number of parent vessels on the left hand side of the
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(a) (b)  (c)  

 

(d) (e)  (f)  

 

(g) (h)  (i)  

 

Figure 3.9: Qualitative comparison of experimental and numerical wound healing at 

days (a-c) 3, (d-f) 6 and (g-i) 9 post-wounding under the influence of an anti-angiogenic 

treatment.  Images show (a, d, g) FITC-dextran perfused in vivo capillary plexuses 

(scale bar = 250 μm) alongside in silico distributions of (b, e, h) capillary radii and (c, f, 

i) haematocrit.  The in silico results were obtained by reducing the chemotactic 

sensitivity to VEGF (c.f. χ = 0.075 vs. χ = 0.098) and reducing the capillary tip 

branching probabilities by a constant factor (c.f. Table 3.3 vs. Table 3.1). 

 

wound have also failed to re-connect, reducing the capacity for flow across the network 

(Figure 3.9f).  Notably, the continual suppression of capillary migration both in vivo and 

in silico leads to a disparity of anastomosed vessels within the wounded region (Figure 

3.9g, h) – such connections were numerous in the untreated wounds (Figure 3.7g, h).  

The intra-wound haematocrit is also significantly reduced (Figure 3.9i vs. Figure 3.7i) 
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and this is likely to have serious implications for oxygen delivery to the wound site, 

with diffusion continuing to be the dominant mechanism for transport. 

A comparison of the in vivo quantitative data with corresponding data from the 

mathematical model is shown in Figure 3.10.  Again we consider vessel density (Figure 

3.10a, c, e), vessel junction density (Figure 3.10b, d, f) and wound area (Figure 3.10g), 

where each experimental data point represents the mean and standard error from 4 

animals and the in silico results have been averaged from 10 independent simulations.  

The TNP-470 angiogenesis model captures the essential features of the experimental 

data.  In particular, the model predicts the observed delay in advancement of the 

angiogenic plexus, with accurate reproduction of the vessel junction density (Figure 

3.10d, f) and vessel density (Figure 3.10c, e) values at 250 μm and 500 μm from the 

wound centre on days 6 and 9.  The experimental wound area value at day 3 is under-

predicted by the model – possibly due to a TNP-470 treatment-induced delay in the 

onset of significant EC sprouting in vivo (Figure 3.10g vs. Figure 3.8g) – but the overall 

rate of in silico wound closure matches the experimental observation. 

 

3.9. Discussion 

The pc DSWC wound healing assay is particularly suitable for a parallel mathematical 

bench-marking study.  Not only does the uninjured pc vessel network have a regular, 

essentially 2D arrangement, but the window chamber set-up allows the same regions of 

interest to be imaged in the same animal over time (Lehr et al., 1993; Guerreiro-Lucas 

et al., 2008).  Additionally, focal heat-injury to the pc produces a non-perfused circular 

wound area with highly reproducible size, allowing quantification of angiogenesis in a 

spatially and temporally defined manner.  These quantitative measures are critical for 

informing mathematical model development and, as such, the in vivo and in silico 

approaches described in this chapter were strongly coupled throughout our 

investigation. 

The ultimate result of this combined study is a robust mathematical model with 

predictive capability and the potential to formulate hypotheses for in vivo testing.  

Although angiogenesis occurs in a wide range of natural and pathological settings, 

wound healing is one of the most straightforward to characterise biologically, lacking as 

it does the additional complexities associated with solid tumour growth, for example.
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 (a)  (b)  

 

 (c)  (d)  

 

 (e)  (f)  

 

(g) 

 

Figure 3.10: Caption overleaf. 
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Figure 3.10: Quantitative comparison of longitudinal wound healing data obtained by 

experiment (symbols with error bars) or simulation (solid lines) under the influence of 

an anti-angiogenic treatment.  Plots show measurements of the vessel density (a, c, e) 

and vessel junction density (b, d, f) on days 3, 6 and 9 post-wounding, respectively, at 

distances of 0, 250, 500 and 750 μm from the wound centre.  Measurements of wound 

area on days 0, 3, 6 and 9 post-wounding are shown in plot (g).  Experimental data are 

plotted as mean ± SEM of 4 measurements, whilst numerical data represent mean values 

from 10 independent simulations. 

 

Due to the wide variety of possible tumour types and associated micro-environments, 

most tumour angiogenesis models provide general qualitative predictions with little 

specific quantitative experimental validation (McDougall et al., 2006b; Owen et al., 

2009; Welter et al., 2009; Cai et al., 2011).  However, the pc wound data generated 

during this study is less variable and therefore provides a more rigorous test for the 

modelling approach.  Once satisfactorily benchmarked against experiments, the model 

can then be extended and modified to explore more complex scenarios. 

Various mathematical models of wound healing have been published over the last 

two decades, each focussing on a different aspect of the healing process.  Only a 

handful of these have explicitly considered angiogenesis and a continuum PDE 

approach is typically adopted.  In this work, however, we have proposed a multi-scale 

hybrid PDE-discrete model incorporating molecular cues, discrete capillary migration 

and flow-mediated vascular remodelling of nascent wound microvasculatures.  The 

modelling results have been compared to qualitative and quantitative measures obtained 

from a standardised in vivo assay, and this, to our knowledge, represents the first 

attempt to compare in silico morphological data with longitudinal experiments of 

wound healing, aside from simple predictions of wound closure rates (Cardinal et al., 

2008). 

Under normal wound healing circumstances, the mathematical model qualitatively 

and quantitatively reproduces the sequential changes of the vasculature in vivo.  

Functional capillary density, an important microcirculatory parameter, increases over 

days 3 to 9 in the centre of the virtual and in vivo wounds (Figure 3.7), consistent with a 

centripetal progression of the vascular network leading edge.  Comparison of model 

predicted values of vessel density, vessel junction density and wound area at days 3, 6 
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and 9 post-injury also correlate excellently with in vivo measurements (Figure 3.8).  

Successful bench-marking of the in silico EC migration and proliferation dynamics in 

this manner allows the true potential of the mathematical model to be realised.  By 

simulating blood flow and structural adaptation in the nascent vasculatures, predictions 

beyond the scope of the experiment can be made regarding the evolution of capillary 

radii, haematocrit and, implicitly, wound oxygenation.  Although generally termed 

shunt-preventing stimuli, the conducted and convected angioadaptation responses here 

contribute to the development of extensively dilated pathways throughout the first 9 

days of healing.  These vessels are seen to traverse the wounded region carrying a 

significant haematocrit and, in the absence of wound-spanning vessels, would most 

likely be beneficial for wound oxygenation.  More direct delivery of oxygen to the 

wounded region would most likely be hampered, however, because intra-wound 

haematocrits and flows are predicted to be persistently low throughout the simulation. 

The robustness of the mathematical model was subsequently tested by investigating 

its ability to reproduce the effect of systemic administration into the wound 

environment of TNP-470 – an anti-angiogenic agent.  TNP-470 blocks the progression 

of ECs into the S-phase of the cell-cycle (Sin et al., 1997) and actively prevents their 

proliferation.  This was incorporated into the mathematical model by reducing the 

likelihood of capillary branching and the capacity for chemotactic migration – 

mechanisms which implicitly require cell division to proceed.  The in silico model 

largely reproduces the qualitative and quantitative outcomes of TNP-470 administration 

in vivo, with delayed vessel growth resulting in fewer anastomosed vessels and a large 

region devoid of vasculature at day 9.  Further to this, the model predicts that intra-

wound haematocrit is negligible even at day 9 post-wounding, while some ablated 

parent vessels have even failed to re-connect to the circulation. 

The in silico results presented here are encouraging and suggest that we have 

developed a robust model of wound healing angiogenesis in the murine pc.  Although it 

has not been incorporated here, an obvious extension to the mathematical model is the 

explicit simulation of oxygen transport from the vasculature to the wound.  As the 

nascent vascular structures grow and remodel, the model has the potential to predict 

both the spatial and temporal evolution of oxygen concentration in and around the 

wound area.  This is likely to form the basis of a future study: such results are of great 

interest since the extent of wound oxygenation is a key indicator of potential healing 

outcomes (Sen, 2008).   
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Although the model successfully reproduces the angiogenic response to injury, it is 

still lacking certain aspects of the wound healing process.  For instance, the simulations 

are assumed to begin 2 days post-wounding and, as such, the inflammatory phase is 

largely neglected.  Invading inflammatory cells such as macrophages are not explicitly 

incorporated – we simply mimic the release of pro-angiogenic factors from these cells 

by creating an initial VEGF gradient.  As noted earlier, the model is unable to reproduce 

the extensive inflammatory vessel dilation observed at day 3 in vivo.  However, it is 

likely that this dilation is caused by up-regulation of nitric oxide production by various 

cell types in the wound site (Witte and Barbul, 2002), and such a mechanism is not 

currently considered in the angioadaptation model.  A further aspect neglected by the 

model is the deposition of ECM by infiltrating fibroblasts and the associated contact 

guidance effects on EC migration.  These additional considerations are likely to form 

the basis for further future studies – the model presented here can be seen as a first stage 

towards the development of a more complete in silico virtual wound. 

The mathematical model presented here has been shown to accurately simulate both 

the angiogenic response observed in healing wounds and the effect of anti-angiogenic 

therapeutic intervention.  The novel approach described in this study, directly 

combining in vivo investigation and mathematical modelling, provides evidence for the 

benefits of a new experimental paradigm in which longitudinal in vivo data can be used 

to directly inform modelling and rigorously test the accuracy of in silico predictions. 
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Chapter 4 

 

Modelling Development of the Murine Retinal 

Vascular Plexus 

 

 

 

4.1. Introduction 

In the previous chapter we presented a mathematical model of murine wound healing 

angiogenesis that was developed in close association with laboratory studies.  We now 

modify and extend the earlier methodology to investigate development of the murine 

retinal vascular plexus (RVP).  Having previously reasoned that the wound healing 

assay provides a significant test of the angiogenesis modelling approach, it will be seen 

that the well-ordered developmental process associated with the neo-natal retinal 

vasculature poses an even more demanding trial of the in silico study.  This chapter will 

proceed by first detailing the structure of the adult retinal vasculature and describing the 

fundamental processes involved in its development.  The key experimental results 

obtained from this investigation will then be summarised, followed by a presentation of 

the full mathematical model and a wide variety of relevant simulation results.  The in 

silico RVP structures generated by the model are first compared with corresponding 

experimental sections at various stages of wild-type development, and we go on to 

report a range of predictions on retinal angiogenesis in transgenic animals.  We will 

conclude by considering the future utility of the model and drawing appropriate 

conclusions. 
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4.2. Biology of the Retinal Vasculature 

The retina is a thin (~ 0.5 – 1 mm) hemispherical tissue layer that lines the inner surface 

of the eye (Figure 4.1).  At the centre of the retina lies the optic nerve, which contains 

the axons of retinal ganglion cells (RGCs) responsible for the passage of light-induced 

nerve impulses to the brain.  The retina and the optic nerve emerge from the developing 

brain during embryogenesis and, as such, are considered to belong to the central 

nervous system. 

A variety of neural cell types exist in the layered retinal structure, including the 

photo-receptive rods and cones, and in the adult retina these are nourished by a similarly 

layered vasculature.  Moving from the front to the back of the eye, there exist three 

layers known as the primary (superficial), intermediate (inner plexiform) and deep 

(outer plexiform) vascular plexuses, respectively.  The layers are inter-connected by 

vessels that project perpendicularly from each plexus, with the primary plexus 

considered to be predominantly arterial and the deep plexus predominantly venous 

(Paques et al., 2003; Fruttiger, 2007). 

The origin of these layers had been unclear but it has recently been shown that their 

development is driven by a process of angiogenesis rather than vasculogenesis (de novo 

formation of vessels by endothelial precursor cells known as angioblasts) (Fruttiger, 

2002).  During early development the hyaloid vasculature, an arterial network in the 

vitreous, provides nutrient to the inner eye.  Blood is supplied to this vasculature from 

the central hyaloid artery in the optic nerve and is subsequently drained through the 

choroidal net on the outside of the eye.  Later in development, the primary vascular 

plexus emerges by endothelial sprouting from the optic nerve head and migration across 

the inner retinal surface.  In parallel with this process, the pre-existing hyaloid 

vasculature is believed to regress (Figure 4.2).  The intermediate and deep vascular 

plexuses are subsequently formed by downward sprouting from the veins, venules and 

capillaries of the primary plexus.  This cascade begins proximally to the optic nerve and 

spreads outwards until perpendicular projections cover the entire retinal surface.  It is 

believed that these sprouts are guided into the deeper layers of the retina by Mueller cell 

processes, with most sprouts migrating to form the deep vascular plexus while the 

intermediate layer is formed predominantly by branching.  A schematic of the layered 

retinal structure is presented in Figure 4.3, alongside examples of the typical in vivo
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Figure 4.1: Schematic diagram showing the structure of the eye.  Image taken from 

Bozukova et al. (2010). 

 

capillary architectures displayed within each vascularised layer.  The investigation we 

have carried out here focuses entirely on the development of the murine superficial RVP 

and, as such, the formation of the intermediate and deep vascular layers will be 

considered no further in this thesis.  The application of the model to investigate the 

developmental dynamics of these additional layers will form the focus of future studies.  

A thorough review of the relevant literature concerning various aspects of retinal 

vascular development has been presented by Fruttiger (2007). 

In the case of the postnatal murine eye, the factors regulating superficial RVP 

formation are relatively well understood (Fruttiger, 2002; Gariano, 2003).  Aside from 

ECs, the other cell variety intimately involved in this developmental process is the 

astrocyte – another type of glial cell.  EC migration outward from the optic nerve 

depends upon the formation of a dense astrocytic network across the inner retina: a 

process that begins 4 – 5 days prior to the emergence of the first angiogenic sprouts.  

Astrocytes in the optic nerve head express the PDGF-A receptor (PDGFR-α), and are 

induced to migrate over the inner retina in response to PDGF-A produced by RGCs 

(Mudhar et al., 1993; Fruttiger et al., 1996).  Over-expression of PDGF-A in neonatal 

transgenic mice reduces the extent of the astrocytic network (Fruttiger et al., 1996; West 

et al., 2005) suggesting that astrocyte migration is dependent upon a gradient of PDGF-

A.  For the mice considered in this investigation, astrocyte migration from the optic
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(a) (b) (c)  

 

Figure 4.2: The retinal vasculature is remodelled significantly during development.  (a) 

The hyaloid vasculature (hv) within the vitreous is initially supplied by the hyaloid 

artery (ha) and drained by the choroidal net (ch) on the outside of the eye.  (b) As the 

arteries and veins of the primary plexus (pp) grow across the retinal surface, the hyaloid 

vasculature regresses.  (c) Venous sprouting from the primary plexus subsequently 

results in growth of the intermediate and deep vascular plexuses (dp).  Note that the eye 

also undergoes substantial growth throughout this process.  Image taken from Fruttiger 

(2007). 

 

nerve has previously been shown to begin between embryonic day (E) 15.5 and 18.5, 

and by postnatal day (P) 3 an astrocytic template covers the entire inner retinal surface 

(Aubert et al., 2011).  Note that the murine gestation period lasts 21 days, such that E21 

or P0 both refer to the day of birth. 

The emergence of the astrocyte network, with associated chemotactic and haptotactic 

guidance cue production, provides a stable scaffold for subsequent EC migration 

(Dorrell et al., 2002).  The importance of haptotaxis is demonstrated by the finding that 

EC migration is prevented by inhibiting the ability of ECs to bind fibronectin: an 

outcome achieved by intraocular injection of anti-integrin αβ1 antibodies (Uemura et 

al., 2006).  Poorly-oxygenated astrocytes produce VEGF-A prior to vascularisation and 

this chemotactic factor is responsible for inducing EC migration to ultimately produce a 

nascent vascular network over the inner retinal surface.  VEGF-A mRNA is expressed 

in a number of different splice-variants, each with a varying ability to bind heparin 

residues in the ECM or diffuse freely (Park et al., 1993; Shima et al., 1996; Ferrara et 

al., 2002; Keyt et al., 2006).  VEGF-A165 is the most widely expressed human splice-

variant, and its murine homolog, VEGF-A164, can both bind to ECM and diffuse in the 

extracellular milieu.  VEGF-A164 is widely expressed during development (Ng et al.,
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 (a) (b) (c)  

 

Figure 4.3: The fully developed retina is a layered, vascularised structure composed of 

various cell types; image (a) shows a schematic diagram in cross-section (RGC: retinal 

ganglion cells; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer 

plexiform layer; ONL: outer nuclear layer; RPE: retinal pigment epithelium).  Stained 

retinal whole mounts obtained during development show (b) the primary vascular 

plexus (red) at post-natal day (P) 8, and (c) the intermediate (green) and deep (blue) 

vascular plexuses at P14 (scale bars = 100 μm).  In (a), downward projecting sprouts 

(green) are seen emerging from veins and capillaries but not from arteries.  In (c), the 

arrows indicate established connections between the intermediate and deep plexuses, 

while the arrowhead indicates a connection between the primary and intermediate 

plexuses.  Image adapted from Fruttiger (2007). 

 

2001) and is the major isoform responsible for RVP formation (Stalmans et al., 2002; 

Gerhardt et al., 2003).  Intra-ocular injection of VEGF-A sequestering antibodies has 

been found to inhibit endothelial migration and delay plexus formation (Uemura et al., 

2006).  Furthermore, removal of the VEGF gradient in the retina, via increased VEGF-

A expression in transgenic mouse models, also reduces the extent of EC migration 

(Gerhardt et al., 2003; Mitchell et al., 2006).  A broad summary of the mechanisms of 

RVP development is presented graphically in Figure 4.4, highlighting the key 

interactions between the various biological processes. 

Under normal circumstances, EC sprouting from the ophthalmic vein begins around 

P0 and the subsequent dense vascular plexus reaches the retinal periphery by P8.  

Sequential formation of anastomoses allows perfusion of the expanding network and 

over time the plexus matures and remodels to reveal a hierarchical vascular tree with
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Figure 4.4: Flowchart showing the key interactions between the prominent cell types 

involved in RVP development.  Prior to birth retinal ganglion cells secrete PDGF-A, 

which induces astrocytes to proliferate and migrate across the inner retina.  Production 

of VEGF-A and fibronectin by astrocytes subsequently promotes neonatal angiogenesis 

by endothelial cell chemotactic and haptotactic responses, respectively.  Finally, the 

formation of blood vessels and delivery of oxygen inhibits further astrocyte activity. 

 

clearly defined arteries and veins (Fruttiger, 2007).  Astrocytes respond to the onset of 

perfusion by gradually downregulating VEGF-A expression (West et al., 2005; Uemura 

et al., 2006), and this is followed by a reduction in EC numbers since, in addition to its 

role as a chemotactic agent, VEGF-A also impacts EC viability (Alon et al., 2005; West 

et al., 2005). An outward wave of vascular pruning therefore proceeds, resulting in the 

emergence of capillary-free zones around arteriolar segments where VEGF 

concentrations dip and oxygen concentrations peak (Fruttiger, 2007).  The long-term 

maturation of the neo-vasculature, via recruitment of pericytes and smooth muscle cells, 

allows older animals to pose a stronger resistance to such hyperoxia (Fruttiger, 2007).  

Pericytes lend functional stability to vascular networks, prevent the leakage of 

circulatory components and, importantly, reduce the requirement for survival factors 

such as VEGF-A. 
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4.3. Theoretical Studies of the Retinal Vasculature 

Before proceeding to describe the details of the current approach, we shall first briefly 

draw attention to other recent combined experimental and theoretical studies pertaining 

to the haemodynamics of the retinal circulation.  Some of the earliest such studies 

combined data from microelectrode-facilitated measurement of intraretinal oxygen 

tensions with a 1D mathematical model of oxygen consumption that accounted for the 

various tissue layers throughout the depth of the retina (Yu and Cringle, 2001; Cringle 

et al., 2002; Cringle et al., 2006).  By fitting the model to experimental data obtained 

from the retinae of rats, rabbits and guinea pigs, rates of oxygen consumption in the 

layers of highest demand were quantified.  An analysis of oxygen distribution within the 

retinal vasculature has recently been performed by Liu et al. (2009), who simulated 

blood flow and oxygen transport in a reconstructed human arterial tree.  Since human 

retinal arterial vessels are relatively large, the assumed convection-diffusion model for 

oxygen provided detailed predictions of not only the oxygen tension within particular 

segments, but also radial variations throughout their length.  Most immediately 

comparable to the work in this thesis, however, are the investigations performed by 

Ganesan and colleagues, who have performed a detailed circulation analysis in a fully-

developed three layer murine retinal network (Ganesan et al., 2010a; Ganesan et al., 

2010b).  Their network was constructed by an image-based approach, and using blood 

flow simulation techniques analogous to those presented in Chapter 2, albeit with a 

fixed distribution of vessel radii, provided a range of predictions regarding the 

distributions of haematocrit, pressure, viscosity and wall shear stress.  More recently, 

their model has been extended to consider the impact upon these microcirculatory 

parameters when a pulsatile flow regime is introduced (Ganesan et al., 2011).  As will 

be seen in Section 4.6, many of the results from these publications are found to accord 

with predictions made from our study of murine retinal development. 

 

4.4. In vivo Investigation of Superficial Retinal Vascular 

Plexus Development 

The relationship between the developing retinal vasculature, its constituent cell types, 

and the molecular cues that regulate this process can be readily visualised (Uemura et 

al., 2006).  In this study, experimental measurements at various developmental stages, 

from E15.5 to P8, were used to inform the corresponding modelling approach.  As in 
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Chapter 4, we provide a brief outline of the experimental procedure followed by a 

summary of the key experimental results.  The in vivo experiments described below 

were performed by Dr Andrea Devlin under the supervision of Dr Christopher Mitchell 

in the School of Biomedical Sciences at the University of Ulster. 

 

4.4.1. Experimental Set-Up 

Mice were euthanised and, following removal and fixation of the globe, retinal whole 

mounts were prepared by making four radial cuts to produce a flat petal-like shape.  

Prior to euthanasia, some animals were trans-cardially perfused under terminal 

anaesthesia with the plasma marker FITC-dextran in order to image flowing segments at 

the RVP leading edge.  ECs were identified using isolectin-B4 biotin-conjugate (Iso-

B4) whilst astrocyte nuclei were detected with the pan-astrocytic antibody rabbit anti-

Pax2 (Pax2).  The astrocyte network itself was imaged using rabbit anti-fibronectin 

antibody.  Appropriate images were captured at a range of objective magnifications. 

 

4.4.2. Experimental Results 

Retina whole mount images and data used to inform development of the mathematical 

model are presented in Figures 4.5 and 4.6.  At E15.5, Pax2 immunoreactive astrocytes 

are located around the boundary of the optic nerve chiasm (Figure 4.5a), and by E18.5 a 

dense network is observed to have reached halfway across the retina (Figure 4.5b).  

Formation of the superficial RVP begins in the region bordering the optic nerve at P0, 

with the emergence of a dense network of Iso-B4 immunoreactive ECs (Figure 4.5c).  

At P3, astrocytes have reached the retinal periphery (Figure 4.5g) while the expanded 

EC plexus is now dense and highly branched (Figure 4.5d).  Differentiated arterioles 

and venules are evident by P3, and by P5 a permanent pattern of five pairs of alternating 

arterioles and venules is established. Vascular pruning of the immature plexus begins 

near the optic nerve chiasm around P3, and capillary-free zones are evident along 

arterioles at P5 – venules are not extensively pruned (Figure 4.5e).  By P8, pruning 

around primary arterioles is conspicuous across roughly 70% of the retinal radius, with 

clear vessel-free zones also surrounding secondary arterioles (Figure 4.5f).  A 

quantitative summary is presented in Figure 4.5g, where it is clear that astrocyte and EC 

migration occur in conjunction with significant retinal growth.  Retinal radius, measured
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

(g) 

 

Figure 4.5: Caption overleaf. 

 

as the distance from the centre of the optic nerve chiasm to the retinal edge, increases 

approximately 2-fold between E15.5 and P5.  The endothelial plexus reaches 

approximately halfway across the fully-grown surface by P5 and approaches the 

periphery by P8. 

Images taken at higher magnification reveal more details of the key processes 

controlling developmental progression.  Prior to astrocyte migration, at E15.5,
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Figure 4.5: Astrocyte and endothelial migration occur in parallel to retinal growth 

during formation of the superficial retinal vascular plexus.  (a-f) Confocal images of 

immunohistochemically-stained murine retinal whole mounts showing the extent of 

astrocyte (Pax2, red) and endothelial cell (Iso-B4, green) migration at various 

embryonic (E) and postnatal (P) stages (note that the globe-shaped retina has been cut 

and flattened into a petal-like shape).  Arrowheads in (b, c) indicate the extent of 

astrocyte migration; arrowheads in (d) indicate Iso-B4 positive microglial cells; arrows 

in (b, d-f) indicate remnants of the embryonic hyaloid architecture which supplies the 

growing lens.  (g) Corresponding quantification of retinal radius (black), astrocyte (red) 

and endothelial (green) migration during formation of the superficial plexus in neonatal 

mice.  Note that the endothelial network does not emerge from the optic nerve region 

until around the day of birth.  Distances are measured from the centre of the optic nerve; 

data are plotted as mean ± SEM of at least 4 measurements. 

 

fibronectin immunoreactivity is not detected on the retinal surface.  However, the 

patterns of fibronectin and Pax2 immunoreactivity are closely matched at both E18.5 

and P3 (data not shown).  Moreover, endothelial tip-cells are subsequently seen to 

extend fine filopodial processes along the astrocyte-produced fibronectin scaffold 

(Figure 4.6a).  Perfusion is detected up to the periphery of the expanding network at P3, 

indicating that the immature RVP leading edge contains flowing vessels (Figure 4.6b).  

This finding indicates that flow-mediated remodelling may play a significant role in 

capillary pruning of the plexus, even during the earliest stages of development. 

 

4.5. Mathematical Model of Superficial Retinal Vascular 

Plexus Development 

The growth and differentiation of the mammalian neural retina occurs postnatally in a 

highly reproducible and spatiotemporally distinct manner.  Moreover, the discussion 

throughout Sections 4.2 and 4.4 reveals a dynamic and exquisitely-balanced process that 

provides an excellent target for a mathematical modelling study.  As discussed 

previously in Section 1.4.2, modelling of pathological angiogenesis has been 

extensively explored by the mathematical modelling community over the past few 

decades but there have been relatively few attempts to model angiogenesis associated
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(a) 

 

(b) 

 

Figure 4.6: Immunohistochemically-stained confocal images of murine retinal whole 

mounts at postnatal day 3 (P3) reveal that astrocytes act as a template for endothelial 

sprouting and formation of the perfused vascular plexus.  (a) The astrocyte network 

expresses fibronectin (rabbit anti-fibronectin antibody, red), which acts as a template for 

endothelial cell growth (Iso-B4, green).  Endothelial tip-cells at the leading edge of the 

migrating vascular plexus (arrows) extend fine filopodial extensions over the 

fibronectin network.  Iso-B4 positive microglia cells are also observed (arrowheads).  

(b) Co-visualisation of the plexus leading edge (Iso-B4, red) and intra-luminal plasma 

(FITC-dextran, green) indicates that perfused migrating retinal vascular plexus 

(arrowheads) is observed up to the region immediately behind endothelial tip-cells. 

 

with normal development.  A simple 1D continuum model of superficial RVP 

development has recently been reported, focusing on the evolution of astrocyte and EC 

profiles in response to appropriate growth factor concentrations (Aubert et al., 2011).  In 

order to increase the prospect of meaningful predictions regarding RVP development in 

transgenic mice, however, a more complete modelling approach is required to firstly 

reproduce wild-type retinae.  As in the wound healing angiogenesis study of the 

previous chapter, the approach we employ is inspired by the work of Anderson and 

Chaplain (1998b).  The hybrid formulation allows for individual cell tracking, blood 

vessel topology visualisation, and reproduction of the dynamic remodelling phenomena 



Chapter 4: Modelling Development of the Murine Retinal Vasculature 

 

86 

 

associated with in vivo retinal development.  The interactions between growth factors 

and relevant cell types – including VEGF-A production by astrocytes and the 

chemotactic response of astrocytes and ECs to PDGF-A and VEGF-A, respectively – 

are considered, and blood perfusion, with associated remodelling, is included 

throughout plexus development.  The complete mathematical model, informed by a 

range of morphological and molecular in vivo data obtained between E15.5 and P8, is 

now detailed below.  Note that additional details regarding various aspects of the 

modelling approach can be found in Appendix A. 

 

4.5.1. Discrete Cell Migration and Growth Factor Evolution 

The mathematical model begins with the emergence of astrocytes from the optic nerve 

region at E15 and subsequently describes their migration across the inner retinal 

surface.  This migration is driven primarily by a chemotactic gradient of PDGF-A 

concentration (p), produced by the underlying plexus of RGCs (formed at an earlier 

stage of development).  Astrocytes also exhibit some degree of random motility through 

the extension of numerous processes and are thought to respond haptotactically to 

gradients of extracellular RGC-bound protein density (e).  Denoting by a the astrocyte 

density per unit area, the governing dimensionless equation describing astrocyte 

migration can consequently be summarised as: 
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(4.1) 

 

The parameters Da, p and e characterise random motility, chemotactic response to 

VEGF-A and haptotactic response to RGC-bound protein, respectively. Note that the 

chemotaxis term also includes the parameter ξp, which reflects a decrease in 

chemotactic sensitivity at high PDGF-A concentrations (Lapidus and Schiller, 1976).  

Although Equation 4.1 describes the spatial and temporal evolution of astrocyte density, 

discretisation allows individual astrocyte tip cells to be tracked.  This is achieved in an 

identical manner to that described for individual ECs in Equation 3.6. 

During migration, astrocytes at the leading edge of the developing front bind PDGF-

A, which is also free to diffuse and decay within the retinal tissue.  Therefore, the 

dimensionless PDE characterising PDGF-A activity is: 
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where Dp is the normalised PDGF-A diffusion coefficient, ηp is the uptake rate of 

PDGF-A by discrete astrocytes at the leading edge (ai), and ζp is a decay constant.  

Biologically, ηp represents trans-membranic receptor binding of PDGF-A molecules 

such that they are no longer available to other cells (Mudhar et al., 1993; Fruttiger, 

2002; Gerhardt et al., 2003; West et al., 2005; Uemura et al., 2006).  Note that ai is a 

Boolean value (1 or 0) that indicates the presence or absence of an astrocyte tip cell at a 

given position; this is defined in an identical manner to Equation 3.3 for endothelial tip 

cells in the earlier wound healing angiogenesis model. 

Migrating astrocytes branch in response to PDGF-A and assume a stellate phenotype.  

This produces a dense astrocyte mesh that subsequently forms the foundation for 

capillary network expansion.  During the formation of this astrocytic scaffold, hypoxic 

astrocytes secrete the growth factor VEGF-A, which acts as the primary chemoattractant 

for ECs.  VEGF-A is capable of diffusing freely through the retinal tissue, whilst it is 

also bound by EC tip cells as they migrate.  Therefore, the assumed dimensionless PDE 

characterising the evolution of VEGF-A concentration (c) can be written in the 

following form: 
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where αc is a measure of the production rate of VEGF-A by hypoxic astrocytes, Dc is 

the normalised VEGF-A diffusion coefficient, ηc is the uptake rate of VEGF-A by 

discrete endothelial tip-cells (ni; a Boolean value defined as above for astrocytes), and 

ζc is a decay constant.  Similarly to both ai and ni, the variable ai
*
 is defined only at grid 

points of the discrete lattice.  This normalised value approximates the extent of local 

astrocyte hypoxia at each grid point according to the equation: 
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where l and m are positive parameters specifying a particular nodal position (i.e. x = lx 

and y = my), and an denotes the number of astrocytes identified with the node that are 

“covered” by ECs (i.e. on a 2D lattice this corresponds to a single value in the range 0 

to 2). 

As shown in Figure 4.5c, EC sprouts begin to appear at the optic nerve chiasm at P0 

– some 6 days after the emergence of the first astrocytes.  The production of VEGF-A 

by astrocytes therefore results in a pre-existing chemoattractant gradient on the retinal 

surface prior to endothelial migration.  ECs, like their astrocyte companions, exhibit a 

degree of random motility, respond haptotactically to variations in density of matrix-

bound proteins such as fibronectin (f), and migrate up gradients of chemoattractant 

(VEGF-A in this case).  Correspondingly, the dimensionless equation describing the 

evolution of EC density takes a similar form to that describing astrocyte migration: 
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The parameters Dn, c and f govern the random, chemotactic and haptotactic responses, 

respectively, while ξc once more quantifies reduced sensitivity to chemoattractant 

gradients at large concentrations.  Notably, this equation is in an identical form to 

Equation 3.1 and, as such, we again refer back to Equation 3.6 to describe the 

methodology of generating discrete endothelial tip-cell migration. 

 

4.5.2. Matrix Metalloproteinases and Extracellular Proteins 

The remaining equations required to complete the model of retinal angiogenesis 

describe the key interactions between MMPs and extracellular proteins, leading to 

degradation of the host tissue and facilitating astrocyte and EC migration via haptotaxis.  

As in the wound healing model of the previous chapter, we assume that MMPs, now 

produced by both astrocyte and endothelial leading edge tip-cells, reduce the local 

concentration of matrix-bound proteins.  The respective MMPs produced by astrocytes 

and ECs are free to diffuse and interact with their target matrix proteins and also exhibit 

a degree of natural decay.  The matrix proteins themselves are produced locally by 

migrating astrocytes (Zhang et al., 2004; He et al., 2007) and are degraded by the 

appropriate enzyme.  In line with these assumptions, the corresponding equations are: 
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where ma and mn are the concentrations of MMP produced by astrocyte and endothelial 

tip-cells, respectively. The αi refer to the local production rates of each enzyme, Di are 

the corresponding diffusion coefficients, and the ζi are decay constants.  The two 

distinct matrix-bound proteins (e.g. vitronectin, fibronectin) are produced by astrocyte 

tip-cells at rates βe and βf, and degraded by their corresponding enzyme at rates γe and γf.  

Before proceeding it should be clarified here that the normalised Equations 4.1 – 4.9 are 

obtained using a fully consistent time non-dimensionalisation.  Therefore, cell densities, 

bound protein densities, concentrations of MMP and growth factor concentrations all 

evolve on an analogous timescale throughout RVP expansion. 

 

4.5.3. Astrocyte and Endothelial Tip-Cell Branching 

The final aspect of the cellular biology that needs to be addressed in the migration 

model is the process of astrocyte and EC branching.  In Section 3.6.2, for the wound 

healing angiogenesis model, we approximated the outcome of complex VEGF-induced 

cell signalling pathways at the plexus edge by phenomenologically assuming that the 

likelihood of endothelial sprout tip branching is increased with increasing VEGF 

concentration.  We make the same assumption for VEGF-A here, and the specific 

values are detailed in Table 4.1 where we note that a slight adjustment is required 

depending on the domain size.  Further to this relationship, it is believed that migrating 

astrocytes branch in response to PDGF-A and exhibit a stellate phenotype that results in 

the formation of a dense astrocyte scaffold (Fruttiger et al., 1996).  The experimentally 

observed astrocyte network expansion is therefore consistent with the assertion that the 

retinal surface is “flooded” with PDGF-A so in this case we assume instead a constant 
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branching probability pbranch
AC

.  For both astrocytes and ECs we again further assume 

that branching can only occur in tip-cells that have reached a certain level of maturation, 

defined by tbranch
AC

 and tbranch
EC

, respectively. 

 

Normalised VEGF-A Concentration (c0 = c / cref) Branching Probability 

c0 < 0.3 0.04 

0.3 ≤ c0 < 0.5 0.06 

0.5 ≤ c0 < 0.7 0.16 

0.7 ≤ c0 < 0.8 0.36 

c0 > 0.8 0.4 

 

Table 4.1: EC sprout tip branching probabilities as a function of local normalised 

VEGF-A concentration.  Note that the value of the normalising VEGF-A concentration 

cref varies with the domain size (i.e. 3 mm x 3 mm domain: cref = 0.075; 4.4 mm x 4.4 

mm domain: cref = 0.066). 

 

4.5.4. Oxygen Delivery 

Once again, the inclusion of tip-cell branching at the advancing vascular front is a 

crucial component in the formation of capillary anastomoses and, subsequently, the 

simulation of blood flow in the nascent retinal networks.  As in the wound healing 

angiogenesis model, unless otherwise stated, the networks are perfused in a manner that 

incorporates both phase separation at bifurcations and realistic structural adaptation by 

appropriately applying Equations 2.1, 2.2, 2.3, 2.5, 2.6 and 2.15.  In addition, we now 

also introduce the concept of oxygen delivery from the vasculature to the surrounding 

tissue.  As will be seen in due course, this turns out to be a fundamental model inclusion 

with respect to reproduction of the experimentally observed process of capillary pruning 

near arterioles. 

Many previous mathematical models that have considered the transport of oxygen 

from a discrete vasculature to the local environment have been derived in the context of 

tumour-induced angiogenesis (Alarcon et al., 2003; Macklin et al., 2009; Welter et al., 

2009).  The general technique in these approaches is to assume that each individual 

capillary element provides a source of oxygen, the strength of which varies, for 

example, in proportion to the segment haematocrit.  Since the dynamics of oxygen 
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transport equilibrate on a timescale significantly shorter than that of cell proliferation, 

the advantage of such an approach is that a quasi-steady state assumption can be 

invoked when solving the reaction-diffusion equation for oxygen.  Hence at each time 

step of capillary growth, a quasi-steady oxygen concentration profile can be calculated 

that allows continuous oxygen-related feedback to be considered in the EC migration 

model.  The clear disadvantage of this approach, however, is the lack of explicit 

coupling to the underlying capillary flow regime; the inherent assumption being that the 

rate of oxygen transfer across capillary walls is negligible in comparison to the rate of 

oxygen supply (i.e. blood flow) to each segment.  That is to suggest, in fact, that the 

only constraint on delivery of oxygen from the vasculature to surrounding tissues is the 

rate at which oxygen can diffuse (i.e. a diffusion-limited process).  In the 

microvasculature, however, where vessel permeabilities to oxygen are high and many 

flow rates are relatively low, the ability to deliver oxygen depends crucially on the rate 

of oxygen supply and therefore the process is very much flow-limited (Levick, 2000).  

In the retina, in particular, where a hierarchical vascular structure is observed, we would 

expect a large degree of heterogeneity in the capability to deliver oxygen to the tissue as 

we move downstream from arterial to venous sub-regions of the plexus.  In order to 

capture this feature in the model, we must explicitly incorporate the effect of perfusion 

on tissue oxygen delivery.  This is achieved by simultaneously solving the following 

coupled equations (presented here in dimensional form for ease of interpretation): 
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where ST represents the tissue oxygen concentration and SV is the concentration of 

oxygen in a particular vessel.  We assume that the blood-borne erythrocytes are the sole 

source of oxygen, carrying it into the domain from the optic nerve inlets.  At any given 

instant, the oxygen concentration in an individual vessel segment corresponds to the 
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product of the volume fraction of RBCs in the vessel (i.e. haematocrit) and the amount 

of oxygen carried by those cells. 

Equations 4.10 and 4.11 effectively combine three different modes of oxygen 

transport.  Firstly, diffusion in the extracellular retinal tissue as characterised by the 

diffusion coefficient DST in Equation 4.10; secondly, downstream convection in the 

vasculature as described by the first two terms in Equation 4.11, where R, L and Q 

represent the radius, length and volume flow rate, respectively, of the segment in 

question; and, thirdly, transmural transfer between the tissue and the vessels at a rate 

governed by the surface area of the vessel wall and its permeability, K.  Note the 

appearance of FQE in Equation 4.11, defined earlier in Section 2.5.2.  This represents 

the fraction of RBCs at the feeding node that will enter the vessel, and is included to 

ensure that oxygen is distributed in the same proportion as RBCs at bifurcations.  This 

first term in Equation 4.11 sums the contribution from each vessel flowing into the 

feeding node and from this the second term subtracts the concentration lost due to the 

outflow at the downstream end of the vessel. 

These equations are solved in a framework where each 3D tissue element occupies 

the void between potential vessel positions, such that the dimensional length of each 

vertex is equal to the average vessel segment length.  The transmural oxygen transfer 

component in Equation 4.10 is therefore made up from contributions from up to 12 

separate perimeter vessels.  Accordingly, each individual vessel also shares a boundary 

with up to 4 neighbouring tissue blocks such that each shares an equal surface area for 

oxygen transfer – this explains the final summation term in Equation 4.11.  Throughout 

the period of retinal development that we consider (i.e. up to 8 days post-birth), oxygen-

rich regions of the RVP contain a dense mesh of ECs and astrocytes.  It therefore seems 

reasonable to assume that the background consumption of oxygen will experience no 

notable spatial or temporal variations.  Thus, the final term in Equation 4.10 represents 

an assumed removal of oxygen from the tissue at rate ζST, describing not just the decay 

of oxygen, but also its uptake by the underlying host tissue and cellular plexuses. 

 

4.5.5. Capillary Plexus Pruning 

In Sections 4.2 and 4.5.1 we have alluded to the important role of local oxygen tension 

in determining the extent of VEGF-A production by astrocytes.  Another highly 

oxygen-dependent process is the removal of poorly perfused vessels situated in areas of 

low VEGF-A concentration.  In order to capture this important aspect of the 
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developmental progression, oxygen transport between the vasculature and the host 

retinal tissue has been included in the model.  The spatial distribution of oxygen 

throughout the RVP can be calculated at any given time, and these data can be used to 

inform capillary pruning.  Specifically, we impose three conditions that must be 

simultaneously satisfied by a vessel segment in order for pruning to occur at that 

location: 

1. The average oxygen concentration in the tissue surrounding the vessel must be 

above a critical value STcrit, 

2. The age of the vessel must exceed a critical threshold Acrit, 

3. The vessel must be devoid of positive flow-related stimuli (c.f. Equation 2.15). 

The first condition relates to the biological observation that oxygen downregulates 

production of VEGF, itself believed to be an EC survival factor (Dor et al., 2001; West 

et al., 2005; Scott et al., 2010; Weidemann et al., 2010).  The critical age condition 

captures the experimentally observed lack of vascular pruning at the leading edge of the 

progressing endothelial plexus (c.f. Figures 4.5d-f) where capillary-free zones 

predominantly appear behind the leading edge during the first 8 days post-birth.  The 

final condition captures the notion that each of the flow-related angioadaptation stimuli 

in Equation 2.15 plays a role in providing survival signals to the vessels.  In essence, 

this is invoked when the radius of a vessel segment has dropped to its minimum 

permissible value Rmin, implying that the positive growth stimuli have failed to 

overcome the natural shrinking tendency (parameterised by ks). 

 

4.5.6. Initial and Boundary Conditions 

The largest domain considered for computational simulation corresponds to a 4.4 mm x 

4.4 mm retinal surface, which equates to the maximum murine retinal diameter 

observed experimentally up to P20.  The underlying capillary network template consists 

of 220 x 220 nodes, and amounts to approximately 50,000 individual capillary elements 

that are distorted to ameliorate topological flow bias (McDougall et al., 2002).  The 

ophthalmic vein, from which the vascular network emerges, is located at the optic nerve 

head, which itself sits within the optic nerve chiasm of approximately 520 µm in 

diameter.  This is represented in the model as an equivalent tissue-free void in the centre 

of the numerical domain.  Zero-flux boundary conditions are imposed on the inner and 

outer domain boundaries such that the astrocytes, ECs, growth factors, MMPs and 

bound proteins remain confined to the retinal surface.  The astrocyte and endothelial 
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plexuses are initiated by the placement of 40 astrocyte and 10 endothelial sprouts that 

are evenly distributed around the perimeter of the optic nerve chiasm.  The endothelial 

sprouts are phenotypically labelled a priori as being either arterial or venous, and these 

are distributed in an alternating pattern (Figure 4.7a); in vivo, it is thought that the fate 

of individual sprouts may already be determined at this early stage of development 

(Erber et al., 2006; Davies et al., 2010).  All simulations begin at E15, with the initiation 

of the migratory response of astrocytes – the onset of EC migration is delayed by 6 days 

until birth in accordance with experimental observations. 

We initially assume that RGC-produced PDGF-A has reached a steady-state 

concentration profile across the inner retinal surface prior to astrocyte emergence from 

the optic nerve.  Zero concentration of PDGF-A is initialised in the region of the optic 

nerve head and, elsewhere, varies radially according to: 

 

 ( )          
  

 , (4.12) 

 

where r is the normalised distance from the centre of the domain (pmax = 1.0, λ = 0.45, ω 

= 0.45).  Bound protein densities are initialised to unity, whilst VEGF-A and MMP 

concentrations are initialised to zero.  

The final set of boundary conditions relate to the various aspects of the perfusion 

model.  Prior to endothelial migration, there are no anastomoses on the retinal surface 

with only disconnected alternating arterial and venous sprout tips present; the former 

connected to a high pressure arterial circulation and the latter connected to a lower 

pressure venous system.  In order to keep the two circulations separate until loop 

formation on the RVP, two additional planes are added below the main simulation 

domain (Figure 4.7b).  The first of these contains only arterial parent vessels that 

connect each of the 5 arterial sprouts directly to the main inlet port of the system 

(located at the far left of the domain).  The second additional plane contains only venous 

parent vessels that connect the venous sprouts directly to the main outlet of the system 

(located at the far right of the network).  This orderly configuration allows inlet and 

outlet pressures (Pin and Pout, respectively) to be independently controlled and 

guarantees that flow on the retinal surface can only begin once endothelial anastomosis 

formation has occurred.  The arterial and venous parent vessels are assigned radii RPV 

that not only remain fixed throughout simulation, but are also larger than the maximum 
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possible adapted vessel radius Rmax on the developing plexus.  This helps to ensure a 

uniform delivery of haematocrit to the developing capillary plexus by minimising the 

impact of any heterogeneity in the path lengths travelled, and bifurcations negotiated, by 

blood flowing through the parent vessels.  Any asymmetry in the delivery of blood to 

the RVP was found to have a strongly detrimental effect on the evolution of 

physiologically realistic capillary structures.  On the commencement of flow, blood 

with a fixed haematocrit HD
in

 and oxygen load SV
in

 is fed into the high pressure arterial 

inlet.  Oxygen concentrations in both the tissue and vessels are initialised to zero and, 

finally, zero-flux tissue oxygen boundary conditions are imposed around the domain. 

 

 (a) (b)  

 

Figure 4.7: Initial vascular configuration for all simulations showing (a) 10 endothelial 

cell sprouts evenly spaced around the optic nerve, and (b) the underlying set-up of 

parent vessels.  Segments connected to the high pressure arterial inlets (b, far left of 

domain) are identified in red, while segments connected to the venous outlet (b, far right 

of domain) are blue. 

 

4.6. Numerical Simulation Results 

A spectrum of simulation results is presented in this section, ranging from the 

straightforward simulation of astrocyte and EC migration, to more involved growth and 

perfusion-dominated remodelling of the developing RVP.  Unless otherwise stated, all 

of the simulations take place on a domain of size 4.4 mm x 4.4 mm using the model 

equations described above, and apply the base case parameters listed in Table 4.2. 
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Parameter Definition Value 

Dn EC random motility coefficient 0.00018 

χc EC chemotaxis coefficient 0.4 

ξc EC chemotactic receptor saturation factor 0.6 

ρf EC haptotaxis coefficient 0.0125 

Da Astrocyte random motility coefficient 0.00018 

χp Astrocyte chemotaxis coefficient 0.18 

ξp Astrocyte chemotactic receptor saturation factor 0.6 

ρe Astrocyte haptotaxis coefficient 0.0125 

Dc VEGF diffusion coefficent 0.005 

ηc VEGF uptake rate by EC tips 0.1 

ζc VEGF decay rate 5.0 

αc VEGF production rate by hypoxic ACs 3.5 

Dp PDGF diffusion coefficient 0.0025 

ηp PDGF uptake rate by ACs 0.1 

ζp PDGF decay rate 3.0 

Dma MDE diffusion coefficient 0.001 

αma MDE production rate by AC tips 0.00001 

ζma MDE decay rate 3.0 

Dmn MDE diffusion coefficient 0.001 

αmn MDE production rate by AC tips 0.00001 

ζmn MDE decay rate 3.0 

βf ECM production rate by AC tips 0.5 

γf ECM degradation rate 0.1 

βe ECM production rate by AC tips 0.5 

γe ECM degradation rate 0.1 

μplasma Bulk plasma viscosity 1.2 × 10
-3

 Pa ∙ s 

HD
in 

Inlet haematocrit value 0.45 

SV
in

 Inlet vessel oxygen concentration 0.45 

 

Table 4.2: Parameter values used in the base case simulations of wild-type RVP 

development. 
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Parameter Definition Value 

DST Oxygen diffusion coefficient 2.5 × 10
-10

 m
2
 ∙ s

-1 

ζST Oxygen consumption rate 0.02 s
-1

 

K Vessel permeability to oxygen 2.5 × 10
-4

 m ∙ s
-1 

STcrit Critical tissue oxygen concentration for pruning 0.38 

Acrit Critical vessel age for pruning 1 day 

Pin Inlet arterial blood pressure 
10660 Pa (4.4 mm) 

9860 Pa (3 mm) 

Pout Outlet venous blood pressure 2060 Pa 

Rmin Minimum permissible vessel radius 3.0 × 10
-6

 m 

Rmax Maximum permissible vessel radius 1.2 × 10
-5

 m 

RPV Radius of all arterial and venous parent vessels 1.4 × 10
-6

 m 

ks Natural shrinking rate of vessels 1.7 

kp Relative intensity rate of the pressure stimulus 0.8 

km Relative intensity rate of the convected stimulus 0.5 

kc Relative intensity rate of the conducted stimulus 2.6 

J0 Saturation constant for the conducted stimulus 250 

ηref Reference wall shear stress 0.5 dyn ∙ cm
-2

 

Qref Reference flow rate 1.0 × 10
-18

 m
3
 ∙ s

-1 

(QHD)ref Reference RBC flow rate 6.75 × 10
-14

 m
3
 ∙ s

-1 

Lc Length constant for conducted stimulus decay 0.01 m 

tbranch
EC 

Threshold age for EC tip branching 1.85 hours 

tbranch
AC 

Threshold age for AC tip branching 1.85 hours 

pbranch
AC 

Astrocyte tip branching probability 0.28 

 

Table 4.2 (cont’d): Parameter values used in the base case simulations of wild-type 

RVP development.  (Note that Pin is the only parameter modified dimensionally when 

the domain size is rescaled – an increase in the pressure drop is required to maintain 

consistent inlet and outlet pressures on the retinal surface.) 

 

4.6.1. Retinal Vascular Plexus Formation in the Absence of Blood Flow 

As a first, simple benchmarking study we focus our attention on cellular migration 

across the RGC plexus, commencing with the appearance of initial astrocyte sprouts 
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around the optic nerve at E15.  We ignore any concept of blood flow in the model at this 

stage; the main concern here is reproduction of the evolving cellular fronts observed 

experimentally.  As such, Figure 4.8 shows the progression of the astrocyte and EC 

networks as they respond to their various guidance cues.  The corresponding 

concentration profiles of VEGF-A, produced by hypoxic astrocytes and bound by 

endothelial tip-cells, are shown in Figure 4.9.  Astrocyte activity is observed in isolation 

on the retinal surface prior to birth, with a dense, highly connected scaffold emerging 

from the optic nerve chiasm (Figure 4.8a) and releasing VEGF-A into the surrounding 

milieu (Figure 4.9a).  At P0, endothelial sprouts begin to migrate chemotactically in 

response to VEGF-A gradients laid down by the preceding astrocytes, producing 

nascent capillary structures that are highly disorganised and excessively branched 

(Figure 4.8b).  The astrocyte front reaches the outer periphery of the RGC plexus at 

around P5, by which time the capillary plexus has extended approximately halfway 

across the domain (Figure 4.8c).  Over this period, the VEGF-A concentration has 

evolved to produce a radial, wave-like profile travelling outwards into the domain from 

the optic nerve.  Throughout plexus development, the peak of the concentration profile 

straddles the migrating front of the two cell types – lagging behind the leading edge of 

astrocytes, but guiding the EC progression behind (Figures 4.9b and c).  A comparison 

between experimental and model data of the temporal development of the two cellular 

fronts is shown in Figure 4.10 – the in silico results are found to be in excellent 

quantitative agreement with the laboratory observations. 

The down-regulation of VEGF-A production by astrocytes in proximity to functional 

vasculature is found to be crucial in the emergence of the travelling wave profile of 

growth factor, as can be seen by simulating the system in the absence of EC migration.  

In Figure 4.11 we present panels of the evolving VEGF-A gradients in this scenario, 

and it is clear that no travelling-wave peak is observed (note that each panel has its own 

legend to emphasise the regions of peak concentration at each time point).  A peak 

concentration emerges initially at a small distance from the optic nerve where the 

astrocytic network first becomes very dense (Figure 4.11a), and this peak simply widens 

as time goes on (Figure 4.11b).  Ultimately, VEGF production is balanced by decay, 

and the domain becomes flooded with the growth factor (Figure 4.11c). 
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(a) (b) (c) 

 

Figure 4.8: Growth of the retinal astrocyte network (white) and endothelial cell plexus 

(green) on a 4.4 mm x 4.4 mm domain.  Migration of astrocytes begins at E15, while the 

endothelial cells follow at P0 – no flow is considered in this simulation.  The snapshots 

shown here correspond to (a) E19.3, (b) P2.5 and (c) P4.7. 

 

 (a) (b) (c)  

 

Figure 4.9: Evolution of the VEGF-A concentration profile corresponding to the 

snapshots of astrocyte and EC migration in Figure 4.8. 

 

4.6.2. Retinal Vascular Plexus Formation in the Absence of Shunt 

Prevention 

Whilst the cell migration results presented in the previous section are useful in 

establishing a quantitative link between experiment and simulation, they are only 

concerned with the temporal evolution of astrocyte and endothelial fronts as they 

migrate across the retinal surface.  The lack of perfusion-related remodelling means that 

the only heterogeneity in evidence corresponds to the emergence of small acellular 

islands within the developing plexuses – a manifestation of the stochastic nature of the 

migration and branching processes.  However, in vivo retinal vasculatures are highly
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Figure 4.10: Plot comparing the rate of frontal advance of astrocytes and endothelial 

cells obtained experimentally with those obtained by simulation.  Astrocyte migration is 

represented by triangles with error bars (in vivo) or a solid red line (in silico), while 

endothelial cell migration is represented by inverted triangles with error bars (in vivo) or 

a solid green line (in silico).  Note that the experimental data corresponds to that 

presented in Figure 4.5. 

 

(a)  (b)  (c)  

 

Figure 4.11: Evolution of the VEGF-A concentration profile in the absence of 

endothelial cell migration (note that the scale bar has been re-normalised for each 

image).  The snapshots shown here correspond to (a) P0.4, (b) P4.0 and (c) P7.5. 

 

structured, consisting of alternating arterial and venous vascular trees characterised by a 

hierarchy of capillary radii (c.f. Figure 4.5).  In order to address this model deficiency, it 

is necessary to introduce perfusion, oxygen delivery and plexus remodelling as 

described in Sections 4.5.4 and 4.5.5.  The simulation protocol adopted for all 

subsequent simulations incorporating blood flow is now briefly described. 

As detailed in Section 4.5.6, each simulation begins at E15 with the initiation of 

astrocyte migration from the optic nerve chiasm, followed by the onset of EC migration 

at E21/P0.  Ideally, flow and remodelling of the nascent capillary bed should be 
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simulated whenever a new endothelial anastomosis occurs.  The computational effort 

required to undertake such an assignment is necessarily prohibitive, however, so a 

compromise must be reached: a small sensitivity study determined that perfusion of the 

capillary bed to steady-state up to every 30 hours was adequate without compromising 

the final plexus architecture.  The first period of flow is elected to begin around P2.5, 

when the EC network is fully connected and of an appreciable size.  The volumetric 

flow-rate, blood rheological properties and capillary radius of each individual segment 

are then updated according to the appropriate equations described in Chapter 2, and re-

iterated in Section 4.5.4.  Once the structure of the vascular bed has converged to a 

steady state, Equations 4.10 and 4.11 for oxygen delivery are solved throughout the 

domain – resultant data are then used to prune the capillary network according to the 

algorithm detailed in Section 4.5.6.  This newly pruned network subsequently provides 

the starting point for the next iteration of the angiogenesis model. 

As a first attempt towards capturing the flow-induced development of hierarchical 

vascular structures in the retina, we neglect to consider the conducted and convected 

metabolic angioadaptation stimuli first discussed in Section 2.5.3.  Instead we revert to 

the well-documented flow stimuli that have been applied previously in the context of 

tumour-induced angiogenesis (c.f. Section 2.4).  Specifically, this requires the 

application of Equation 2.7 rather than Equation 2.15 for determining vessel dilation or 

constriction – all modifications to the base case parameters are given in Table 4.3.  It 

should be noted, furthermore, that this simulation was performed on a reduced domain 

size of 3 mm x 3 mm (i.e. 150 x 150 nodes).  Naturally, this restricts the time range of 

the simulation because the EC front now reaches the domain boundary at around P5; 

ultimately, however, this has no impact on the conclusions that we draw from the 

outcome of the simulation. 

The resulting retinal vasculature is shown in Figure 4.12 – a self-reinforcing capillary 

shunt develops (Figure 4.12a), regardless of the extent of the outwardly-growing plexus.  

Consequently, due to phase separation, a non-zero haematocrit is restricted to a region 

proximal to the optic nerve (Figure 4.12b), and oxygen delivery to the retinal plexus is 

greatly restricted (Figure 4.12c).  Such a dramatic dilation of both arterial and venous 

vessels proximal to the optic nerve head is not characteristic of wild-type retinae.  In 

this tightly controlled developmental setting of neonatal RVP formation, this is a 

profound demonstration of the conclusion that was intimated by Figure 2.7 in Section
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Parameter Definition Value 

ks Relative intensity rate of vessel shrinkage 0.35 

kp Relative intensity rate of the pressure stimulus 0.1 

kmet Relative intensity rate of the metabolic stimulus 0.07 

ηref Reference wall shear stress 0.103 dyn ∙ cm
-2 

Qmet Reference flow rate 1.9096 × 10
-11

 m
3
 ∙ s

-1 

 

Table 4.3: Parameter values used in the simulation of Figure 4.12, where the capillary 

radii evolve according to Equation 2.7 rather than Equation 2.15.  All other relevant 

parameter values remain unchanged (c.f. Table 4.2). 

 

(a)  (b)  (c)  

 

Figure 4.12: Snapshots at P4.7 from a vasculature which has undergone three cycles of 

growth, flow, oxygen delivery and pruning on a 3 mm x 3 mm domain.  The structural 

adaptation algorithm applied here is described by Equation 2.7 – the particular 

parameters used can be found in Table 4.3.  Specifically, the images show distributions 

of (a) capillary radii, (b) haematocrit and (c) tissue oxygen concentration. 

 

2.6.3: mechanisms of shunt-prevention are critical in the generation of physiologically 

realistic capillary architectures.  Therefore, the final phase of model development 

involves the inclusion of the latest flow-based angioadaptation stimuli as derived by 

Pries and co-workers (Pries et al., 2001; i.e. Equation 2.15). 

 

4.6.3. Retinal Vascular Plexus Formation Incorporating Shunt 

Prevention 

The base case simulation using the complete model is presented in Figure 4.13 where 

we again employ the full 4.4 mm x 4.4 mm domain.  Each image highlights the 

behaviour of a particular model component throughout the development of the RVP: 
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from the commencement of blood flow at approximately P2.5 until the network 

approaches the domain boundaries at P8.  Specifically, the panels show the post-flow, 

steady-state distribution of capillary architecture, network haematocrit, vessel oxygen 

concentration, tissue oxygen concentration, and areas of capillary pruning (i.e. a graphic 

highlighting the specific position of each pruned vessel segment, and the specific time 

point at which it was removed). 

The progression of the underlying astrocyte network, and the associated VEGF-A 

gradients left in its wake (c.f. Figures 4.8 and 4.9), provides a crucial mechanistic link 

between the initial stages of retinal development and the later formation of a 

hierarchical capillary vessel network.  It is apparent that the astrocyte front moves 

rapidly away from the optic nerve head and simultaneous VEGF-A production creates a 

travelling wavefront, with the peak concentration lying behind the migrating tip-cells.  

EC migration commences at P0, with network expansion driven largely by the 

chemotactic response to gradients of VEGF-A which trail an outward-moving 

maximum.  The first period of flow takes place at P2.7, and angioadaptation, oxygen 

delivery and vascular pruning have already taken place throughout the nascent capillary 

network (Figures 4.13a, j, m).  A striking feature of the haematocrit distribution at this 

early stage of development is its large degree of spatial heterogeneity within the 

network (Figure 4.13d), fashioned largely by the process of phase separation at vascular 

bifurcations.  Almost every capillary element carries some level of haematocrit, 

suggesting that the extreme phenomenon of pure plasma skimming is largely absent 

within the dense mesh of vessels.  Moreover, we note the presence of a number of 

vessel segments characterised by haematocrits exceeding 0.75, occurring mainly in two 

small pockets near the leading edge of the plexus.  Recall that the input haematocrit 

value HD
in

 = 0.45, indicating the occurrence of a concentrating effect in RBCs as blood 

flows to more distal areas of the retina.  This result correlates well with the work of 

Ganesan et al. (2010), who observed equatorial vessel haematocrit values approaching 

0.8 when simulating flow through an image-based network model of the fully developed 

adult murine retinal vasculature.  In Figures 4.13g and 4.13j we show the distributions 

of vessel oxygen and tissue oxygen tension, respectively, where both are seen to map 

closely onto the distribution of haematocrit.  As a consequence of blood flow and 

structural adaptation, a co-ordinated vasculature begins to emerge from the originally-

homogeneous capillary bed (Figure 4.13a); with a number of the arteries tentatively
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

 (g) (h) (i)  

 

Figure 4.13: Snapshots of a developing retinal vascular plexus on a 4.4 mm x 4.4 mm 

domain showing (a-c) vessel radii, (d-f) haematocrit, (g-i) vessel oxygen concentration, 

(j-l) tissue oxygen concentration and (m-o) pruned capillary segments.  Each column 

corresponds to a particular time point, namely (from left to right) P2.7, P5.2 and P7.7. 

Images from intermediate days have been omitted. 

 

forming dilated anastomoses with each of their neighbouring veins.  Even at such an 

early stage of development, this realistic looking network clearly constitutes a 

significant improvement on that presented in Figure 4.12a, further emphasising the 

importance of introducing shunt-preventing stimuli into the angioadaptation algorithm.  

It is also possible to observe the onset of oxygen-induced vascular pruning at this stage,
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 (j) (k) (l)  

 

 (m) (n) (o)  

 

Figure 4.13 (cont’d): Snapshots of a developing retinal vascular plexus on a 4.4 mm x 

4.4 mm domain showing (a-c) vessel radii, (d-f) haematocrit, (g-i) vessel oxygen 

concentration, (j-l) tissue oxygen concentration and (m-o) pruned capillary segments.  

Each column corresponds to a particular time point, namely (from left to right) P2.7, 

P5.2 and P7.7. Images from intermediate days have been omitted. 

 

particularly around the uppermost artery, where a small capillary-free zone develops.  

For clarity, each pruned capillary segment is shown in Figure 4.13m.  At this early time, 

only a small amount of pruning is seen, accentuating the presence of the small dilated 

arterio-venous loops. 

After each 30 hours of growth, the simulated vasculature undergoes a cycle of flow, 

oxygen transport and capillary pruning.  For brevity, we exclude simulation images 

from intermediate days and proceed immediately to consider the RVP at P5.2 – after the 

third cycle of perfusion and remodelling.  The dynamic nature of capillary plexus 

development can be immediately inferred from a comparison between Figures 4.13a and 

4.13b.  As the vascular bed grows, changes in the network architecture are detected by 

the sensitive shunt-preventing stimuli and small dilated loops, prevalent near the optic 

nerve head at earlier times, are remodelled to produce larger arterio-venous loops 

capable of efficiently transporting blood towards peripheral regions of the domain.  An 
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interesting natural consequence of the angioadaptation algorithm is that the radii of 

arterial inlet segments evolve to be consistently smaller than their venous outlet 

counterparts (Figure 4.13b).  Again, this corresponds to results obtained by Ganesan et 

al. (2010) who used a combination of measurements from confocal scanning 

microscopic images and the optimisation principle of Murray’s law to quantify the 

diameter of each vessel segment of the murine superficial RVP.  The haematocrit 

distribution throughout the plexus is again seen to be highly heterogeneous at P5.2 

(Figure 4.13e).  Although a large percentage of capillaries carry a proportion of RBCs 

that is lower than the input haematocrit value, localised regions towards the retinal 

equator again exceed 0.75.  In contrast to P2.7, however, the haematocrit distribution no 

longer shares a strong correlation with the vessel oxygen profile (Figure 4.13h) and 

many of the high haematocrit regions of the capillary bed now display diminished 

vessel oxygen concentrations.  This phenomenon is attributable to the increased plexus 

size, since narrow low-flow capillaries have a limited capacity to deliver oxygen to 

equatorial regions and, moreover, much of the oxygen transported transmurally from 

vessel to tissue occurs proximal to the arterial sources.  This is also clear by inspection 

of the tissue oxygen profile (Figure 4.13k), as the majority of oxygen is seen to be 

supplied by the dilated anastomoses and oxygen tensions dip significantly as the venous 

sinks are approached.  Vascular remodelling up to P5.2 is presented in Figure 4.13n: 

capillary-free zones are now conspicuous around each of the five inlet arteries and the 

most prominent region of vessel loss exists around the uppermost artery.  Here, pruning 

is seen to extend along the length of the arterial section, before abating as the more 

hypoxic venous section is traversed. 

The final period of blood perfusion covered by the base case simulation takes place 

at P7.7, and the corresponding results demonstrate the significant role played by flow 

and vascular remodelling in determining the final form of the retinal vasculature (Figure 

4.13c).  The removal of many small capillaries on either side of the main arterial vessels 

increases their prominence as major flow pathways, ensuring that they are retained as 

the network continues to expand towards the edge of the retinal surface.  The emergence 

of the well-defined network architecture has a large impact on the distribution of retinal 

haematocrit (Figure 4.13f).  Due to repeated occurrences of phase separation, the 

regions of greatest haematocrit are seen to be situated in the vicinity of the dilated 

arterio-venous loops, whilst lower haematocrit values characterise regions lying 

between the main vessels.  The haematocrit increases downstream of each bifurcation 
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on the arterial side, peaking at the retinal equator before gradually decreasing again 

towards the outlet veins.  Referring back to Section 2.2, we note that this phenomenon 

is a well-known occurrence in the microvasculature and has been termed the “pathway 

effect” (Pries et al., 1989a; Pries et al., 1992).  Notably, we again see a similarity to the 

work of Ganesan et al. (2010) who observed the same behaviour, albeit in a sparser, 

three-layer fully developed retinal vascular network.  Under the assumption that RBCs 

are the primary source of oxygen in the system, this phenomenon also has interesting 

implications for the delivery of oxygen from the vasculature to the tissue.  Oxygen is 

fed into the network at a constant concentration and leaves the vessels transmurally as it 

flows downstream.  Therefore, in the absence of phase separation we would see a 

decreasing gradient of vessel oxygen concentration as we move downstream through 

bifurcating arterial trees – starving the outer regions of the retina of oxygen.  However, 

phase separation actually leads to an increasing gradient of haematocrit away from the 

optic nerve, with the result that peak tissue and vessel oxygen tensions can occur far 

from the network inlets (Figures 4.13i and 4.13l).  Such a result was not observed in the 

work of Liu et al. (2009) who examined the distribution of oxygen partial pressure in a 

human arterial retinal network.  This is due, however, to the absence of phase separation 

in their model, which they attribute to the lack of research in this field for human 

vasculatures.  It seems likely, due to the larger diameter of the vessels involved, that the 

effects of phase separation would be less prominent than found here in the murine case.  

We note in this case that a further consequence of the oxygen distribution is the degree 

of vascular pruning of small capillaries, which is re-inforced around a number of the 

dilated arterioles and now extends more than halfway towards the retinal periphery 

(Figure 4.13o). 

This plethora of results not only correlate well with experimentally observed 

outcomes, but also provide a number of valuable insights into the developmental 

process that would be difficult to obtain in the laboratory.  For example, the 

mathematical model provides important predictions of: the dynamics of RVP growth, 

with particular regard to the spatial and temporal evolution of VEGF-A concentration; 

the importance of hypothesised upstream convected and downstream conducted 

angioadaptation stimuli; the role played by phase separation in vascular pruning and the 

subsequent impact on overall plexus architecture; the temporal variation in haematocrit, 

vessel oxygen concentration and tissue oxygen concentration distributions throughout 

RVP growth.  The latter of these is deemed to be particularly significant: obtaining 
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physiological measures from neonatal mice is challenging because they do not open 

their eyes until around P16.  Further to these predictions, in Figure 4.14, we also 

observe a qualitative similarity between in vivo and in silico network architectures at 

specific time points.  It should be highlighted that no effort was made to explicitly 

reproduce the experimental whole-mount data quantitatively: the in silico capillary 

architectures emerged naturally from the adopted modelling approach.  Specifically, 

Figure 4.14 shows images in the vicinity of the uppermost arteriole of the wild-type 

base case simulation at P2.7, P5.2 and P7.7, against typical arteriolar regions observed 

experimentally at P3, P5 and P8.  We note, in particular, the similarities in the 

distribution and extent of oxygen-induced capillary pruning. 

 

 (a) (b) (c) (d) (e) (f)  

 

Figure 4.14: Detailed comparisons between in vivo and in silico capillary migration and 

remodelling in the developing retina.  Specifically, the snapshots show (a) in silico P2.7, 

(b) in vivo P3, (c) in silico P5.2, (d) in vivo P5, (e) in silico P7.7 and (f) in vivo P8.  The 

colours of the in silico vessel segments correspond to the colour bar in Figure 4.13a-c. 

 

One final prediction we can obtain from the model, which has not yet been 

discussed, is the underlying distribution of capillary pressures in the network.  Indeed, 

calculation of the pressure field for such a complex and evolving topology is found to 

be one of the most intricate aspects of the modelling process.  Recall that two additional 
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planes were added below the main simulation domain (Figure 4.7b).  The first of these 

contains only arterial parent vessels and a looped manifold that connects each arterial 

sprout directly to the main inlet ports of the system.  The second additional plane 

contains only venous parent vessels and a further looped manifold connecting the 

venous sprouts directly to the main outlet of the system.  The pressure field 

corresponding to the superficial retinal vasculature at P7.7 in the base case simulation is 

shown in Figure 4.15a: high pressure arterial regions, seen to fan out from the optic 

nerve head towards the retinal equator, are interspersed with radiating low pressure 

areas.  The figure gives a useful insight into the global dispersal of perfusing nutrients 

during retinal development and could also inform the application of future therapeutic 

interventions.  A more quantitative analysis of the pressure distribution is presented in 

Figure 4.15b.  The periodic nature of the arterio-venous pressures measured azimuthally 

at distances of 0.5 mm, 1.0 mm, and 1.5 mm from the centre of the domain is self-

evident, with the amplitude of the pressure variations highest close to the optic nerve 

and progressively damped towards the edge of the domain. 

 

(a)  (b) 

 

Figure 4.15: Quantification of the pressure distribution underlying the vasculature of 

Figure 4.13c.  Specifically, the images show (a) contour plot of the nodal pressures on 

the superficial retinal vascular plexus, and (b) azimuthal pressure variations at the 

distances 0.5 mm (blue), 1.0 mm (red) and 1.5 mm (green) from the optic nerve centre. 

 

4.7. Aberrant Plexus Formation 

Having successfully anchored the mathematical model to the available experimental 

data from wild-type mice, a number of sensitivity analyses were next carried out to 

investigate the impact of a number of potential pathological or “mutant” cases which 
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may impede normal development.  In the interests of computational efficiency, most 

sensitivities were performed on a reduced domain size of 3 mm x 3 mm – as mentioned 

earlier in Section 4.6.2, this restricts the time range of the simulation to a maximum of 

around 5 days post-birth. Naturally, in these cases, a new base case simulation is 

required with which to make appropriate comparisons.  For the relevant sensitivities 

shown, the vasculature presented represents the end point of 3 cycles of growth, flow, 

angioadaptation, oxygen delivery and capillary pruning.  This is, however, sufficient 

time to appreciate the impact of the various parameter perturbations.  We return to the 

full 4.4 mm x 4.4 mm domain for the final sensitivity, since the impact of this model 

alteration is not wholly appreciable until the later developmental stages. 

 

4.7.1. Astrocyte Chemotaxis 

The first sensitivity carried out using the model examines the impact of the underlying 

astrocyte plexus upon the subsequent migration of ECs during angiogenesis.  The 

chemotactic response of astrocytes to PDGF-A, secreted by the RGCs at an earlier stage 

of development, was varied through the parameter χp in Equation 4.1.  We investigated 

both a tenfold decrease and increase in the chemotactic parameter, and the resulting 

astrocyte networks at E17.7 (i.e. prior to the onset of angiogenesis) are shown in Figure 

4.16.  As the astrocyte chemotactic response is varied, the plexus architecture changes 

markedly: suppressed chemotaxis produces a slow-growing, dense astrocyte scaffold, 

whilst enhanced chemotaxis results in a rapidly-growing network that is a good deal 

sparser across half of the domain.  The temporal evolution of the respective astrocyte 

fronts from E15 through to P3, compared with that of the base case simulation, is 

plotted graphically in Figure 4.17. 

Perhaps the most interesting aspect of the sensitivity, however, is the effect that 

perturbed astrocyte chemotaxis has on the evolution of retinal VEGF-A concentrations 

and subsequent progression of angiogenesis.  Capillary networks and contours of 

VEGF-A concentration at P4.7 are shown in Figure 4.18.  VEGF-A is produced by 

hypoxic astrocytes, and so the onset of angiogenesis begins to down-regulate production 

in areas of the domain that are perfused with oxygen-rich blood.  The model predicts 

that RVP development would be most damaged if the underlying astrocyte scaffold was 

produced too rapidly, namely under conditions of increased chemotactic sensitivity to 

PDGF-A.  In this case, VEGF-A is primarily produced close to the retinal periphery
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(a) (b) (c) 

 

Figure 4.16: Snapshots at E17.7 displaying the astrocyte network on a 3 mm x 3 mm 

domain for a range of astrocyte chemotaxis coefficient (χp) values.  The particular 

values considered were (a) 0.018, (b) 0.18 (base case) and (c) 1.8. 

 

 

Figure 4.17: Plot comparing the rate of astrocyte frontal advance for each simulation in 

Figure 4.16.  The series correspond to the astrocyte chemotaxis coefficient (χp) values 

0.018 (blue diamonds), 0.18 (red squares) and 1.8 (green triangles).  The plot is 

terminated around P3, when the base case astrocyte network (χp = 0.18) reaches the 

domain boundary. 

 

where the density of hypoxic astrocytes is substantial (Figure 4.18c).  The relative 

paucity of astrocytes proximal to the optic nerve means that VEGF-A gradients are 

woefully inadequate in providing chemotactic support for the emerging ECs and, 

consequently, the resulting vascular plexus is substantially compromised (Figure 4.18f). 



Chapter 4: Modelling Development of the Murine Retinal Vasculature 

 

112 

 

Although no direct in vivo studies of astrocyte chemotaxis appear to have been 

reported to date, pathologically the sensitivity can be related to observations in 

transgenic mouse models where PDGF-A is overexpressed by RGCs or astrocytes 

(Fruttiger et al., 1996; West et al., 2005).  In these experimental systems, astrocyte 

numbers are found to increase with increased concentration of PDGF-A, yet migration 

is suppressed.  This suggests that a domain rich in PDGF-A could act as a promoter of 

astrocyte mitosis, whilst simultaneously saturating any chemotactic response. 

 

 (a) (b) (c)  

 

 (d) (e) (f)  

 

Figure 4.18: Snapshots at P4.7 displaying the (a-c) VEGF-A concentration profiles and 

(d-f) vessel radii distributions corresponding to the astrocyte scaffolds previewed in 

Figure 4.16.  As above these were generated on a 3 mm x 3 mm domain using the 

astrocyte chemotaxis coefficient (χp) values (a, d) 0.018, (b, e) 0.18 (base case) and (c, 

f) 1.8. 

 

4.7.2. VEGF-A Isoform 

The second sensitivity we consider examines the impact of varying the specific isoform 

of VEGF-A produced by the astrocytes.  Variations in the diffusive properties of 

different VEGF-A isoforms are well documented, and a number of murine transgenic 

mouse models specifically expressing, or over-expressing, a single isoform have been 
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reported (Ash et al., 2000; Stalmans et al., 2002; Mitchell et al., 2006; Rutland et al., 

2007).  It has been shown that high molecular weight compounds are closely associated 

with reduced intra-matrix diffusion and increased binding tendency. 

In order to investigate the repercussions for capillary migration on account of this 

aspect of VEGF-A isoform mis-expression, the in silico model is simulated using a 

VEGF-A diffusion coefficient (Dc) that is an order of magnitude greater than that 

characterising the wild-type case (a numerical analogue of isoform VEGF-A120, for 

example).  The resulting network at P4.7 is shown in Figure 4.19f, where we observe 

retarded capillary migration in comparison with that seen in the base case (Figure 

4.19e).  Increased diffusion produces both a shallower overall VEGF-A profile and 

reduced concentrations at the leading edge (Figure 4.19c vs. 4.19b).  This result 

compares favourably with data from studies describing the RVP structure in transgenic 

mice (Gerhardt et al., 2003; Mitchell et al., 2006), where removal of the VEGF-A 

gradient, by increased VEGF-A expression, reduces the extent of endothelial migration.  

In the in silico setting here, both chemotaxis and capillary branching are necessarily 

impaired, resulting in a vascular network of irregular shape with numerous unperfused 

islands of retinal tissue.  Although we omit the results here, the irregular mutant 

network is also found to produce an aberrant distribution of pressure, where the extent 

of the high and low pressure regions varies erratically.  This causes some of the inlet 

arterioles to become compromised and constricted with inevitable implications for 

oxygen delivery to the retinal tissue. 

Decreasing the VEGF-A diffusion coefficient in the model, again by an order of 

magnitude, allows us to predict the gross morphology of the RVP in mutant mice that 

over-express VEGF-A isoforms having greater binding affinity to the ECM (VEGF-

A188, for example).  The resulting network, again at P4.7, is shown in Figure 4.19d, 

where reduced diffusion results in more localised pooling of VEGF-A and shallower 

concentration gradients (Figure 4.19a vs. 4.19b).  Consequently, we again see a 

weakened angiogenic response, which in this case is partly attributable to the reduced 

chemotactic sensitivity at high VEGF-A concentrations (c.f. Equation 4.5). 

Overall, the results from this sensitivity support the notion that the base case VEGF-

A diffusion coefficient is optimum in producing a rate of capillary plexus expansion that 

is both perfectly consistent with wild-type retinal angiogenesis, and highly favourable 

for efficient delivery of oxygen and nutrients.  It has been clearly demonstrated that the
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

Figure 4.19: Snapshots at P4.7 displaying the (a-c) VEGF-A concentration profiles and 

(d-f) vessel radii distributions on a 3 mm x 3 mm domain for a range of VEGF-A 

diffusion coefficient (Dc) values.  The particular values considered were (a, d) 0.0005, 

(b, e) 0.005 (base case) and (c, f) 0.05. 

 

dominant VEGF-A isoform has a profound effect upon retinal development through its 

interaction with migrating ECs during angiogenesis.  The model predicts that isoforms 

such as VEGF-A120 could be expected to result in the formation of numerous poorly 

branched large diameter vessels, similar to the in vivo observations of Mitchell et al. 

(2006), whilst higher molecular weight isoforms would lead to the formation of large 

dilated vascular sacs, which have previously been reported in VEGF188 mice by Rutland 

et al. (2007). 

 

4.7.3. Inlet Haematocrit and Oxygen Consumption 

The final series of sensitivity simulations performed on a 3 mm x 3 mm domain 

examines the importance of oxygen supply to the retina during superficial plexus 

development.  Two parameters have been varied in the model: tissue oxygen 

consumption rate ζST, and input arterial haematocrit HD
in

, with the concomitant relative 

variation in input arterial vessel oxygen concentration SV
in

.  An increased haematocrit is 
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often symptomatic of hyperoxic conditions, whilst a reduced rate of oxygen 

consumption is indicative of reduced metabolism.  Simulation results at P4.7 for 

increased input haematocrit (HD
in

 = 0.6) and decreased oxygen uptake (ζST = 0.002s
-1

) 

are shown in Figure 4.20 – base case panels are also presented for visual comparison.  

An increased haematocrit leads to the persistence of high RBC concentrations 

throughout dilated arterio-venous loops; the impact of phase separation at capillary 

junctions is less pronounced (Figure 4.20e vs. 4.20a).  Consequently, large tissue 

oxygen tensions are maintained in the vicinity of all major vessels and extensive 

capillary remodelling occurs (Figures 4.20f and 4.20g).  This ultimately causes 

substantial capillary-free zones to appear within the plexus (Figure 4.20h) and a state of 

hyperoxia is found to persist throughout retinal development; a situation that is 

replicated in the clinically significant condition of retinopathy of prematurity (Stout and 

Stout, 2003).  This phenomenon is further amplified under conditions of reduced 

oxygen consumption (Figures 4.20i-l).  Here, the entire retinal domain becomes flooded 

with oxygen and capillary-free zones are pervasive.  These observations are similar to 

those witnessed in laboratory mouse models of oxygen-induced retinopathy.  In this 

experimental model, neonatal mice are placed in a high oxygen environment, which 

leads to an increase in arteriolar oxygen concentration.  The region of the retina within 

the oxygen diffusion limit of larger arterioles then becomes hyperoxic, and the 

subsequent cascade of events includes VEGF-A down-regulation, inhibition of 

endothelial plexus formation and vaso-obliteration of immature capillaries (West et al., 

2005; Weidemann et al., 2010). 

 

4.7.4. Capillary Pruning 

The final model perturbation that we consider further illustrates the benefits of 

constructing a mathematical model that can be used to conduct simple numerical 

experiments, and potentially help to focus future in vivo experimentation.  In this case 

we simulate the development of the RVP in a “numerical mutant” that has no capacity 

for capillary pruning – such an evaluation provides useful insight into the importance of 

pruning in the natural progression of wild-type plexus development in vivo.  We return 

to the full 4.4 mm x 4.4 mm domain for this study, since stronger conclusions can be 

drawn from comparisons made in the latter stages of superficial RVP formation.  

Moreover, for ease of comparison, we perform this simulation on a vascular network
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 (a)  (b)  

 

 (c)  (d)  

 

 (e)  (f)  

 

Figure 4.20: Snapshots at P4.7 of three different scenarios simulated on a 3 mm x 3 mm 

domain.  Images (a-d) show the base case (parameter values HD
in

 = 0.45 and ζST = 0.02), 

while (e-h) demonstrate the outcome of increasing inlet haematocrit (HD
in

 = 0.6) and (i-

l) display the result of reducing oxygen consumption (ζST = 0.002).  In each case the 

images display (a, e, i) haematocrit, (b, f, j) tissue oxygen concentration, (c, g, k) pruned 

capillary segments and (d, h, l) vessel radii. 

 

that evolves in an identical fashion to the wild-type case (c.f. Figure 4.13) – that is, at 

each flow period the vasculatures are exactly the same except for the absence of any
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 (g)  (h)  

 

 (i)  (j)  

 

 (k)  (l)  

 

Figure 4.20 (cont’d): Snapshots at P4.7 of three different scenarios simulated on a 3 mm 

x 3 mm domain.  Images (a-d) show the base case (parameter values HD
in

 = 0.45 and ζST 

= 0.02), while (e-h) demonstrate the outcome of increasing inlet haematocrit (HD
in

 = 

0.6) and (i-l) display the result of reducing oxygen consumption (ζST = 0.002).  In each 

case the images display (a, e, i) haematocrit, (b, f, j) tissue oxygen concentration, (c, g, 

k) pruned capillary segments and (d, h, l) vessel radii. 

 

previously pruned segments in the wild-type network. 

The two end-point vasculatures at P7.7, corresponding to the presence or absence of 

capillary pruning, are presented in Figures 4.21a and 4.21d, respectively.  Comparing 
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these images it is apparent that, despite the extensive pruning in the wild-type case (c.f. 

Figure 4.13o), the spatial distribution of dilated vessels between the two final structures 

is broadly similar.  In the absence of pruning, the angioadaptation algorithm still 

produces dilated arteriolar-venular loops, although there are slightly fewer dilated 

secondary arterioles (Figure 4.21d).  The key aspect of the sensitivity is highlighted 

when examining the underlying blood rheology and flow properties of the capillary 

structures.  Comparing the distributions of haematocrit (Figure 4.21b vs. 4.21e), it is 

clear that, in the absence of pruning, RBCs are distributed far more heterogeneously in 

the retinal plane, with a large fraction remaining within dilated vessels throughout their 

journey.  This is attributable to the increased potential for plasma skimming at capillary 

junctions, as RBCs in the main feeder vessels bypass numerous slow-flowing side 

branches such that these vessels receive predominantly plasma.  This is particularly 

evident in the arteriole at the “4 o’clock” position in Figure 4.21e, where pure plasma 

skimming (i.e. side branches receiving only plasma) is encountered – something that is 

not observable in the wild-type simulation.  As a consequence of increased skimming, 

the distribution of vessel oxygen is also highly concentrated around the dilated arteriolar 

segments (Figure 4.21f). 

Combining this series of results, we can conclude that vascular pruning reduces the 

extent of phase separation in the developing RVP, thereby preventing the build-up of 

large arteriolar haematocrits and high vessel oxygen concentrations.  Rather than 

distributing flow from the main arterioles amongst many neighbouring capillaries, 

pruning of some segments induces an increased share of blood flow to those that are 

poorly supplied.  These segments are then more likely to dilate and carry RBCs and 

oxygen to more distal regions of the superficial plexus.  This hypothesis is confirmed by 

the contour plot of Figure 4.22, where we present the distribution of the differences in 

tissue oxygen concentration between the two simulations at P7.7.  Areas of light colour 

indicate superior oxygenation in the wild-type simulation, whilst dark colours indicate 

areas that were better oxygenated in the mutant.  The plot implies that the pruned 

network delivers oxygen to the tissue in a more efficient manner, with lower oxygen 

tensions around the main arterioles and increased tensions in venous regions.  It should 

be remarked that, although the end-point vasculatures did not evolve to be completely 

identical, the evidence presented would seem to discount this as the sole reason for the 

observed differences in tissue oxygen concentration.  In summary, the model predicts
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(a)  (b)  (c)  

 

(d)  (e)  (f)  

 

Figure 4.21: Snapshots at P7.7 on a 4.4 mm x 4.4mm domain displaying the simulated 

(a, d) vessel radii, (b, e) haematocrit and (c, f) vessel oxygen distributions in the (a-c) 

presence and (d-f) absence of capillary pruning.  Images (a-c) correspond to the wild-

type images of Figure 4.13c, f, i; the vascular architecture in (d-f) evolves identically, 

with the exception of any occurrences of pruning in the wild-type simulation. 

 

 

Figure 4.22: Contour plot displaying the differences in tissue oxygen concentration 

between the two simulations presented in Figure 4.21.  Light-coloured regions indicate 

a greater concentration in the wild-type simulation (Figure 4.21a-c), while dark-

coloured regions indicate a greater concentration in the “mutant” simulation (Figure 

4.21d-f). 
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that, under the influence of phase separation of plasma and RBCs at vascular 

bifurcations, capillary pruning in the developing murine retinal vasculature is a major 

factor in promoting the efficient delivery of oxygen to distal regions of the plexus. 

 

4.8. Discussion 

The spatial and temporal development of nascent capillary networks plays a major role 

in determining tissue patterning and function.  It is therefore important to understand 

how various cellular and molecular cues interact with migrating cells throughout 

angiogenic cascades.  The growth and differentiation of the mammalian neural retina is 

dependent upon the formation of a multi-layered, interlinked vascular supply.  The very 

nature of this RVP formation demarcates the system as ideal for in vivo angiogenesis 

investigation, and also represents an exquisitely-balanced objective for an in silico 

modelling study. 

A previously reported 1D study of retinal angiogenesis has successfully reproduced 

rates of astrocyte and EC migration across the retinal plane during plexus development 

(Aubert et al., 2011).  The inherent weakness of such a model, however, is the lack of 

scope for generating spatial information across the entire retinal surface.  Therefore, in 

this study, a more realistic 2D hybrid PDE-discrete model has been derived in order to 

track the migration of individual astrocyte and endothelial tip-cells towards the outer 

retinal boundary.  The in silico RVP structures generated by the model have been 

compared with corresponding experimental data at various stages of development and 

excellent agreement has been demonstrated. 

It is important to recognise that the developing RVP is not an inert structure; the 

vascular bed adapts and remodels in response to a wide variety of metabolic and 

chemical stimuli.  Hence, the complex capillary architectures observed in vivo in the 

retina can never be reproduced using simple migration equations alone.  Indeed, it has 

been demonstrated that the retina poses a considerable test of angiogenesis modelling, 

and perfusion-related phenomena – based on the latest developments in vascular 

research – must be included to fully capture the intricacies of the in vivo observations.  

Specifically, the impact of incorporating phase separation of plasma and RBCs at 

capillary junctions (Pries et al., 1989a), and hypothesised conducted and convected 

angioadaptation stimuli (Pries et al., 2001; Pries et al., 2010), has been shown to be 

substantial (see also Secomb et al. (2007) for a similar approach to this study that deals 
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with the interaction between angiogenesis, remodelling and capillary pruning - although 

not in the specific context of the murine retinal vasculature).  The inclusion of these 

metabolic mechanisms in many earlier treatments of angiogenesis modelling has been 

somewhat lacking: in a tortuous in silico vasculature, the required concentration 

tracking algorithms are non-trivial to implement and, as such, become computationally 

prohibitive in extensive networks. 

Throughout the modelling work, our approach has been firmly coupled to the 

experimental biology and we have attempted to honour the underlying cellular and 

vascular processes as closely as possible.  The main focus of the investigation has been 

to understand how the various cellular, molecular, and metabolic cues regulate RVP 

growth and form in both wild-type and “mutant” situations.  In the wild-type case, a 

broad spectrum of simulation results has been presented; ranging from straight-forward 

application of the astrocyte and endothelial migration equations, to more involved 

perfusion-dominated remodelling of the developing vascular plexus.  The main 

outcomes of the retinal study have been the following: 

 Initial cell migration results predicted that the evolution of VEGF-A 

concentration constitutes an outwardly moving radial profile, with a peak that 

lags behind the astrocyte leading edge and guides the EC progression behind.  

Concurrent data concerning the temporal development of the two cellular 

fronts were subsequently found to be in excellent quantitative agreement with 

laboratory observations.  In the absence of capillary network formation, an 

ensuing failure to down-regulate astrocyte production of VEGF-A resulted in 

a flooding of the domain, with no wave-like growth factor profile observed. 

 Small dilated loops prevalent near the optic nerve head at early times were 

remodelled as the vascular bed grew, replaced by more extensive arteriolar-

venular loops that served to transport blood more efficiently towards 

equatorial regions of the domain. 

 A large degree of spatial heterogeneity in haematocrit within the capillary 

plexus was noted.  At all time-points considered, distal areas of the retina 

contained haematocrits exceeding 0.75 – a considerable increase on the input 

value, and caused predominantly by phase separation at capillary junctions.   

 Phase separation leads to an increasing gradient of haematocrit away from 

the optic nerve, with the beneficial result that peak tissue and vessel oxygen 

tensions can manifest themselves far away from the arteriolar inlets. 
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The wild-type in silico RVP structures at various time points were compared with 

data from in vivo experiments and there was a high degree of both qualitative and 

quantitative agreement.  Clearly, however, only a limited number of metrics have been 

applied in making such in vivo and in silico comparisons.  Comprehensive model 

validation would require significantly more quantitative experimental measures to be 

produced, such as temporal data relating to the distributions of vessel density and 

capillary radii.  We note that there are some minor differences between the simulated 

and observed architectures: viz, the mathematical model predicts large calibre arteries 

all the way up to the growing front, whilst in vivo vessels tend to taper off towards the 

periphery.  This is principally due to a slight underestimation of decay in the upstream 

convected angioadaptation stimulus coupled with a likely underestimation of the 

maturity level required for nascent vessels to remodel.  The model also predicts vascular 

plexuses that are slightly more dense than the observed retinal vasculatures (cf. Figure 

4.14), and this is mainly attributable to the fact that they are grown discretely on an 

underlying distorted lattice – a slightly increased nodal spacing may have helped to 

optimise the comparison. 

Having benchmarked the model against wild-type data, a range of “mutant” 

sensitivities was then reported with the aim of giving some insight into both the 

implications of, and mechanisms associated with, ocular conditions characterised by 

aberrant angiogenesis.  The key outcomes of this aspect of the study can be summarised 

as follows: 

 Suppression of astrocyte chemotaxis was found to produce a slow-growing, 

dense astrocyte scaffold and, conversely, enhanced chemotaxis resulted in a 

rapidly-growing, sparse network.  The model predicted that development of 

the retinal vasculature would be most damaged if the underlying astrocyte 

scaffold was produced too rapidly.  Experimentally, overexpression of 

PDGF-A in transgenic mice has been shown to reduce the extent of astrocyte 

migration in neonatal mice (Fruttiger et al., 1996; West et al., 2005), 

suggesting astrocyte migration is dependent on a gradient of PDGF-A; the 

modelling results presented here are highly consistent with this observation. 

 Different isoforms of VEGF-A have different molecular weights and a 

varying ability to bind heparin residues in the ECM and diffuse freely (Park 

et al., 1993; Shima et al., 1996; Ferrara et al., 2002; Keyt et al., 2006).  

Reduced VEGF-A diffusion resulted in extensive localised pooling of VEGF-
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A close to the optic nerve, leading to a weaker global angiogenic response.  

Interestingly, however, an increase in VEGF-A diffusion also led to a lower 

rate of capillary growth.  Our results clearly demonstrate that the dominant 

VEGF-A isoform has a profound effect upon retinal development through its 

interaction with migrating ECs during angiogenesis. 

 An increased input haematocrit was found to cause persistence of high RBC 

concentrations throughout dilated arterio-venous loops.  Consequently, these 

loops maintained high local oxygen tensions and capillary pruning was seen 

to be extensive.  This state of hyperoxia, which persisted throughout 

development, was further amplified under conditions of reduced oxygen 

consumption.  These results parallel the vascular pathology observed in both 

human retinopathy of prematurity (Stout and Stout, 2003) and murine models 

of the same disease (Stone et al., 1996; Claxton and Fruttiger, 2003; Dorrell 

et al., 2010; Scott et al., 2010). 

 In a numerical “mutant” with diminished potential for capillary pruning, 

RBCs were distributed in a highly heterogeneous manner with large 

concentrations around the main dilated loops and low concentrations in all 

other regions.  Comparing the resultant tissue oxygen distribution with that 

from a wild-type scenario led to the hypothesis that the removal of vessel 

segments around primary and secondary arterioles actually increases the 

efficiency of oxygen delivery to distal regions of the developing superficial 

plexus.  This result predicts that the extensive vascular pruning occurring 

throughout RVP development optimises the network for nutrient delivery. 

A major advantage in studying the retinal vasculature is that it provides a capillary 

system that can be observed with relative clarity both in vivo and post mortem.  

Although a complete understanding of the developing retinal circulation is still lacking, 

it certainly provides an excellent target for theoretical studies.  The hierarchical 

structure of the RVP poses a rigorous test of any angiogenesis model – such patterning 

is generally absent in the context of tumour-induced angiogenesis, for example – and it 

would appear that complex perfusion-related stimuli hold the key to understanding how 

these structures develop in vivo.  It should be re-iterated that the retina is not simply a 

2D structure and, in addition to the superficial RVP considered here, two deeper 

plexuses form through subsequent vertical sprouting as the retina expands.  The 

application of the model to investigate the development of these additional layers has 
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not been considered here.  Nonetheless, it is hoped that the model could serve as a 

useful starting point for future research in this area, particularly with a view towards a 

better understanding of pathological ocular conditions. 
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Chapter 5 

 

A New Generalised Model of Cell Migration I: Cell-

Cell and Cell-Matrix Interactions 

 

 

 

5.1. Introduction 

In Chapters 3 and 4, the models of cell migration that have been presented were 

developed alongside a strongly coupled experimental programme.  The architectures of 

the capillary (and astrocytic) networks generated by the wound healing and retinal cell 

migration models (c.f. Equations 3.1 – 3.5 and 4.1 – 4.9) have been shown to produce 

excellent agreement with various in vivo metrics (c.f. Figures 3.6, 3.8 and 4.10).  

Arguably, however, it is the inclusion of blood perfusion through the capillary networks 

that provides the most interesting and informative results.  The concept of cell migration 

in these approaches is inherently simplistic, represented by a series of discrete events 

whereby tip-cells move from one grid point to another on an underlying lattice.  

Although the direction of this movement is intrinsically linked to various 

experimentally observed migratory cues from the local environment, other important 

features, such as contact inhibition and cell proliferation, are approximated rather 

broadly.  By moving towards a lattice-free model, and considering cells with a stronger 

concept of physical size and shape, it becomes possible to study the spatial dynamics of 

cell migration events in much greater detail.  The work presented in this chapter 

describes just such a lattice-free model that could provide the first step towards a more 

general angiogenesis model. 



Chapter 5: A New Generalised Model of Cell Migration I 

 

126 

 

The model that we present in this chapter takes its inspiration from the agent-based 

approach of McDougall et al. (2006a), who performed 2D simulations of fibroblast 

migration and tissue regeneration during in vivo dermal wound repair.  We propose a 

series of model extensions informed by a collection of theoretical and laboratory studies 

from the literature.  The intention is to design a framework that is relatively general, 

such that the model has the potential to be applied in a variety of in vitro and in vivo 

settings for a range of different crawling cell types. 

After briefly reviewing the modelling study upon which this work is based, we 

introduce the full set of equations governing discrete-point cell migration in the spatial 

domain.  A few generalisations of this methodology are proposed, before the model is 

more extensively modified to incorporate cells that are physically-sized and capable of 

interacting with others in their locality.  Initially our cells exhibit a loosely spherical 

morphology, but this constraint will be relaxed later in Chapter 6.  For both the discrete-

point and spherical cell formulations we shall also present a series of pertinent 

simulation results in order to demonstrate the range of behaviours that can be generated 

by modifying key parameters.  The significance of these results will be discussed in the 

final section, before appropriate conclusions are drawn. 

 

5.2. Modelling Foundations 

As mentioned above, the overall model framework derives from the discrete-point cell 

migration model of McDougall et al. (2006a), which had previously been developed 

throughout a series of publications (Olsen et al., 1999; Dallon et al., 1999; Dallon et al., 

2000; Dallon et al., 2001).  This work considered the wound-induced recruitment of 

discrete-point fibroblast cells from healthy tissue (consisting of discrete collagen fibres) 

into a wounded region (consisting of discrete fibrin fibres), where the instantaneous 

migration direction was determined by three competing mechanisms: chemotaxis, 

persistence (i.e. the tendency to maintain the current migration direction) and contact 

guidance (i.e. alignment along the local fibre orientation).  The migrating cells were also 

assumed to produce collagen and degrade fibrin in order that the fibrin clot would 

eventually be replaced by healthy collagenous tissue.  Importantly, however, a further 

crucial feedback was included whereby the migrating cells re-oriented the fibrous 

collagen matrix in their locality.  Consequently, this study provided numerous
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(a) (b) (c) 

 

(d) (e) (f) 

 

Figure 5.1: Snapshots taken from McDougall et al. (2006a) showing a typical 

simulation of wound-induced tissue regeneration after (a-c) 25 hours and (d-f) 100 

hours.  Specifically, the images show spatial distributions of (a, d) collagen fibre 

orientation and density, (b, e) fibroblast centroid positions and (c, f) fibrin density.  

Initially, the wounded region is filled with fibrin and devoid of both fibroblasts and 

collagen.  Fibroblasts are subsequently recruited from the intact perimeter of randomly-

oriented collagen towards the wound site in response to a chemoattractant gradient.  The 

migrating cells lay down new collagen and degrade fibrin within the wound; however, 

the collagen fibres are simultaneously re-oriented towards the direction of cell 

movement, resulting in conspicuous collagen alignment (i.e. scar formation) in the 

vicinity of the wounded region. 

 

predictions regarding the mechanisms of scar formation during the healing process, by 

investigating the emergence of conspicuous collagen fibre alignment in the vicinity of 
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the wounded region.  A series of images depicting the progression of a typical model 

simulation is presented in Figure 5.1. 

As stated earlier, we wish to develop a generalised, adaptable cell migration 

framework that is applicable in a wide range of scenarios.  The above discussion (and 

simulation images), however, indicate that the model of McDougall et al. (2006b) is 

limited to the behaviour of a particular cell type (fibroblasts) within a very specific 

environment (dermal wound healing).  If we wish to consider other scenarios 

characterised by cell movement in the absence of chemoattractants or an underlying 

fibrous substrate, however, the existing model would simply predict continuous 

migration in a straight line (i.e. persistence only).  This would appear to be rather 

unrealistic; as such, the inclusion of a new stochastic directional cue is just one of the 

generalisations that we choose make in the improved model discussed in the next 

section. 

 

5.3. Discrete-Point Cell Model 

As noted above, the original model of McDougall et al. (2006a) considers the migration 

of discrete-point cells on a lattice-free 2D domain.  Although discrete-point migration 

models are inappropriate for studying systems in which cell-cell interactions are 

prominent, they provide an excellent methodology with which to examine the 

movement trajectories of cells existing in (relative) isolation.  The model assumes that 

the movement of each cell is characterised by a direction u
i
(t) in the plane and a speed 

s
i
(t), both of which vary in response to a range of local environmental factors.  Note that 

throughout this chapter, the superscript i will be used to denote any variable that is 

defined for an individual cell.  The motion of each cell is therefore governed by the 

equation: 

 

   ( )

  
  ̇ ( )    ( )  

  ( )

‖  ( )‖
, (5.1) 

 

where f
 i
 denotes the spatial position of the cell.  Biologically, the calculation of u

i
 at a 

particular time is assumed to represent the direction in which a dominant pseudopod is 

established by attachment to the underlying substrate (c.f. Section 1.2.1).  Therefore, the 

time between calculations of this vector should reflect the average frequency of 

pseudopod establishments for the particular cell type being modelled.  This is the basis 
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of our first proposed generalisation of the original model: rather than allowing each cell 

to calculate a new migration direction at every time step, we instead assume that u
i
 is 

calculated every ηu time units, where ηu approximates the time between pseudopod 

extensions (N.B. in order that u
i
 is not generally calculated in all cells at once, each cell 

is initially assigned a random point in its “pseudopod cycle”).  Note that this imposes an 

upper bound (but no lower bound) on the time step size Δt when solving Equation 5.1 

numerically.  In the context of the model, the precise form of the vector u
i
 is determined 

by weighting the respective contributions of a range of migratory cues.  We now 

proceed to explain the modelling rationale of each of these cues in detail. 

 

5.3.1. Persistent Random Walk 

In Section 5.2 we highlighted a deficiency in the model of McDougall et al. (2006a): in 

the absence of migratory cues such as a chemotactic gradient or contact guidance (e.g. 

in vitro), persistence becomes the only migratory cue and the model predicts that cells 

will migrate continuously in a straight line.  We wish to modify the model in order that 

it is capable of predicting realistic migratory behaviour of cells in the absence of 

external environmental stimuli. 

The characteristic motion of migrating cells in the absence of external cues has long 

been described as a so-called persistent random walk (Patlak, 1953), and a number of 

detailed mathematical models have been derived with which to analyse such behaviour 

(Othmer et al., 1988).  In keeping with our agent-based approach, we propose a 

relatively simple method for incorporating this stochastic movement into our model – 

the inspiration for which was taken from recent research into the behaviour displayed by 

isolated Dictyostelium discoideum and Polysphondylium amoebae cells devoid of 

external signals (Li et al., 2008; Bosgraaf and Van Haastert, 2009).  The approaches 

adopted in these studies are fundamentally different from one another: the former 

analyses cell trajectories, while the latter analyses pseudopod extension patterns.  The 

overall conclusions regarding the general migratory behaviour, however, are much the 

same.  The cells are found to perform a series of long, relatively straight zig-zagging 

“runs” interspersed by random “turns” – it is believed that this motion enhances the 

opportunity of finding a target or external signal.  Furthermore, due to the highly 

conserved migratory machinery of eukaryotic cells, this type of behaviour is most likely 

characteristic of an array of different cell types (Li et al., 2008). 
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In order to reproduce such behaviour in the model, we require two separate 

components to describe the cell motion: persistence, which we retain from the original 

model, and a newly-formulated stochastic stimulus.  Persistence, the tendency of cells to 

maintain their previous migration direction, is defined by the equation: 

 

  
 ( )   ̇ (    ), (5.2) 

 

which stipulates that at all times the persistence vector va
i
 is parallel to the previous 

direction of pseudopod attachment.  In order to incorporate the stochastic element, we 

further define a random migration direction vr
i
 given by: 

 

  
 ( )  .   .  

 ( )/     .  
 ( )//, (5.3) 

 

where θr
i
(t) ∈ U(0, 2π).  In a manner that is consistent with the original modelling 

approach, a persistent random walk is constructed by weighting the contributions of 

these two vectors in a temporally-defined manner, viz: 
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, (5.4) 

 

where ρ
i
a,r(t) ∈ [0,1] determines the relative strength of the respective migratory cues.  

In order to understand the time-dependence of this process, we must first define a 

further parameter, which we define as the cell persistence time, ηr
*
.  We choose the 

value of ηr
*
 to quantify the mean waiting time between random turns, and allow each 

cell to generate a series of independent delays between successive turns ηr
i
(t) from an 

exponential probability distribution (i.e. ηr
i
 ~ Exp(ηr

*
)).  The cells contain an internal 

clock that decrements the delay at each time step until the random turn occurs – a new 

delay is then calculated.  Hence, in Equation 5.4, the variable ρ
i
a,r(t) is selected at each 

time step from two fixed values: 

 

    
 ( )  8

        
 ( )    

        
 ( )    

 (5.5) 

 



Chapter 5: A New Generalised Model of Cell Migration I 

 

131 

 

where, in general, γa < γr.  In this way, the long-term cell motion can be constructed 

from a sequence of directed zig-zag movements, characterised by γa, and occasional 

random turns, characterised by γr.  It should be noted that although very short delays can 

be selected from the exponential distribution, the shortest possible time between two 

random turns is limited by the pseudopod establishment time, ηu. 

If required by the scenario of interest, the persistent random walk paths generated by 

the model can be supplemented by responses to further migratory stimuli.  When a 

random turn occurs in the above formulation, this effectively represents the erasing of 

the cell “memory” to some degree (i.e. some/all cell directionality is lost).  In the 

presence of other external signals (e.g. chemical gradient, fibrous substrate), however, 

we would not generally expect such significant loss of directionality.  Therefore, a key 

assumption we require is that the component of random and persistent migration must 

be calculated prior to that of any other external stimuli.  In essence, this stipulates that 

within a generalised environment, the random migratory cue will generate some 

background “noise” to the motion. 

 

5.3.2. Contact Guidance 

The term “contact guidance” refers to the phenomenon whereby the directionality of 

cell movement is influenced by the orientation of the underlying substrate, or 

surrounding matrix (Guido and Tranquillo, 1993).  In the model of McDougall et al. 

(2006a), fibroblasts infiltrating the dermal wound were assumed to be guided by a 

fibrous matrix composed of both collagen and fibrin.  Throughout the discussion that 

follows, we shall continue to refer to the matrix components as collagen and fibrin, but 

acknowledge that, in general, these could be replaced by other pertinent proteins (e.g. 

fibronectin) if required.  Furthermore, it should be noted that any number of matrix 

components could be incorporated to inform cell movement in the model, but we 

continue to consider just two competing proteins as this provides an optimal means of 

explaining the methodology. 

Each fibrous component is represented by a vector field that indicates the 

predominant matrix orientation at each spatial location.  The collagen matrix orientation 

is denoted by c(x,t) and the fibrin matrix by b(x,t), where x represents the Cartesian co-

ordinates of a point in the plane.  Further to this, each protein is also assigned a density, 

denoted by c
*
(x,t) and b

*
(x,t), respectively.  Cells are assumed to align their migration 
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direction to the local fibre orientation such that the respective collagen and fibrin 

directional cues on cell i at position f 
i
(t) are given by: 

 

  
 ( )   (  ( )  ), (5.6) 

 

and: 

 

  
 ( )   (  ( )  ). (5.7) 

 

As for the random and persistent migratory cues outlined above, these two vectors can 

be combined to produce an overall matrix-associated directional stimulus, which we 

denote by v
i
c,b(t).  This vector is calculated as follows: 
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where the weighting, which depends crucially on the respective local collagen and fibrin 

densities, takes the form (Figure 5.2): 
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such that: 
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 . (5.10) 

 

Here, the exponent αc,b describes the shape of this relationship between the protein 

densities, while Γ is used to quantify their respective importance in modifying the 

direction of cell migration. 

It should be noted here that the form of this weighting has been modified from the 

original model of McDougall et al. (2006a), although the overall rationale is maintained.  

Previously, the lengths of the fibrous matrix orientation vectors at a
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(a) 

 

(b) 

 

(c) 

 

Figure 5.2: Series of examples of the functional form ρc,b(c
*
,b

*
) defined in Equation 5.9, 

which describes the relative importance of collagen density c
*
 and fibrin density b

*
 in 

determining the overall matrix-associated directional cue for cell migration.  The 

specific parameter values used were (a) αc,b = 1, Г = 1, (b) αc,b = 1, Г = 3, and (c) αc,b = 

3, Г = 1.  Note that we have arbitrarily assumed both c
*
 and b

*
 have a maximum value 

of 1. 
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particular point in space (i.e. ‖c(x,t)‖ or ‖b(x,t)‖) were assumed to define the respective 

fibrous matrix densities at that point.  In Equation 5.8, ρ
i
c,b was assumed fixed and unit 

vectors were not calculated, such that the resultant weighting was dependent upon the 

relative fibrous densities of the two matrix components.  Clearly, our new formulation 

maintains this assumption, but the introduction of the exponent αc,b allows for a slightly 

more general relationship in determining the directional migratory response of a cell in 

the presence of both matrix components. 

Having formulated equations to describe persistent random walks and contact 

guidance in the presence of distinct matrix proteins, we can now combine these two 

sub-models to simulate cell migration in response to a combination of these directional 

cues.  Therefore, we define the vector: 
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In this case, we note that the weighting ρ
i
(a,r),(c,b) between the two directions is again a 

function of the local collagen and fibrin densities.  This assumption is intended to 

ensure that the extent of randomness in the cell movement is suppressed with increasing 

fibrous matrix density.  Specifically, this weighting takes a general Hill function form 

with exponent α(a,r),(c,b): 
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where: 

 

    (    )    (    ),          
      

   ,         (     )     , (5.13) 

 

where c
*

max and b
*

max are defined as the maximum allowable respective collagen and 

fibrin densities, and (c
*
+b

*
)crit is the combined protein density at which the directional 

cues will have equal weighting.  Some typical examples of the function ρ
i
(a,r),(c,b) are 

presented in Figure 5.3. 
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(a) 

 

(b) 

 

Figure 5.3: Typical examples of the functional form ρ(a,r),(c,b)(c
*
,b

*
) defined in Equations 

5.12 and 5.13, which describes the importance of the collagen density c
*
 and fibrin 

density b
*
 in determining the overall migration direction of a cell experiencing matrix-

associated contact guidance.  In both cases we have the parameter values c
*

max = b
*

max = 

1 and α(a,r),(c,b) = 6; however, in (a) (c
*
 + b

*
)crit = 1, and in (b) (c

*
 + b

*
)crit = 0.7.  Note 

that ρ(a,r),(c,b) remains fixed for fixed values of c
*
 + b

*
. 

 

5.3.3. Chemotaxis 

In theory, any number of distinct migratory cues could be combined to inform the in 

silico cell migration direction, but the final one we shall consider at this stage is 

chemotaxis.  Although the model could be generalised to deal with cell migration 

induced by temporally evolving chemoattractant gradients, for the purposes of this 

thesis we shall only consider situations involving time-independent chemoattractant 

profiles.  We define a fixed generic growth factor concentration, K(x), throughout the 
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simulation domain and assume that each cell will respond by migrating in the direction 

of the maximum local chemical gradient, such the final directional cue vK
i
 is given by: 

 

  
 ( )    (  ( )). (5.14) 

 

Finally, we must consider how to approach combining chemotaxis with the other 

stimuli discussed above.  Maintaining the now familiar notation, we define the overall 

vector incorporating all directional cues: 
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In accordance with McDougall et al. (2006a), the weighting parameter takes a general 

Hill function formulation, which assumes a variation with the magnitude of the 

chemical gradient ‖ K‖, viz: 
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(5.16) 

 

where αK is the Hill exponent and ‖ K‖max is the maximum magnitude of the chemical 

gradient across the domain.  As an extension to the original model, however, we have 

also included an additional term that accounts for the impact of the matrix composition 

by modulating the maximal chemotactic weighting.  In the absence of such a term, the 

Hill function alone would mean that chemotaxis is always the dominant directional 

stimulus in the presence of moderate chemical gradients, regardless of the fibrous 

matrix density.  Therefore, νρ ∈ [0, 1] defines the maximal chemotactic weighting (i.e. 

ρ
i
((a,r),(c,b)),K)  at maximal matrix density, and βρ defines the manner in which this 

chemotactic weighting is modulated as the matrix density varies.  Furthermore, with 

convention, the parameter ‖ K‖crit still represents the magnitude of chemical gradient at 

which the half-maximal chemotactic weighting occurs; however, we note that the 
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precise value of this half-maximal weighting is now assumed to vary with the 

magnitude of the local matrix density. 

We must remain aware, however, that Equation 5.15, and all of those presented so 

far, determines only the directionality of cell movement.  The local matrix density, 

amongst other factors, can also strongly affect the overall migratory behaviour by 

modifying the instantaneous cell speed.  This is the aspect of the model that we shall 

now proceed to consider in greater detail. 

 

5.3.4. Cell Speed 

The beauty of the approach outlined thus far is that the cell migration model is 

adaptable to a number of scenarios: the dynamics of each directional cue can be 

considered in isolation, or in combination with others, by simply selecting the 

appropriate v
i
 vector (e.g. Equation 5.4, 5.8, 5.14 or 5.15) and equating it to the vector u

i
 

in Equation 5.1.  In order to solve Equation 5.1 fully, however, we require to consider 

how the local environment of a cell impacts upon its instantaneous speed, s
i
(t). 

We begin by assuming that in the absence of any external signals each cell will 

maintain a fixed speed s0.  This base-line value may subsequently be modulated by a 

series of factors attributable to each additional signal subsequently experienced, as 

described by the equation: 

 

  ( )       
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 .  (    )/    
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where ψc
i
, ψb

i
 and ψK

i
 are functions that describe the respective effects of local collagen 

density, fibrin density and chemical gradient on the speed of each cell.  These functions 

could be assumed to take a variety of forms; cell speeds could, for example, be 

increased by particular fibrous substrate densities, due to increased traction, but 

decreased within a densely-packed matrix (Bray, 2002).  For simplicity, however, we 

shall assume throughout this thesis that each of these functions has an identical, 

monotonic form given by: 
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where the ν terms determine the maximal extent of speed increase or decrease, and the β 

terms define the shape of each relationship.  Specifically, we shall assume that cell 

speeds are increased in the presence of increasing chemoattractant gradient (i.e. νK > 1), 

and decreased in the presence of increasing matrix density (i.e. νc < 1, νb < 1). 

 

5.3.5. Modification of the Fibrous Matrix 

The equations discussed up to this stage have been kept intentionally general, so that 

they have the potential to describe the migratory behaviour of a range of cell types.  The 

final aspect of the original model framework that we have thus far neglected to 

consider, however, concerns the feedback loop whereby discrete cells remodel the 

underlying fibrous matrix as they migrate.  Although we acknowledge that this process 

may be more relevant to particular cell-types (i.e. fibroblasts or other dermal cells), we 

present the full set of model equations for completeness. 

We begin by defining a vector field g(x,t) that captures the effect, on the collagen 

fibres, of the overall cell “flux” within the domain: 
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 ̇ (    )

‖ ̇ (    )‖

 
   , (5.21) 

 

where w
i
(x,t) ∈ [0,1] is a weight function that ensures each cell re-orients only local 

fibres, and N is the total number of cells in the domain.  The time lag ηw is included to 

represent the time taken for a cell to modify its direction of migration upon receiving 

directional cues from its environment (Dallon et al., 1999).  In the case of an elongated 

fibroblast, for example, the head and tail of the cell may be transiently travelling in 

different directions.  Since there is currently no explicit concept of cell shape in the 

model, however, the weight function applied by McDougall et al. (2006a) is used: 
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where x = (x1, x2) and f 
i
 = (f1

i
, f2

i
).  The support of this function is, rather unrealistically, 

a square of side 2L, but the concept of cell shape will be considered in greater depth at a 

later stage.  We define the angles of the vector fields c(x,t) (collagen) and g(x,t) (cell 

flux), with respect to the horizontal, by θc(x,t) and θg(x,t), respectively, and the 

orientation of the collagen fibres is then updated via the equation: 

 

   (   )

  
  ‖ (   )‖     .  (   )    (   )/, (5.23) 

 

where κ is a positive parameter that quantifies the ability of the cells to reorder their 

underlying matrix. 

Finally, the discrete-point cell migration model is completed by one further feedback 

loop.  Within the same locality as the re-orientation of collagen fibres occurs, each cell 

also modifies the underlying matrix density.  Specifically, fibrin is degraded by the cells 

as they migrate, whilst collagen is both produced and degraded.  This process is 

described by the equations: 

 

   (   )

  
 ,      

 (   )-  ∑   (   ) 
   , (5.24) 

   (   )

  
     

 (   )  ∑   (   ) 
   , (5.25) 

 

where δc is the rate of collagen production, while ζc and ζb are, respectively, the rates of 

collagen and fibrin degradation. 

This completes the model formulation for discrete volumeless cells and we now go 

on to examine some simple sensitivities using the model.  Note that additional details 

regarding the numerical implementation of the model can be found in Appendix B. 

 

5.4. Discrete-Point Cell Simulation Results 

Up to this point, the only significant extensions we have made to the original model 

framework are the introduction of a stochastic migratory cue, and the inclusion of some 

generalised functional forms to describe the weightings between the various stimuli that 

ultimately determine the overall migration direction.  Therefore, in this section, we shall 

perform only some simple sensitivity studies to examine the typical cell trajectories now 



Chapter 5: A New Generalised Model of Cell Migration I 

 

140 

 

predicted by the model.  For each scenario considered, we present 20 individual cell 

paths covering a period of 6 hours; each cell begins its journey at the centre of the 

domain with a randomly generated initial orientation.  Unless otherwise stated, the base 

case parameters used across all simulations in this section are given in Table 5.1.  

Furthermore, for each sensitivity study, the specific values of the modified parameters 

can be found in the relevant figure caption. 

 

Parameter Definition Value 

s0 External cue-free cell speed 60 μm ∙ hr
-1 

ηu Pseudopod establishment time 0.03 hr 

ηr
*
 Cell persistence time 0.25 hr 

γp Random migration weighting 0.05 

γr Cell “memory” weighting 1 

‖ K‖crit Chemical gradient for half-maximal chemotactic weighting 0.5‖ K‖max 

αK Chemotactic weighting Hill exponent 6 

νK Cell speed-modulation factor (chemotaxis) 5/3 

βs,K Cell speed-modulation shape parameter (chemotaxis) 1 

α(a,r),(c,b) Contact guidance weighting Hill exponent 6 

c
*

max Maximal collagen density 1 

b
*

max Maximal fibrin density 0 

(c
*
+b

*
)crit Matrix density for half-maximal contact guidance weighting 0.5 

νc Cell speed-modulation factor (collagen) 2/3 

βs,c Cell speed-modulation shape parameter (collagen) 1 

νρ Maximal chemotactic weighting at maximal matrix density 0.5 

βρ Chemotactic weighting suppression shape parameter 1 

 

Table 5.1: Base case parameters used for all simulations in Section 5.4. 

 

5.4.1. Persistent Random Walk 

We begin by considering the simplest case of random cell movement in the absence of 

any external signals.  As discussed in Section 5.3.1, the migration patterns generated by 

this component of the model are constructed as a series of directed, persistent “runs” 

(characterised by ηr
*
 and γp), interspersed by random “turns” (characterised by γr).  We 
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proceed, therefore, to investigate the impact of modifying each of these three persistent 

random walk parameters.  Note that, following Equation 5.17, cell speeds remain fixed 

at s0 throughout these simulations. 

Figure 5.4 presents the cell trajectories generated upon decreasing (Figure 5.4b) or 

increasing (Figure 5.4c) the base case value (Figure 5.4a) of the average cell persistence 

time ηr
*
.  As expected, we observe that an increase in this value leads to cell trajectories 

exhibiting some very long, straight periods of movement, and a generally wider 

dispersal than the base case scenario.  Conversely, a decrease leads to trajectories that 

largely remain confined to a small region about the domain centre due to the large 

frequency of randomly oriented turns.  Note that, in this latter case, the value of ηr
*
 was 

set equal to the value of ηu (i.e. the pseudopod establishment time) such that a large 

portion of the calculated persistence times would have been a posteriori increased to 

this minimum value.  Therefore, the extent of cell dispersal depicted by this simulation 

is approaching the minimal level for cells with these assumed properties. 

 

 (a) (b) (c)  

 

Figure 5.4: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model for a range of cell persistence time ηr
*
 values (scale of 

images = 450 μm x 450 μm).  Only the persistence and random directional cues were 

applied; images correspond to the parameter values (a) 0.25 (base case), (b) 0.03 and (c) 

0.45. 

 

In our base case parameter set, we have assumed that during “runs” there is only a 

very small level of noise (i.e. γp = 0.05) such that the simulated cell pathways exhibit 

many long, straight segments (Figure 5.5a).  In Figures 5.5b and 5.5c we present the 

results obtained upon increasing this value five- or ten-fold, respectively.  The first 
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increase produces trajectories that largely resemble those from the base case, albeit with 

slightly reduced dispersal due to greater fluctuation in the cell paths during periods of 

persistence.  The result of a further increase is more dramatic, however, with the cells 

unable to disperse at all because the calculated extension direction of every single 

pseudopod has a large stochastic element. 

 

 (a) (b) (c)  

 

Figure 5.5: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model for a range of random component weighting γa values (scale 

of images = 450 μm x 450 μm).  Only the persistence and random directional cues were 

applied; images correspond to the parameter values (a) 0.05 (base case), (b) 0.25 and (c) 

0.5. 

 

Finally, we consider the impact of varying γr, which essentially quantifies the level to 

which the cell “memory” is erased after each period of persistence.  In the base case 

simulation (Figure 5.6a) we proposed that each “turn” was entirely random (i.e. γr = 1); 

we now present two further scenarios where this assumption is relaxed.  The impact of 

the first reduction (Figure 5.6b) is relatively minimal with cell trajectories closely 

resembling the base case, albeit with a slightly reduced tendency to turn through large 

angles.  A further decrease (Figure 5.6c) gives results far removed from the base case, 

however, and the cells now widely disperse by persisting in particular directions for 

long periods of time. 

In summary, it is clear that the extent of dispersal displayed by the cells can be 

critically influenced by all three parameters characterising the persistent random walk.  

An increase in the cell persistence time, a decrease in the randomness of “turns” and an 

increase in the straightness of “runs” were all found to result in cells that, in general, 
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migrated further from their initial position.  In future, the model could be used to 

parameterise the behaviour of in vitro cells migrating in the absence of external signals.  

Experimental data concerning the distributions of run lengths and turn angles would be 

ideal for such an approach.  We will discuss a similar benchmarking exercise in the next 

chapter. 

 

 (a) (b) (c)  

 

Figure 5.6: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model for a range of “cell memory” weighting γr values (scale of 

images = 450 μm x 450 μm).  Only the persistence and random directional cues were 

applied; images correspond to the parameter values (a) 1 (base case), (b) 0.75 and (c) 

0.5. 

 

5.4.2. Chemotaxis 

Although the results presented in the previous section are interesting, it is fair to say 

that, given the definitions made, they prove to be as expected.  In the following sections, 

we increase the range of behaviours displayed by the model by including further 

directional cues in the generation of our cell trajectories.  Firstly, we investigate the cell 

behaviour in response to a fixed chemoattractant profile.  Within the simulation domain 

we assume an outwardly increasing concentric profile according to: 

 

 ( )      
  

    , (5.26) 

 

where r is the normalised distance from the domain centre (Figure 5.7).  Note that the 

full domain size is 1500 μm x 1500 μm, and ‖ K‖max is taken to be the maximum 

chemical gradient value across the whole domain. 
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Figure 5.7: Profile of chemoattractant concentration, defined in Equation 5.26, that was 

used to generate the discrete-point cell trajectories presented in Figures 5.8, 5.11 and 

5.12 (scale of image = 960 μm x 960 μm). 

 

The sensitivity that we consider is to the parameter ‖ K‖crit, defining the absolute 

chemical gradient at which the value of the chemotactic directional cue is half-maximal 

(i.e.  ρ
i
((a,r),(c,b)),K = 0.5 in Equation 5.16, with c

*
 = b

*
 = 0).  In the base case simulation 

(Figure 5.8a) we note that the cells initially perform random walks, due to the weak 

chemotactic response at the domain centre, before eventually embarking on largely 

straight pathways up the chemical gradient.  Reducing the critical chemical gradient 

value (Figure 5.8b) increases the cells’ receptiveness to shallow gradients; accordingly, 

they perform very short random walks before shooting directly outwards.  Finally, 

Figure 5.8c shows the behaviour of cells that are less receptive to the chemical; in this 

case, some cells appear not to sense the chemoattractant at all over the entire course of 

the simulation.  Furthermore, it can be seen that those who do seek out the chemical 

gradient begin to lose their way as they migrate beyond its peak. 

 

5.4.3. Contact Guidance 

We now remove the chemoattractant profile from the domain, and seek to investigate 

the simulated cell movement under the influence of contact guidance.  We shall assume 

that the domain is filled with collagen only (i.e. b
*
 = 0) and, in order not to impose any 

particular directional bias, generate a randomly oriented collagen vector field c(x,t).
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 (a) (b) (c)  

 

Figure 5.8: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model in the presence of an outwardly increasing chemoattractant 

profile for a range of ‖ K‖crit values (scale of images = 840 μm x 840 μm).  The 

chemotaxis, persistence and random directional cues were applied; images correspond 

to the parameter values (a) 0.5‖ K‖max (base case), (b) 0.2‖ K‖max and (c) 0.8‖ K‖max, 

where ‖ K‖max corresponds to the domain-wide chemical gradient maximum. 

 

Furthermore, in order to mimic physically-realistic in vivo ECM, we generate a 

heterogeneous distribution of collagen density c
*
(x,t) (Figure 5.9).  Note that this 

ensures a variation in the random walk-contact guidance weighting ρ
i
(a,r),(c,b) for each 

cell over the course of a simulation.  We define the minimum and maximum values of 

this profile to be c
*

inf and c
*

sup, respectively, such that we can consider the three distinct 

scenarios of low (c
*

inf = 0.1, c
*

sup = 0.3), medium (c
*

inf = 0.4, c
*

sup = 0.6) and high (c
*

inf 

= 0.7, c
*

sup = 0.9) collagen density.  There are two additional points to note for each of 

the following simulations: we have arbitrarily set c
*

max = 1, and we do not consider any 

cell-induced modification to the density or orientation of this underlying matrix. 

We perform a sensitivity study on (c
*
+b

*
)crit (c.f. Equation 5.13), which we shall 

refer to as simply c
*

crit since b
*
 = 0; this parameter therefore defines the critical collagen 

density at which the random walk and contact guidance directional cues are equally 

weighted.  We choose a base case value c
*

crit = 0.5, and perform two sensitivities on this 

parameter at each of our three assumed collagen densities. 

At low collagen density, we find that both the base case value and an increased c
*

crit 

value (Figures 5.10b and 5.10c, respectively) predict trajectories that are largely 

independent of the underlying matrix (i.e. closely resembling the base case simulation
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Figure 5.9: Profile of collagen density used to generate the discrete-point cell 

trajectories presented in Figures 5.10, 5.11 and 5.12 (scale of image = 960 μm x 960 

μm).  In each case, trajectories were obtained at low (c
*

inf = 0.1, c
*

sup = 0.3), medium 

(c
*

inf = 0.4, c
*

sup = 0.6) and high (c
*

inf = 0.7, c
*

sup = 0.9) collagen density.  The reference 

value for maximal collagen density c
*

max was set to unity throughout. 

 

in Section 5.4.1).  Reducing c
*

crit produces greater competition between the two 

directional cues; the cells largely follow the collagen fibres but many break away in 

response to random directional perturbations, which are enhanced in the regions of 

lowest collagen density (Figure 5.10a).  The base case simulation at medium collagen 

density (Figure 5.10e) follows an analogous pattern to Figure 5.10a since simultaneous 

increases in both c
*

crit and the matrix density results in comparable weighting values for 

the two directional cues.  We note, however, that the level of dispersal is suppressed due 

to the concurrent reduction in cell speeds.  At medium collagen density we once again 

find the trajectories to be relatively insensitive to increased c
*

crit (Figure 5.10f), but the 

result of a decrease is more drastic – the cells now follow the collagen fibres very 

closely and the stochastic nature of the trajectories is largely concealed.  Almost 

identical behaviour to this is observed at high collagen densities for both the base case 

and reduced parameter value simulations (Figures 5.10g and 5.10h) and, although some 

randomness is still observed for increased c
*

crit (Figure 5.10i), cell dispersal remains 

relatively low due to a further cell speed reduction. 
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

 (g) (h) (i)  

 

Figure 5.10: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model in the presence of a randomly-oriented collagen profile.  The 

images show results at (a-c) low, (d-f) medium and (g-i) high collagen density for a 

range of c
*

crit values (scale of images = 510 μm x 510 μm).  The contact guidance, 

persistence and random directional cues were applied; images correspond to the c
*

crit 

values (a, d, g) 0.2, (b, e, h) 0.5 (base case) and (c, f, i) 0.8. 
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5.4.4. Full Model 

By combining all of the facets of the previous two sections, we can now apply the 

model in its entirety; that is, we investigate the migration patterns produced by cells 

responding to a chemotactic signal within fibrous matrices of variable density.  In this 

case we shall perform sensitivity studies on the parameters ‖ K‖crit and νρ, which 

inform the calculation of the chemotactic weighting ρ
i
((a,r),(c,b)),K in Equation 5.15.  

Recall that νρ defines the maximal chemotactic weighting at maximal matrix density 

c
*

max, while ‖ K‖crit represents the magnitude of chemical gradient at which the 

collagen density-dependent half-maximal chemotactic weighting occurs.  Once again 

we select base case values (‖ K‖crit = 0.5, νρ = 0.5) and examine the impact of an 

increase or decrease in each individual parameter at low, medium and high collagen 

densities. 

In order to aid understanding, in Table 5.2 we summarise the range of possible 

chemotactic weightings ρ
i
((a,r),(c,b)),K  for each of our simulations examining the 

sensitivity to ‖ K‖crit.  As expected, the results at low collagen density (Figure 5.11a-c) 

are qualitatively very similar to those presented previously in Figure 5.8; this is due to 

the fact that any contact guidance effects quickly become negligible as the chemical 

gradient increases.  We note, however, that initial contact guidance in the shallow 

chemical gradient at the domain centre has accelerated the search for the chemotactic 

signal (c.f. scale of Figure 5.11 vs. scale of Figure 5.8).  Increasing the collagen density 

to medium levels has an overall effect of increasing the strength of contact guidance; 

however, chemotaxis does remain the dominant cue in the presence of reasonable 

chemical gradients.  The base case simulation of Figure 5.11e reflects this assertion, 

whereby cells follow the matrix fibres initially and then respond strongly to the 

chemoattractant.  One consequence of the initial regime of contact guidance is shown by 

the reduced stochasticity in cell paths when ‖ K‖crit is decreased (Figure 5.11d).  

Groups of cells are forced to traverse similar fibre pathways in the first instance; the 

subsequent strongly biased chemotactic response reinforces this effect, and the cells 

share the same path over the whole course of the simulation.  This result is not reflected 

in the case where cells are less receptive to shallow chemical gradients (i.e. ‖ K‖crit 

increased); the cells experience strong contact guidance for a longer period of time, 

making the paths much more tortuous and widely dispersed (Figure 5.11f).  At high
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 ‖ K‖crit = 0.2 ‖ K‖crit = 0.5 ‖ K‖crit = 0.8 

c
*
 ∈ (0.1, 0.3) [0, 0.95] [0, 0.95] [0. 0.95] 

c
*
 ∈ (0.4, 0.6) [0, 0.8] [0, 0.8] [0, 0.8] 

c
*
 ∈ (0.7, 0.9) [0, 0.65] [0, 0.65] [0, 0.65] 

 

Table 5.2: Range of possible chemotactic weighting ρ
i
((a,r),(c,b)),K values (c.f. Equation 

5.16) for each combination of collagen density c
*
 and critical chemoattractant gradient 

‖ K‖crit value considered in the simulations of Figure 5.11. 

 

collagen density, simulations with small ‖ K‖crit and the base case value now produce 

only three distinct outward trajectories (Figures 5.11g and 5.11h), while the cells with 

reduced chemotactic receptiveness now appear “trapped” by the matrix and struggle to 

orient towards the chemical gradient peak (Figure 5.11i). 

Table 5.2 showed that, in the simulations of Figure 5.11, the assumed minimum 

value of the chemotactic weighting at high collagen matrix density was 0.65.  We now 

consider two cases showing a general weakening or strengthening of chemotaxis 

suppression as a result of the local fibrous matrix density (i.e. νρ is either increased or 

reduced, respectively). In order to again aid understanding, Table 5.3 summarises the 

range of possible chemotactic weightings for each of the following simulations.  Note 

that Figures 5.12b, 5.12e and 5.12h are identical to the base case results presented above 

(i.e. Figures 5.11b, 5.11e and 5.11h, respectively). 

Our results show that, at low collagen density, the cells are entirely insensitive to 

changes in this parameter because the resultant modifications to the chemotactic 

weighting are essentially negligible (Figures 5.12a-c).  At medium levels of collagen 

density the qualitative results are largely conserved in each case, but we note that the 

tortuosity of the trajectories is either enhanced for small νρ (Figure 5.12d) or reduced for 

large νρ (Figure 5.12f).  We see a wider range of behaviours at high collagen densities: 

where the chemotactic response is only weakly suppressed, the cells slalom through the 

collagen fibres initially before responding to the increase in chemical gradient very 

directly; conversely, at strong chemotactic suppression, very few cells manage to 

migrate outwards in response to the chemical and these trajectories appear to remain 

strongly influenced by the underlying fibrous orientation over the full course of the 

simulation (Figure 5.12g-i). 
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

 (g) (h) (i)  

 

Figure 5.11: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model in the presence of a randomly-oriented collagen profile and 

an outwardly increasing chemoattractant profile.  The images show results at (a-c) low, 

(d-f) medium and (g-i) high collagen density for a range of ‖ K‖crit values (scale of 

images = 960 μm x 960 μm).  The contact guidance, chemotaxis, persistence and 

random directional cues were applied; images correspond to the ‖ K‖crit values (a, d, g) 

0.2‖ K‖max, (b, e, h) 0.5‖ K‖max (base case) and (c, f, i) 0.8‖ K‖max, where ‖ K‖max 

corresponds to the domain-wide chemical gradient maximum. 
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Our simulations of the full cell migration model – combining stochastic movement 

with chemotaxis and contact guidance – predict a wide range of possible cell 

behaviours.  We have considered how variations in both cell receptiveness to the 

chemical and matrix suppression of the chemotactic response impact on the overall cell 

pathways.  At low collagen density, all of the resultant trajectories very much resemble 

the earlier simulations performed in the absence of any underlying matrix (c.f. Section 

5.4.2).  As the collagen density is further increased, however, the impact of contact 

guidance generally increases the tortuosity of the trajectories as the ability to undergo 

directed motion up the chemical gradient is reduced.  These simulations indicate a key 

strength of the modelling approach: by manipulating the relative strengths of various 

directional stimuli, the model could potentially be used to reduce parameter searches in 

experimental programmes.  Benchmarking the model against data from in vitro 

experiments where cells crawl on fibrous substrates, for example, could prove to be 

valuable, since the results may provide insights into the mechanisms of cell movement 

in vivo. 

 

 νρ = 0.1 νρ = 0.5 νρ = 0.9 

c
*
 ∈ (0.1, 0.3) [0, 0.91] [0, 0.95] [0. 0.99] 

c
*
 ∈ (0.4, 0.6) [0, 0.64] [0, 0.8] [0, 0.96] 

c
*
 ∈ (0.7, 0.9) [0, 0.37] [0, 0.65] [0, 0.93] 

 

Table 5.3: Range of possible chemotactic weighting ρ
i
((a,r),(c,b)),K values (c.f. Equation 

5.16) for each combination of collagen density c
*
 and matrix-associated chemotactic 

suppression νρ value considered in the simulations of Figure 5.12. 

 

5.5. Spherical Cell Model 

Whilst the discrete-point cell model can provide valuable predictions regarding the 

migration of cells in isolation, the lack of information regarding physical cell size 

inhibits the application of the model to scenarios where cell-cell interactions are known 

to be prominent.  Furthermore, when considering only discrete cells, aspects such as cell 

proliferation can only be considered in a purely phenomenological sense.  Therefore, in 

this section we seek to relax this approximation and move towards a more physically
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 (a) (b) (c)  

 

 (d) (e) (f)  

 

 (g) (h) (i)  

 

Figure 5.12: Typical cell trajectories over a 6 hour period obtained from the discrete-

point cell migration model in the presence of a randomly-oriented collagen profile and 

an outwardly increasing chemoattractant profile.  The images show results at (a-c) low, 

(d-f) medium and (g-i) high collagen density for a range of νρ values (scale of images = 

960 μm x 960 μm).  The contact guidance, chemotaxis, persistence and random 

directional cues were applied; images correspond to the νρ values (a, d, g) 0.1, (b, e, h) 

0.5 (base case) and (c, f, i) 0.9. 

 

realistic model of cell migration by assuming that each cell adopts an approximately 

spherical conformation.  It should be noted that this model extension has been inspired 
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by, and borrows from, the recent work of Macklin et al. (2012), who developed a 

mechanical agent-based cell model to reproduce the clinically-observed advancement of 

ductal carcinoma in situ (DCIS).  As has been seen thus far, however, our cell model is 

not informed by mechanics; therefore, we must develop an alternative means of 

incorporating cell-cell interactions into the existing framework.  This issue will be 

addressed in due course, but first we introduce some key assumptions regarding the 

physical characteristics of the cells. 

 

5.5.1. Physical Characteristics of the Cell 

We begin by assuming that for each cell the vectors f 
i
(x,t) and u

i
(x,t) now represent the 

position and velocity, respectively, of the cell centre of mass and volume.  In direct 

analogy to Macklin et al. (2012), we assign to each cell a volume V
i
(t) and a (fixed) 

nuclear volume VN, which are characterised by equivalent cell and nuclear radii (R
i
(t) 

and RN, respectively) that are related through the equations: 

 

   
 

 
   

 ,     ( )  
 

 
   ( ) . (5.27) 

 

We have adopted the nomenclature “equivalent” radii, since the explicit cell 

morphology is not tracked in time; instead we additionally assume that each cell has a 

maximum adhesion interaction radius (or “sensing” radius) RS
i
(t).  This allows the 

model to account for two important factors: uncertainty in the extent of the cell 

boundary relative to its centre of mass; and the ability of cells to stretch beyond R
i
(t) for 

maintenance or creation of adhesive bonds (Macklin et al., 2012; see also Drasdo et al. 

(1995) for details of a similar approach).  A schematic diagram is shown in Figure 5.13 

to clarify the rationale of these assumptions, where we also demonstrate that cell 

deformation can be accounted for by allowing equivalent cell radii to overlap. 

Before proceeding, there is one further noteworthy point to highlight.  When 

modelling proliferation (see Section 5.5.4), cells will pass through their cell cycles 

asynchronously and undergo volume variations at the appropriate stage.  Therefore, in 

the variables V
i
(t), R

i
(t) and RS

i
(t), the superscripts (and time-dependence) denote that 

throughout a simulation each individual cell has a unique set of (inter-dependent) values 

characterising its physical size and shape.  Therefore, we introduce a set of parameters
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 (a) (b)  

 

Figure 5.13: Schematic diagram illustrating the rationale of assumptions regarding cell 

morphology and cell-cell interactions in the spherical cell migration model.  Throughout 

simulation, the cell volume V and nuclear volume VN are tracked; in (a), the labels R and 

RN indicate, respectively, the equivalent spherical cell and nuclear radii, while RS 

indicates the maximum adhesion interaction distance, or “sensing” radius.  The explicit 

cell morphology is not tracked in time – the thick dashed line shows one particular 

possibility.  The configuration of cells in (b) shows that uncertainty in exact cell 

morphologies can be accounted for by allowing both the overlap of equivalent cell radii 

and adhesive contact beyond notional cell boundaries. 

 

that constrain the maximum possible cell size throughout simulation, namely Vmax, Rmax 

and RSmax (i.e. the maximum allowable cell volume, radius and sensing radius, 

respectively).  These parameters are coupled by the following equations: 

 

     
 

 
     

 ,   
     

    
 

  
 ( )

  ( )
. (5.28) 

 

In all of the above definitions we have inherently assumed that our cells take on a 

spherical morphology; however, since we perform only 2D simulations, it would be 

possible to relax the assumption that the cell “height” is equal to R
i
(t) and instead 

assume our cells to be flatter and disc-like, as observed for certain cell types in culture.  

Although we neglect this possibility here, the only potential difference it would make to 

our simulations is a modification of the manner with which R
i
(t) varies during volume 

changes within the cell division cycle. 
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5.5.2. Cell-Cell Interactions 

Armed with the above definitions, we now turn our attention to the concept of cell-cell 

interaction by introducing dynamic adhesive and repulsive effects between 

neighbouring cells.  For this purpose, we again look to the work of Macklin et al. 

(2012), who generate biomechanical adhesion and repulsion forces between their in 

silico cells by appropriately defined potential functions; note that a similar approach has 

been proposed in a variety of publications (Drasdo et al., 1995; Drasdo and Hoehme, 

2003; Ramis-Conde et al., 2008a; Ramis-Conde et al., 2008b; Byrne and Drasdo, 2009).  

Although we do not work explicitly with cell-cell forces, we adapt the use of these 

functions to inform the direction of cell-cell related movements in our model. 

As with the above assumed convention for single cells, any subsequent use of the 

superscript ij shall now be assumed to refer to any variable that is uniquely defined for 

each pair of cells.  The first definition of this type that we make concerns q
ij
(t), the 

vector connecting the centre of mass of any two cells: 

 

   ( )    ( )    ( ),  (5.29) 

 

This is an important definition, since any movement owing to adhesion or repulsion 

between neighbouring cells will be directed parallel to this vector.  We can now proceed 

to define our potential function h
ij
(‖q

ij‖), which encapsulates the manner in which two 

cells interact as the distance between their centres of mass varies.  Adapting the 

respective adhesion and repulsion terms applied in Macklin et al. (2012), we define: 
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where the exponents βadh and βrep characterise the form of the adhesive and repulsive 

responses, respectively, while the coefficients ηadh and ηrep quantify the respective 

adhesion and repulsion strengths.  The two latter parameters are found to be of great 

importance in determining the overall in silico cell behaviour, since, for fixed βadh and 

βrep, their respective values determine the distance between any two cell centres at 

which the adhesion and repulsion terms are balanced (i.e. h
ij 

= 0).  From a biological 

stand-point, it would seem a minimum requirement to assume that such an equilibrium 

distance would have its value lie in the range (2RN, R
i
+R

j
).  Naturally, this assumption 

imposes a constraint on the allowable values of ηadh and ηrep, as expressed by the 

following: 
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which reduces to: 
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in the case of two fully-grown cells.   

In the subsequent use of h
ij
(‖q

ij‖) to inform cell movement in the model, we shall see 

that the absolute values generated by this function are actually of no great importance.  

Therefore, in general, we shall set ηrep = 1 and use the interval defined in Equation 5.32 

to select an appropriate value for ηadh.  The precise choice of this parameter uniquely 

defines a cell-cell equilibrium distance, and thus allows us to approximate the maximal 

extent of deformation between any two neighbouring cells.  A typical example of the 

function h
ij
(‖q

ij‖) is shown in Figure 5.14, where the various key features are 

highlighted in the corresponding caption. 

Having introduced the function that we shall use to describe local interactions 

between cells, it is now necessary to consider the exact means by which these dynamics 

can be integrated into the existing model framework.  This problem is necessarily
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Figure 5.14: Typical plot of the function h
ij
(‖q

ij‖), defined in Equation 5.30, which 

governs the behaviour of two interacting spherical cells as the distance between their 

centres of mass varies (i.e. h
ij
 > 0 indicates adhesion, h

ij
 < 0 indicates repulsion).  The 

steep linear section (i.e. ‖q
ij‖ < 10) indicates that the cells’ nuclear radii are 

overlapping; maximum repulsion occurs when the centres of mass share a spatial 

position.  The inset shows the adhesive region in greater detail, where the key features 

include the equilibrium point (i.e. ‖q
ij‖ = 21) where adhesion and repulsion are 

balanced, and a point of maximal adhesive strength (i.e. ‖q
ij‖ ≈ 23) close to where the 

equivalent radii begin to overlap (i.e. ‖q
ij‖ = 24).  Adhesive contact is lost when the 

cells’ sensing radii are no longer overlapping (i.e. ‖q
ij‖ = 30).  The plot was generated 

for two identical cells using the parameter values RN = 5 μm, R = 12 μm, RS = 15 μm, 

ηadh = 25/144, ηrep = 1, βadh = 1 and βrep = 1. 

 

complex, since the cell-cell effects experienced by each cell will depend crucially on the 

configuration of neighbouring cells in its locality (i.e. within RS
i
).  In order to calculate 

the ultimate direction of movement for each cell experiencing cell-cell effects, we 

resolve that it is necessary to consider two distinct factors: the relative strength of the 

effect exerted by each neighbouring cell; and the relative strength of each of these 

effects with respect to any other migratory cues (e.g. chemotaxis).  Constructing the 

overall cell motion in this way, we find that the key principles of the original model are 

maintained.  We note, however, the necessary condition that any cell-cell related 

directional stimulus must be added after a direction has been calculated for all other 

required migratory cues. 
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Recall that even though Equation 5.1 is solved at every time step, the calculation of a 

new migration direction is not necessarily carried out as frequently.  This vector is 

determined only every ηu time units, corresponding to the assumed time between cell 

pseudopod attachments.  Cell-cell related movements are not, however, governed by 

individual cell pseudopod dynamics; adhesive and repulsive effects will depend only on 

the instantaneous configuration of cells.  Therefore, the vector characterising cell-cell 

interactions must be re-calculated at every time step.  Adopting the terminology of 

Palsson and Othmer (2000), we can classify these two assumed types of cell movement 

as either “active” or “passive”, respectively. 

The first aspect that we require to address when incorporating cell-cell interactions is 

the competition between the effect of cell-cell adhesion or repulsion, and the other 

migratory cues such as persistence and chemotaxis.  As an example, consider a scenario 

where a cell has formed adhesion bonds with a neighbouring cell on one side but also 

senses a chemoattractant gradient at its opposite side; the resultant cell response is likely 

to depend crucially on the relative strength of the “pull” experienced from each side.  

With this argument in mind, we firstly define, for each cell, the vector vΣ
i
 to represent 

the overall directional stimulus obtained from the desired combination of migratory 

cues, as outlined in Section 5.3.  In order to subsequently determine the overall 

movement direction v
i
q,Σ that includes the cell-cell effect imposed by each neighbour 

(i.e. centre of mass within RS
i
 + RS

j
), we construct a linear combination of unit vectors 

with appropriate coefficients (or weightings).  As a consistent point of reference we 

arbitrarily assign the vector vΣ
i
 a weighting of unity, and define the equation: 
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where n
i
 is the total number of cells interacting with cell i, and the functions χ

ij
rep(h

ij
) 

and χ
ij

adh(h
ij
) quantify the relative weighting of the repulsion or adhesion, respectively, 

from each neighbour.  These two weight functions are chosen in such a manner that the 

qualitative features of the cell-cell interaction function h
ij
(‖q

ij‖) are conserved; for 

repulsion we define: 
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whilst for adhesion we similarly define: 
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In these equations, the β parameters define the precise shape of the relationships, whilst 

the χ parameters, which are chosen to lie in the interval [0, ∞), define the maximum 

possible strengths of cell-cell adhesion and repulsion, relative to the strength of all other 

appropriate directional cues (i.e. vΣ
i
).  The normalising parameters h

ij
min and h

ij
max are, 

respectively, the minimum and maximum values of the function h
ij
(‖q

ij‖).  The value of 

h
ij

min can easily be calculated via the equation: 
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Calculating h
ij

max, however, is not so straightforward.  Assuming that we are in the 

biologically realistic parameter regime stipulated by Equation 5.31, the function 

h
ij
(‖q

ij‖) will have a unique maximum at some distance ‖q
ij‖ ∈ (2RN, R

i
+R

j
).  Denoting 

this distance ‖q
ij‖*

, its value can be found by solving the equation: 

 

    (‖   ‖
 
)  0

    (      )

     1  (  
‖   ‖

 

     *
    

 0
    (      )

  
    

 1  (  
‖   ‖

 

  
    

 *
    

  .  (5.37) 

 

For βadh = βrep, the solution can be found analytically but, in general, we may require to 

seek a numerical solution (e.g. by Newton’s method with an appropriate initial guess).  

Finally, therefore, the value of h
ij

max can be expressed as: 
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Typical examples of the two functions defined in Equations 5.34 and 5.35 are plotted in 

Figure 5.15; where applicable, the parameters correspond to those used to generate 

Figure 5.14. 

 

 (a) (b)  

 

Figure 5.15: Typical plots of the cell-cell interaction directional weightings (a) 

χ
ij

adh(h
ij
(‖q

ij‖)) and (b) χ
ij

rep(h
ij
(‖q

ij‖)) between two identical spherical cells, as defined 

in Equations 5.34 and 5.35, respectively.  Specifically, the plots show the variation with 

distance between the cell centres of mass in the two distinct cases of (a) adhesion and 

(b) repulsion.  Note that both weightings are equal to zero at the equilibrium distance 

(i.e. ‖q
ij‖ = 21).  The plots were generated using the same parameter values as for 

Figure 5.14 with, additionally, χrep = 1, χadh = 1, βχrep = 0.3 and βχadh = 1. 

 

Having now derived a methodology that incorporates all of our desired directional 

stimuli, we can express v
i
q,Σ as the final vector that describes the overall direction of 

movement of each individual cell.  Thus, in line with our original definition governing 

cell movement in Equation 5.1, we finally define: 

 

  ( )      
 ( ), (5.39) 

 

which now incorporates all external directional cues, as well as local cell-cell 

interactions. 

In light of the latest model definitions, it is necessary to introduce a slight 

modification to one of the earlier equations.  The definition of Equation 5.2, made in the 

case of discrete volumeless cells, stipulates that a cell will always persist in the previous 

direction of cell migration, or pseudopod extension, as denoted by u
i
(t – ηu).  Since we 
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have now introduced cell-cell interactions, however, the overall cell movement direction 

u
i
 is instead constructed by a combination of pseudopod (i.e. active) and non-pseudopod 

(i.e. passive) driven movement.  Any passive cell-cell effects should not be taken into 

account in the persistent random walk model, so it is clear that the definition of the 

persistence vector va
i
(t) given by Equation 5.2 no longer holds.  Therefore, we modify 

Equation 5.2 to become: 

 

  
 ( )    

 (    ), (5.40) 

 

which insists that each cell will undergo persistence only in the direction of the previous 

pseudopod extension (i.e. its previous “active” movement direction). 

 

5.5.3. Contact Inhibition 

As discussed in Section 5.3, calculating the overall cell directionality is only half of the 

argument; cell speed must also be considered.  Thus far, we have suggested simple 

equations to describe how cell speed may be affected in the presence of collagen, fibrin 

or a chemoattractant gradient.  Having introduced cell-cell interactions, it becomes 

necessary to now incorporate a further such relationship that accounts for the presence 

of neighbouring cells.  As such, we propose a mechanism whereby, on average, cell 

speeds are reduced with increasing cell density or, more specifically, increasing contact 

inhibition (Abercrombie, 1980).  Indeed, such behaviour has previously been observed 

and quantified during in vitro fibroblast monolayer formation and wound healing 

(Tremel et al., 2009).  Clearly, this collective phenomenon must depend crucially on the 

behaviour of individual cells; hence, to incorporate this into our model we consider each 

cell on an individual basis and calculate what shall be termed “local cell density”, D
i
(t).  

As suggested by the choice of terminology, this calculation involves making a 

quantitative approximation of the area surrounding a cell that is occupied by other cells.  

From a biological point of view, we could more readily relate this measure to the 

fraction of the cell surface that is in contact with other cells.   

In order to perform this calculation we must first make some definitions.  We begin 

by defining, for each cell, the following function in the x1-x2 plane: 
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where the coefficients are given by: 
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Fixed values of this function represent circular contours that are centred on the 

instantaneous cell centroid position f 
i
 = (f1

i
, f2

i
).  We note the important property that ξ

i
 

∈ [-1, ∞), and, moreover, that the set of points denoted by x
*
, and satisfying: 
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delineate the cell boundary.  For convenience, we also define: 
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with coefficients: 
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such that ξS
i
 satisfies an identical property to Equation 5.43, although this time on the 

set of points constituting the cell sensing boundary.  The key reason for defining these 

two functions is that they provide a simple means of testing whether or not a particular 

spatial co-ordinate lies within the notional boundary, or sensing boundary, of a cell. 

With this in mind, we can begin to construct an algorithm designed to quantify the 

occupancy of space around any cell.  The algorithm proceeds by first constructing a 

spatial grid of points within the sensing region of the target cell, where the “origin” of 

this grid is placed at the cell centre.  Therefore, the set of grid points X
i
M,N, for integer 

values –M
*
 ≤ M ≤ M

*
 and –N

*
 ≤ N ≤ N

*
, is defined by: 
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where ∆X
i
 ≤ RS

i
 - R

i
 is the cell-specific grid spacing, and: 
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Subsequently, at each grid point we seek to satisfy the following conditions: 
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and: 
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for any neighbouring cell j.  That is, we look for grid points that lie within the sensing 

boundary of the target cell, but also within the cell boundary of any other cell.  

Therefore, if we denote by nX
i
 the total number of grid points at which both of these 

conditions are satisfied, we can finally define the equation for the local cell density as: 
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where the total area satisfying the grid conditions has been normalised by the area of the 

cell sensing region.  An illustrative diagram is presented in Figure 5.16 to further clarify 

the rationale of this algorithm.  As a final aside, it should be noted that under certain 

conditions, such as where sizeable cell overlaps occur, Equation 5.50 can predict local 

densities that are greater than unity.  When this arises the value is simply reset to unity. 

As mentioned above, the main motivation for developing this concept of local cell 

density was to inform the speed calculation for cells that are interacting with other cells 

in their locality.  Therefore, in keeping with the format of Equations 5.18-5.20, we
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Figure 5.16: Schematic diagram illustrating the rationale of assumptions regarding the 

calculation of local cell density D
i
 in the spherical cell migration model.  A regular 

spatial grid of integer-valued points (M, N) with spacing ∆X
i
 is constructed in the 

vicinity of cell i (represented by the thin blue line). The origin O of this grid 

corresponds to the cell centre of mass, and the extent of the grid is determined by 

ensuring that all grid points on the respective co-ordinate axes lie within the cell sensing 

radius (i.e. thick grey line).  The area of overlap between the sensing radius of cell i and 

cell radius of any neighbouring cell j (i.e. thick blue line) is approximated by summing 

the area of each grid block whose central point lies within this region (i.e. red squares).  

The final D
i
 value is subsequently calculated by normalising this overlap area with the 

area of cell i’s sensing region (i.e. area enclosed between the thin blue and thick grey 

lines). 

 

express this relationship as: 
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where, in general, νD < 1 determines the maximal extent of speed decrease at large local 

densities, and βs,D defines the overall shape of the relationship.  Using this definition, 

Equation 5.17 can be modified to: 
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5.5.4. Proliferation 

An additional advantage of having a concept of local cell density is that we can further 

use this value to inform the likelihood of cell proliferation, by assuming that contact 

inhibition also plays a role in suppressing cell cycle progression.  In this vein, we can 

draw comparisons with other theoretical studies where it has been postulated that 

cellular quiescence can be induced by cell-cell mechanical stresses (Schaller and 

Meyer-Hermann, 2005; Shraiman, 2005).  Many other paradigms for control of cell 

mitosis have also been considered by various groups, such as: up-regulation of 

proliferation in the presence of growth factors (see Chapters 3 and 4); availability of 

nutrients (Macklin et al., 2012); the inverse correlation between proliferation and 

motility known as the “Go-or-grow” hypothesis (Tektonidis et al., 2011).  We shall 

neglect any other factors here, however, but acknowledge that the model has the 

potential to be extended at a later date. 

We model proliferation by allowing the cells to transition between the various phases 

of the cell cycle: M, G1, G0, S and G2, although we do not explicitly distinguish 

between the latter two (denoted S/G2 hereafter).  Within this cycle, progression into 

S/G2 for each cell is assumed to be controlled by the extent of contact inhibition.  The 

rest of the cycle, meanwhile, is entirely deterministic; any cell that enters S/G2 is 

committed to completing mitosis (i.e. M phase) and its resultant daughter cells are 

subsequently committed to completing growth (i.e. G1 phase).  These three phases of 

the cycle are assumed to last for times ηG2, ηM and ηG1, respectively. 

Upon completion of the G1 phase, every cell undergoes a check to determine 

whether it can progress straight to S/G2 or, alternatively, enter the quiescent G0 phase.  

We assume that a cell will become quiescent if it senses that space is sufficiently 

limited, or, more specifically, if its local cell density D
i
 exceeds the critical value Dcrit.  

Subsequent transition out of this phase will only occur if or when D
i
 drops below this 

threshold.  Essentially, incorporating the concept of cell quiescence acts to prevent the 
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addition of cells to the domain in regions where the extent of available space is deemed 

to be unfavourable.  It has been observed that cell division under such circumstances 

can occur, but reattachment to the substrate may subsequently be prevented, thus 

causing some daughter cells to undergo cell death by anoikis (Landman et al., 2007).  In 

our current model formulation, however, we choose not to consider any explicit 

mechanisms of cell death. 

Throughout the G2/S phase, where cells begin to prepare for mitosis by synthesising 

DNA, we assume that cell motility is gradually decreased (Cai et al., 2007).  

Specifically, Equation 5.52 is modulated by a further factor, decreasing in time, such 

that the cell speed is reduced to zero before transition into the M phase.  Allowing tG2
i
 to 

parameterise the time spent by a cell in the G2 phase, the modulating factor sG2 is 

therefore given by: 
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where βG2 defines the manner of speed variation over time (e.g. βG2 ≪ 1 gives a 

transient decrease in cell speed near the end of S/G2). 

Since the cell is preparing to divide, throughout the relatively short M phase we 

assume that the cell loses adhesive contact with both the substrate and neighbouring 

cells (Cai et al., 2007).  These phenomena are achieved, respectively, by maintaining the 

zero cell speed attained by the end of S/G2 and, without loss of generality, setting ηadh = 

0 in Equation 5.30.  Consistent with a number of existing studies (Schaller and Meyer-

Hermann, 2005; Ramis-Conde et al., 2008; Macklin et al., 2012), at the end of the M 

phase we assume that the cell splits into two daughter cells of half volume, such that: 
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where Rd is the radius of each of the daughter cells.  By selecting a direction on the unit 

circle θd from a uniform distribution, the two daughter cells are assigned positions fd+ 

and fd- according to: 
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where fp is the pre-splitting position of the parent cell.  This definition ensures that the 

two daughter cells are initially fully contained within the volume of their parent cell 

and, furthermore, preserve its centre of mass. 

After this instantaneous splitting process the daughter cells immediately enter the G1 

phase and become subject to all of the migration equations outlined in previous sections 

– under appropriate parameter regimes the cells are subsequently capable of complete 

separation.  Throughout the entirety of the G1 phase, the daughter cells are assumed to 

undergo a linear increase in volume.  Parameterising the time spent in the G1 phase by 

tG1
i
, the growth of each daughter cell can be characterised by the equation: 
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After ηG1 time units have elapsed and the daughter cells have regained maximum 

volume, the cell cycle progression in each daughter begins again. 

 

5.5.5. Modification of the Fibrous Matrix 

Before moving on, we return briefly to the component of the model that allows fibrous 

matrix modification.  In Section 5.3.5 we presented the original weight function used by 

McDougall et al. (2006a), which assumed that the matrix re-orienting effect of each 

discrete fibroblast was manifested in a localised square region surrounding the cell 

centre (c.f. Equation 5.22).  Since we have now implemented a significantly stronger 

concept of cell shape, we can modify this equation to reflect the inherent spherical 

morphology.  Therefore, recalling Equations 5.41 and 5.42, we now define: 
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where βw defines the variation in the shape of this function with increasing distance 

from the cell centroid position.  It is also worthwhile to note that Equation 5.21, 

defining the concept of cell “flux” within the domain, can now be simplified by 

dropping the time lag ηw.  Given that we have now strengthened the concept of cell 
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morphology in the model and, indeed, assumed that our cells are approximately 

spherical, it is no longer necessary to account for the fact that the head and tail of the 

cell may be travelling in different directions.  Re-defining Equation 5.21, therefore, we 

have: 
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which now completes the formulation of the spherical cell migration model. 

 

5.6. Spherical Cell Simulation Results 

Much like the simulations performed in Section 5.4, here we again opt to investigate 

some simple sensitivities in order to explore the in silico cell behaviour predicted by the 

model.  We choose to work in the absence of external directional cues such as contact 

guidance and chemotaxis, however, and focus strongly on the newly developed model 

components: cell-cell adhesion and repulsion, contact inhibition and proliferation.  

Where appropriate, we utilise all of the previously applied base case parameters in 

Table 5.1, whilst all additional base case parameters required in this section are listed in 

Table 5.4. 

 

5.6.1. Cell Dispersal 

The first sensitivity study that we carry out examines the ability of cells to disperse from 

a densely packed nodule when their persistent random walks are modulated by the 

above detailed biophysical cell-cell interactions (note that cell proliferation is not 

considered at this stage).  Each simulation begins with 64 cells positioned uniformly, 

with boundaries just touching, at the centre of the domain (Figure 5.17a).  In addition, 

each cell is also assigned a random initial migration direction (i.e. vΣ
i
 in Equation 5.33).  

Cell movement is subsequently simulated for a 6 hour period; the result of a typical base 

case simulation is shown in Figure 5.17b where the original nodule has dispersed to 

produce a distribution of individual cells and smaller aggregates within the domain.  For 

each simulation performed, the extent of cell dispersal was quantified by averaging the 

displacement of each cell from its starting position at each time step.  Note that the plots
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Parameter Definition Value 

RN Cell nuclear radius 5 μm
 

Rmax Maximal equivalent cell radius 12 μm 

RSmax Maximal cell sensing radius  15 μm 

ηadh Potential function cell-cell adhesion coefficient 25/784 

ηrep Potential function cell-cell repulsion coefficient 1 

βadh Potential function cell-cell adhesion shape parameter 1 

βrep Potential function cell-cell repulsion shape parameter 1 

χadh Maximal cell-cell adhesion weighting 0.8 

χrep Maximal cell-cell repulsion weighting 20 

βχadh Cell-cell adhesion weighting shape parameter 1 

βχrep Cell-cell repulsion weighting shape parameter 0.85 

νD Cell speed-modulation factor (local cell density) 0.125 

βs,D Cell speed-modulation shape parameter (local cell density) 1 

ηG1 Time spent in G1 phase of cell cycle 14/3 hr 

ηG2 Time spent in S/G2 phase of cell cycle 5 hr 

ηM Time spent in M phase of cell cycle 1/3 hr 

Dcrit Critical local cell density for quiescence 0.2 

βG2 Cell speed-modulation shape parameter (mitosis) 0.25 

 

Table 5.4: Base case parameters used for all simulations in Section 5.6. 

 

shown later represent the average of the respective cell dispersal values obtained from 5 

individual simulations. 

We begin by examining the impact of varying χadh, which determines the maximal 

adhesive strength of the cells.  The predicted extent of cell dispersal upon modification 

of this parameter is shown quantitatively in Figure 5.18a.  A reduction of the base case 

value by 50% is seen to produce a strong increase in the extent of cell dispersal.  

Although the number of individual cells that have broken away from the nodule seems 

comparable to that observed in the base case, the others now tend to disperse in 

numerous clusters of few cells rather than remaining part of extensive aggregates 

(Figure 5.18b vs. Figure 5.17b).  We observe significantly reduced cell dispersal in the
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 (a) (b)  

 

Figure 5.17: Typical base case simulation of spherical cell dispersal where individual 

cell movement is governed by a persistent random walk and biophysical cell-cell 

interactions.  Images show (a) the initial uniform nodule of cells and (b) the final 

configuration after 6 hours of simulation.  Relevant parameter values can be found in 

Tables 5.1 and 5.4. 

 

case of increased adhesive strength; indeed, in contrast to the above case, absolutely no 

cells have managed to break free of the initial nodule (Figure 5.18c).  The final 

configuration indicates that the cells have spent the simulation simply “jostling for 

position” through a combination of adhesive, repulsive and stochastic motion. 

Our second sensitivity examines a different aspect of the adhesive interaction 

between two cells, by modifying the value of βχadh (c.f. Equation 5.35).  This parameter 

quantifies the manner in which the relative strength of adhesion, with respect to existing 

migratory cues, varies with distance between the cell centres.  That is, for βχadh > 1, the 

region of strongest adhesion is concentrated about a peak, whilst for βχadh < 1, this 

region is more widespread (c.f. Figure 5.15b).  The results of this sensitivity are 

presented in Figure 5.19 where although the results are qualitatively what we would 

expect (i.e. larger βχadh gives greater dispersal), the extent of the quantitative differences 

are quite striking.  It is clear that, even though the maximal adhesive strength remains 

fixed throughout, the manner with which adhesion is weakened as the in silico cells 

move apart has a strong impact on the ability of stochastic motion to ultimately drive 

the cells free from adhesive contact. 
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(a) 

 

 (b) (c)  

 

Figure 5.18: Sensitivity study of spherical cell dispersal upon modification of χadh.  The 

plot (a) quantifies the average cell dispersal of all cells from their starting position from 

5 independent simulations, whilst the images show typical final cell configurations after 

6 hours for parameter values (b) 0.4 and (c) 1.6; the base case parameter value was 0.8. 

 

The final sensitivity that we consider relates to the manner in which our in silico cells 

respond to contact inhibition.  Specifically, we vary the parameter βs,D, defined to 

quantify the precise manner in which the speed of a cell is modulated by variations in 

the extent of available space in its locality (c.f. Equation 5.51); note that the maximum 

and minimum allowable cell speeds remain constant across these simulations.  The 

quantitative impact on cell dispersal, presented in Figure 5.20a, is found to be dramatic.  

After 6 hours of simulation time, the sensitivity with increased βs,D (i.e. speed less easily 

inhibited by contact) produces an approximate two-fold increase compared to the 

sensitivity with βs,D reduced.  Observing the final cell configurations (Figures 5.20b and
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(a) 

 

 (b) (c)  

 

Figure 5.19: Sensitivity study of spherical cell dispersal upon modification of βχadh.  The 

plot (a) quantifies the average cell dispersal of all cells from their starting position from 

5 independent simulations, whilst the images show typical final cell configurations after 

6 hours for parameter values (b) 0.25 and (c) 4; the base case parameter value was 1. 

 

5.20c), it is clear that this result is due to an inherently increased ability to escape 

adhesive contact.  Indeed, when cell speeds are significantly reduced, the escape 

mechanism provided by persistence becomes practically useless because cells will 

maintain a single direction for at most a few microns.  This is analogous to the situation 

outlined earlier (Figure 5.4b), whereby reducing the average persistence time ηr
*
 

resulted in cell trajectories displaying insignificant dispersal. 

In summary, we find that these simulations provide insight into the manner of 

interaction between passive and active modes of cell migration in the model.  The extent 

of cell dispersal is found to be greatest in the simulations where cell-cell interactions
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(a) 

 

 (b) (c)  

 

Figure 5.20: Sensitivity study of spherical cell dispersal upon modification of βs,D.  The 

plot (a) quantifies the average cell dispersal of all cells from their starting position from 

5 independent simulations, whilst the images show typical final cell configurations after 

6 hours for parameter values (b) 0.5 and (c) 2; the base case parameter value was 1. 

 

have least impact on individual cell movements; that is, where the cell directionality and 

speed are least perturbed by the presence of neighbouring cells.  Combined with data 

from equivalent in vitro experiments, simulations such as these could prove to be 

valuable for parameterising cell behaviour at a wide range of cell densities.  Such 

studies could provide insight into cell migration mechanisms during wound healing, for 

example, where cells migrate from densely populated regions into cell-free tissue. 

 

5.6.2. Growth to Confluence 

The final simulations that we present in this chapter are used to investigate the 

implications of the cell proliferation algorithm detailed in Section 5.5.4.  We make an 
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analogy with the in vitro process of growing cells to confluence by seeding our in silico 

substrate with cells, and subsequently allowing them to undergo both contact-inhibited 

migration and proliferation until the domain is covered by a monolayer of cells.  

Specifically, we assume a domain size of 500 μm x 500 μm, and uniformly distribute 16 

initial cells with randomly assigned migration directions and positions in their cell cycle 

(i.e. either in G1, G2/S or M with weighting dependent on the respective values of ηG1, 

ηG2 and ηM).  Given the assumed value of Rmax (c.f. Table 5.4), we terminate the 

simulation when the population reaches 550 cells (i.e. ~ 99.5% of available space 

occupied).  Note that throughout a simulation we randomise the sequence in which we 

solve our equations for each cell at each time step – this procedure acts to prevent any 

particular cell gaining a proliferative advantage. 

One problematic aspect of performing this type of simulation is the implementation 

of appropriate boundary conditions; periodic or reflective boundaries, for example, 

would not be particularly suitable.  We assume, therefore, that the domain has solid 

boundaries and implement the condition that cells will migrate parallel to the boundary 

rather than allow any part of the cell body to leave the domain (see Appendix B for 

details).  In addition, we assume that each cell can “sense” the boundary and, 

accordingly, incorporate boundary-related contact inhibition effects.  Therefore, in the 

presence of the domain boundary, we assume that cells will not only experience a 

reduction in speed but also a reduced likelihood of initiating mitosis.  In keeping with 

our earlier definitions, this involves increasing the local cell density D
i
, which we 

achieve by incrementing nX
i
 for each grid point X

i
M,N that lies both within the cell 

sensing boundary and beyond the boundary of the computational domain. 

In our simulations we have considered sensitivities to three different parameters, 

each of which relates to separate aspects of the model.  The common thread, however, is 

that each has implications for determining the rate of population growth under our 

contact inhibited proliferation assumptions.  In each case, we present plots depicting 

how the cell population expanded over time.  The first of these, Figure 5.21, shows the 

results of our sensitivity to the parameter Dcrit, which defines the assumed upper 

threshold value of local cell density that will support successful cell cycle transition into 

S/G2 and, subsequently, completion of mitosis.  In the case Dcrit = 0.45, we find that 

very little contact inhibition of proliferation occurs and the rate of population growth 

comes very close to attaining the theoretical maximum in the absence of any contact
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Figure 5.21: Plot showing the rate of growth of a migrating cell population undergoing 

contact inhibited proliferation for a range of Dcrit values.  The base case parameter was 

0.2 (red line), whilst sensitivities were also performed for 0.15 (green line) and 0.45 

(blue line).  The black dashed line indicates the theoretical rate of growth in the absence 

of any contact inhibition (i.e. Dcrit = 1). 

 

inhibition (dashed black line).  The base case simulation (Dcrit = 0.2) is quite different, 

with the cell population exhibiting a roughly logistic mode of growth which takes 

almost 10 hours (i.e. 1 cell cycle length) longer to reach the target cell number.  

Decreasing Dcrit only slightly further to 0.15 is seen to have a strong effect as the 

increased suppression of proliferation results in a population that experiences a 

significant delay in attaining the target size.  It is notable that in all three of these 

simulations the rate of growth is essentially identical for the first three to four 

population doublings, before the perceived availability of space is reduced and many 

cells have their cell cycle progression arrested. 

In view of this result, we examined the implications of modifying two further 

parameters that play a key role in determining the ability of cells to find space: namely, 

χadh and βs,D.  A reduction in the cell-cell adhesive strength (i.e. χadh = 0.58) is 

accordingly found to accelerate population growth, although the difference from the 

base case simulation is relatively minor (Figure 5.22).  The impact of increasing χadh by 

an equivalent amount is found to be much more significant, with the rate of population 

increase noticeably slower (Figure 5.22).  Choosing χadh to be 1.02 ensures that adhesive 

effects dominate any movement relating to the persistent random walk, and each pair of
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Figure 5.22: Plot showing the rate of growth of a migrating cell population undergoing 

contact inhibited proliferation for a range of χadh values.  The base case parameter was 

0.8 (red line), whilst sensitivities were also performed for 0.58 (green line) and 1.02 

(blue line). 

 

isolated daughter cells therefore remains “stuck together”.  This does not have any 

impact on the initial rate of population growth since the cells still sense sufficient 

available space not to inhibit proliferation of their partner.  Beyond this initial phase, 

however, population growth is significantly slowed by the formation of large cell 

aggregates (c.f. Figure 5.18c), resulting in reduced capability of internal cells to 

progress through their proliferation cycle.  It is clear that, in order to attain a rate of 

population growth comparable to the base case simulation, contact inhibition of 

proliferation in strongly adhesive cells would have to be significantly reduced. 

Modifying the manner in which cell speeds are modulated by contact inhibition 

produces results that are qualitatively consistent with what we would expect (c.f. Figure 

5.20): cells that decelerate more readily in response to contact experience a reduced 

ability to find space and undergo division (i.e. βs,D = 0.5), while increased cell division 

is observed when cell speeds are not so easily reduced (i.e. βs,D = 3).  This effect is not 

seen to have a great impact upon the rate of population growth until the global cell 

density becomes relatively large, but a strong disparity is subsequently found between 

the times required to reach the target cell number (Figure 5.23).  These results are 

indicative of a variation in the ability of cells at high density to transiently find 

sufficient space to progress through the G0 checkpoint. 
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Figure 5.23: Plot showing the rate of growth of a migrating cell population undergoing 

contact inhibited proliferation for a range of βs,D values.  The base case parameter was 1 

(red line), whilst sensitivities were also performed for 0.5 (green line) and 3 (blue line). 

 

5.7. Discussion 

Lattice-based modelling approaches have been widely utilised over recent years to 

investigate both the migration of individual cells and the collective growth of cell 

populations.  Whilst such models have proven to be of great value in a variety of 

scenarios, notably angiogenesis, many intrinsic aspects of the associated cell 

movements are necessarily simplified.  In the study of biological systems where cell-

cell and cell-environment interactions are found to be critical determinants of the 

precise spatial dynamics, lattice-free modelling techniques provide a much more 

tractable alternative. 

One approach of this type, incorporating a novel dynamic feedback between 

migrating cells and their fibrous microenvironment, has been proposed by McDougall et 

al. (2006a) who sought to examine the mechanisms of wound-induced dermal scar 

formation.  In this model each migrating fibroblast is assumed to be partially guided by 

the orientation of local collagen fibres, but also capable of re-orienting these fibres 

towards its overall migration direction.  This approach, also incorporating cell 

movement via chemotaxis and persistence, provides the starting point for the extended 

model that we have presented in this chapter.  As well as generalising the original 

discrete-point cell formulation, we have also developed the approach to incorporate 

physical cell-cell interactions.  These modifications, coupled to the inherently adaptable 
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nature of the underlying framework, have allowed us to broaden the future utility of the 

model. 

In the original model formulation, performing discrete-point simulations of cell 

migration in the absence of contact guidance and chemotaxis would have predicted 

continuous motion in a straight line.  Recent in vitro research into the behaviour of cells 

absent of external directional cues suggests that such results would be far from realistic 

(Li et al., 2008; Bosgraaf and Van Haastert, 2009).  These studies, examining the 

movement of isolated amoebae cells, reveal a motion typically consisting of extended, 

relatively straight “runs” interrupted at irregular intervals by “turns” in largely random 

directions.  Taking this work as inspiration, the most significant generalisation of the 

discrete-point model has been the inclusion of a stochastic migratory cue designed to 

capture this behaviour.  Upon the subsequent addition of further migratory cues, the 

model design ensures that the stochastic component continues to play a part; its 

contribution, however, is differentially suppressed depending on the relative strength of 

the other assumed stimuli. 

An analysis of the behaviour introduced by this random motion was examined in a 

series of simple sensitivities involving discrete-point cell migration in response to 

various combinations of directional cues.  The level of cell dispersal exhibited in 

simulations of persistent random walks alone was shown to be widely variable, simply 

through variation of either the average persistence time (Figure 5.4), the straightness of 

“runs” (Figure 5.5) or the randomness of “turns” (Figure 5.6).  Introducing a radially 

increasing fixed chemical profile allowed for the study of cell migration subject to 

variations in chemotactic receptiveness.  Cells exhibiting a strong chemotactic response 

showed little stochastic motion, with trajectories arrowing outwards from the domain 

centre; weakly receptive cells, however, performed longer random walks as they 

struggled to locate the direction of increasing chemical concentration (Figure 5.8).  

Replacing the chemical gradient with a randomly-oriented undulating collagen profile, 

we further examined modes of cell migration within fibrous matrices of low, medium 

and high density.  The amount of variation in these trajectories was, in general, found to 

be reduced with increased weighting of contact guidance since numerous cells were 

forced to traverse very similar pathways through the fibrous structure (Figure 5.10). 

In addition to these sensitivities, we investigated the impact of assuming that the 

ability of cells to respond strongly to a chemotactic gradient is hampered by a tendency 

to undergo contact guidance, particularly within a dense ECM.  Analogous to Figure 
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5.8, we first varied cell receptiveness to the chemical (Figure 5.11).  At low collagen 

density, little qualitative difference was observed in comparison to the earlier matrix-

free trajectories; medium collagen density, however, produced noticeably increased 

tortuosity in the outward trajectories.  Contact guidance was again seen to largely 

dominate the cell paths at high density, and any chemotactic response was significantly 

slowed.  Subsequently, we varied the maximal extent to which the fibrous matrix is 

capable of suppressing chemotaxis (Figure 5.12).  The most interesting results from this 

sensitivity derived from the case where the maximum potential for chemotactic 

suppression was largest.  At low collagen density the cells migrated directly up the 

chemical gradient; similar trajectories, displaying greater contact guidance-induced 

tortuosity, were observed at medium collagen density; whilst at high collagen density, 

any chemotactic response appeared largely absent. 

As demonstrated by these simple sensitivities, the discrete-point cell model has the 

capability to predict modes of migration exhibited by isolated cells under a variety of 

circumstances both in vitro and in vivo.  Since cells rarely migrate in isolation, however, 

we have proceeded to extend the applicability of the model by incorporating a 

biophysical concept of cell-cell interaction.  Borrowing from the work of Macklin et al. 

(2012), we have assumed that each cell adopts an approximately spherical conformation 

and applied an appropriately defined potential function to describe both cell-cell 

adhesion and repulsion.  Although neglecting to explicitly consider precise cell 

morphologies, this model formulation is designed to allow for both deformation of cells 

in close proximity and cell-cell adhesive contact beyond the notional cell boundaries. 

In contrast to the work of Macklin et al. (2012), we have not determined the 

movement of our spherical cells on the basis of physical forces.  In order to maintain the 

ethos of the original discrete-cell formulation, we have instead derived novel methods 

of determining the manner in which cell-cell interactions inform both the directionality 

and speed of overall cell movement.  In terms of the directionality calculation, we 

proposed that the movement of each individual cell is based upon the solution to two 

distinct questions: (i) how strong are the relative effects exerted by each neighbouring 

cell?; and (ii) how strong are each of these effects with respect to all other directional 

cues?.  The instantaneous cell speed calculation, based phenomenologically on the 

concept of contact inhibition (Abercrombie, 1980), has been introduced quite 

separately.  Specifically, we have assumed that, in general, the speed of a cell will 

decrease with increasing “local cell density” – a term that we have coined to denote a 
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normalised approximation of the amount of unoccupied space in the immediate locality 

of a cell. 

The model behaviour upon the inclusion of these new concepts was subsequently 

examined by studying, in the absence of both chemotaxis and contact guidance, the 

dispersal of an initial nodule of cells under a series of pertinent parameter sensitivities.  

These simulations provided a good deal of insight into how the passive mode of cell 

movement integrates with the previous active migration assumptions; indeed, it was 

interesting to examine the mechanisms by which individual cells are capable of 

breaking free from adhesive cell-cell contact.  As could be expected, this process was 

strongly inhibited by an increase in the maximal adhesive weighting (Figure 5.18).  Less 

obvious, however, were the extensive reductions in cell dispersal upon decreasing either 

βχadh, which determines the variation of adhesive strength with the distance between 2 

cells (Figure 5.19), or the parameter βs,D, which controls the response of cell speeds to 

cell-cell contact (Figure 5.20).  Since the persistent random walk provides the 

prominent mechanism of escape from cell-cell contact, these two phenomena appear to 

be due, respectively, to an increased suppression of this directional cue over a longer 

range, and a general decrease in the distance travelled during periods of persistence. 

The final aspect of the model that we introduced was a biophysical representation of 

proliferation, underpinned by the progression of individual cells through the appropriate 

phases of the cell cycle.  The cycle was assumed to be largely deterministic: cells 

leaving S/G2 were committed to division at the end of the M phase, and newly-divided 

cells were committed to growth, which was completed at the end of G1.  Some 

stochasticity was introduced, however, by assuming that cells also experience contact 

inhibition of proliferation; whenever a critical value of the local cell density was 

exceeded, cells would arrest their progression into S/G2 and instead enter the quiescent 

G0 phase.  In cases where sufficient space was deemed to be available, each cell 

progressing through the S/G2 phase was decelerated to an immotile state before 

entering the M phase.  This state was assumed to be maintained throughout M phase 

until each parent cell was subsequently split into two immediately motile daughter cells 

of half volume. 

The implications of this contact-inhibited proliferation algorithm were subsequently 

examined by studying cell population growth within a simulation domain confined by 

solid boundaries.  For cells with a particular set of movement properties, the first 

sensitivity study illustrated that, in order to achieve a logistic-type mode of population 
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growth, the contact inhibition of proliferation was required to be relatively strong (i.e. 

Dcrit small).  In fact, the cell population behaviour was found to be particularly sensitive 

to changes in this parameter (Figure 5.21); over a relatively small range, the simulations 

predicted a delay of more than 2 full cell cycle lengths in the attainment of the target 

cell number (i.e. Dcrit = 0.15), and also a rate of growth approaching the inhibition-free 

theoretical maximum (i.e. Dcrit = 0.45).  Subsequently, we also examined the sensitivity 

to two parameters that affect the ability of individual cells to transiently find the space 

required for progression through the G0 checkpoint.  Accordingly, it was observed that 

cells reducing their speed more readily in response to contact divide more slowly 

(Figure 5.23), whilst significant delay in population growth is also imposed in an 

adhesion-dominated regime because the formation of extensive aggregates suppresses 

the ability of internal cells to find the space required to initiate proliferation (Figure 

5.22). 

A broad spectrum of results has been presented in this chapter, ranging from the 

migration patterns displayed by individual discrete-point cells to the population growth 

and dispersal of physically-sized spherical cells.  In light of the work in previous 

chapters, it is notable that no explicit experimental data has been presented here with 

which to quantitatively validate the model predictions.  Such validation has not, 

however, been the intention; given some of the novel aspects of the model 

implementation, performing sensitivities on each component has helped to illuminate 

the precise mechanisms driving the in silico cell behaviour.  In the next chapter, 

however, we shall seek to demonstrate the value of the model by applying it to a 

widely-studied experimental system – the in vitro scrape wound assay.  The cell type of 

interest in this case will once again be the fibroblast, which has been observed to be 

capable of exhibiting an irregular, elongated morphology.  Since the model thus far 

caters only for cells of loosely spherical shape, we must first seek to generalise the 

model a little further in order to characterise the behaviour of strongly aspherical cells. 
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Chapter 6 

 

A New Generalised Model of Cell Migration II: The 

Impact of Cell Morphology and Applications to 

Experimental Systems 

 

 

 

6.1. Introduction 

In the previous chapter, a new model for discrete-point cell migration was presented that 

included mechanisms whereby each cell assumed a loosely spherical morphology and 

underwent biophysical interactions with other cells in close proximity.  As we stated 

earlier, however, our goal has been to develop a modelling framework that can 

reproduce a range of crawling cell movements in a variety of scenarios and, since many 

crawling cell types exhibit an elongated morphology (e.g. fibroblasts, Dictyostelium), it 

is clear that the current assumption of cells with fixed spherical shape is somewhat 

limiting.  In this chapter we seek to address this important issue by extending the 

formulation to include non-spherical morphology. 

The concept of cell shape is an important consideration: not only would we expect 

specific morphologies to have a strong effect on the manner in which cells interact, but 

the shape of particular cell types is also believed to be strongly coupled to their function 

(Bray, 2001).  For our latest model extension, we propose that each in silico cell now 

assumes a loosely ellipsoidal shape with the capability to dynamically elongate or 

contract its body in response to various stimuli.  Many ideas for the model are inspired 



Chapter 6: A New Generalised Model of Cell Migration II 

 

183 

 

by the work of Palsson and Othmer (2000); however, in order to maintain the existing 

model rationale, it is necessary to approach some of the inherent complexities from a 

very different perspective. 

We begin in the next section by outlining the assumptions of our ellipsoidal cell 

migration model.  Although some new equations are required, the majority of those 

presented in Chapter 5 remain largely unchanged.  In some cases the validity of an 

equation may be subject to an additional caveat or slight redefinition of a variable, but 

any such required modifications will be made clear in the text.  Much like the previous 

chapter, we shall go on to demonstrate the implications of our latest model definitions 

by considering a simple test case – namely, the response of an ellipsoidal cell to a 

moving chemoattractant source.  Subsequently, the final set of simulations that we 

perform will be seen to provide a much more rigorous test of the modelling approach: 

firstly by benchmarking in silico cell movement and proliferation results against real 

experimental data, and then by applying our model to in vitro fibroblast scrape wound 

assays.  Finally, we shall conclude this chapter by discussing the implications of our 

results and drawing appropriate conclusions, with particular consideration given to the 

future utility of the model. 

 

6.2. Ellipsoidal Cell Model 

 

6.2.1. Physical Characteristics of the Cell 

Since we now wish to represent our cells as ellipsoidal, rather than spherical, it is 

necessary to consider three semi-axis lengths for each cell, rather than a single radius.  

We denote the semi-major and semi-minor axis lengths of the ellipse in the plane of 

simulation by A
i
(t) and B

i
(t), respectively, and assume that cell volume V

i
(t) is 

conserved during any change of shape by satisfying the equation: 

 

  ( )    ( )    ( ) , (6.1) 

 

where R
i
(t) now represents the radius of a spherical cell with equivalent volume.  Note 

from this definition that, at fixed volume, any change in cell shape is assumed to occur 

at fixed semi-axis length R
i
(t) in the plane perpendicular to the domain.  In the direction 

of cell polarisation we assume R
i
(t) ≤ A

i
(t) ≤ A

i
max(t), where A

i
max(t) is the maximum 
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allowable cell semi-major axis length at a particular volume – note that this definition 

also uniquely defines a set of values for B
i
(t) ≤ R

i
(t). 

As in the spherical cell formulation of Macklin et al. (2012), we continue to assume 

that there is inherent uncertainty in the exact cell morphology and again consider each 

cell to have a sensing region beyond its notional boundary.  Rather than assuming that 

each cell can sense up to a fixed distance from all points on its surface, however, we 

assume that the cell senses within a region equivalent to its shape such that: 

 

  
 ( )

  
 ( )

 
  ( )

  ( )
, (6.2) 

 

where AS
i
(t) and BS

i
(t) are the cell semi-major and semi-minor sensing axes, 

respectively.  Furthermore, mirroring Equation 6.1, we assume that the area of the cell 

sensing region is conserved with any change in cell shape by defining: 

 

  
 ( )    

 ( )    
 ( ) , (6.3) 

 

where RS
i
(t) now represents the sensing radius of a spherical cell with equivalent 

volume.  Importantly, it should be noted that these definitions inherently impose the 

condition that, compared to lateral regions, the polar extremities of an elongated cell 

exhibit both greater uncertainty in shape and greater ability to create and maintain 

adhesive bonds with neighbouring cells.  As an analogue to Figure 5.13, a schematic 

diagram illustrating the new assumptions is presented in Figure 6.1. 

We again point out that the time dependence in each of the above definitions is due 

to the cell volume variations that take place during the G1 phase of the cell cycle.  As 

such, some further parameters are required to constrain the maximum possible cell size 

throughout simulation.  As in Section 5.5.1, we have: Vmax, the maximum cell volume; 

Rmax, the radius of a spherical cell with equivalent maximum volume; and RSmax, the 

sensing radius of a spherical cell with equivalent maximum volume.  In addition to this 

we now also define Amax, the maximum attainable semi-major axis length of a fully-

grown cell, subject to: 
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 ( )

    
 

  ( )

    
, (6.4) 

 

where A
i
max(t) represents the maximum possible semi-major axis length of any cell at a 

particular point in time.  One further assumption is required with regard to the G1 phase 

of the cell cycle: although cell morphologies will now be allowed to vary temporally 

(see Section 6.2.4), at each time step where the cell volume is increased, this will be 

done in such a manner that the instantaneous cell eccentricity (i.e. ratio of A
i
(t) to B

i
(t))  

is conserved. 

Finally, we point out that no further explicit assumptions are made regarding the size 

or shape of the nuclear component of the cell.  As will be seen, it is necessary only to 

maintain the assumption of a fixed nuclear volume VN, characterised by an equivalent 

nuclear radius RN. 

 

6.2.2. Cell-Cell Interactions 

A major issue presented during the process of generalising the cell movement model 

from spherical cells to ellipsoidal cells is the construction of a consistent algorithm for 

simulating cell-cell interactions.  For spherical cells we adopted the methodology of 

Macklin et al. (2012), where the behaviour of any two cells was uniquely defined by the 

distance between their centres of mass.  This is no longer of any use for our ellipsoidal 

cells since, depending on the respective orientations of the two cells, any fixed distance 

between their centres could be associated with a range of possible behaviours: adhesion, 

repulsion or no interaction at all (note that this fact is intimated approximately by Figure 

6.1b).  The solution that we propose relies on the fact that for any two circles in the 

plane, their area of overlap can be expressed uniquely in terms of the distance between 

their centres.  Therefore, by calculating the area of overlap a
ij
 between the sensing 

ellipses of any two cells, we can uniquely, and consistently, define an “equivalent 

distance” d
ij
 between the cells, had they both been identically spherical with equivalent 

volumes.  Thus, by subsequently calculating the value of h
ij
(d

ij
) (rather than simply 

h
ij
(‖q

ij‖)), we can uniquely define the related cell-cell interaction behaviour for 

ellipsoidal cells without any significant modification of the equations detailed in Section 

5.5.2. 

Although this solution sounds quite simple and elegant, in actual fact it presents a
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 (a) (b)  

 

Figure 6.1: Schematic diagram illustrating the rationale of assumptions regarding cell 

morphology and cell-cell interactions in the ellipsoidal cell migration model.  In (a), the 

labels A and B indicate, respectively, the equivalent semi-major and semi-minor axis 

lengths of the ellipsoidal cell in the plane of simulation.  The maximum adhesion 

interaction distance varies as the cell boundary is traversed; it is characterised by a 

concentric ellipse of identical eccentricity, where the semi-major and semi-minor axis 

lengths are labeled AS and BS, respectively.  The explicit cell morphology is not tracked 

in time – the thick dashed line in (a) shows one particular possibility.  The configuration 

of cells in (b) shows that uncertainty in exact cell morphologies can be accounted for by 

overlapping of equivalent cell ellipses and the maintenance of adhesive contact beyond 

the notional cell boundaries. 

 

variety of complex mathematical problems.  Firstly, and most significantly, we require 

an algorithm for calculating the overlap area between two ellipses of random size at 

random positions in the plane.  Fortunately, however, this is a problem that has recently 

been tackled in the development of a force-based model for studying pedestrian 

dynamics (Chraibi et al., 2010) and, furthermore, a detailed summary of the analysis 

and numerical implementation has been made freely available (Hughes and Chraibi, 

2011).  In general, the algorithm involves a sequential process of solving a quartic 

polynomial for the intersection of the respective ellipse equations; determining the 
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number of distinct, real-valued roots; and, finally, calculating the resultant area of 

overlap by appropriately combining sector and segment areas demarcated by the 

respective ellipse boundaries and their points of intersection.  For brevity we refer the 

reader to these references for full details and, for what follows, accept that the extent of 

the overlap between the sensing boundaries of any two elliptical cells can be accurately 

calculated. 

The next problem that we require to tackle is the derivation of an expression that 

uniquely relates the overlap area A of two general circles in the plane of radii R1 and R2 

to the distance between their centres d.  In all that follows we shall assume R1 ≥ R2, and 

note that A(d ≤ R1 – R2) = πR2
2
, whilst A(d ≥ R1 + R2) = 0.  The key to this process is 

found to be splitting the derivation into two distinct cases as shown in Figure 6.2, where 

the transition occurs at dtrans = (R1
2
 – R2

2
)
1/2

. 

 

 (a) (b) (c)  

 

Figure 6.2: Schematic diagram illustrating (a, c) the 2 assumed cases in the calculation 

of the overlap area (dark shaded region) between 2 circles of radii R1 and R2 (R1 ≥ R2) in 

the plane, and (b) the point of transition between these cases.  The circle centres are 

separated by distance d, and the transition between the 2 cases occurs at dtrans = (R1
2
 – 

R2
2
)
1/2

 where the points of intersection are collinear with the centre of the smaller circle 

(dashed vertical line). 

 

Beginning with the case where d is larger than the transition distance, an expression 

for the overlap area between the circles can be constructed by appropriately combining 

the areas of a series of sectors and triangles.  Upon elimination of any angles in the 

expression, the area of overlap can be defined as a function of the distance between the 

cell centres as follows: 
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(6.5) 

 

Utilising a similar method for the case where d is smaller than the transition distance, 

we further derive: 
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(6.6) 

 

Given a particular overlap area A
*
, our goal is to use the above expressions to 

calculate the corresponding distance d
*
 between the circle centres.  Clearly, however, 

due to the inherent complexity of these equations, it is not possible to write an explicit 

expression for d in terms of A.  The value of d
*
 must, therefore, be calculated 

numerically, and we choose to do so by employing Newton’s Method, such that d
*
 is the 

solution of the following iterative scheme: 

 

        
 (  )

  (  )
 , where  (  )   (  )    . (6.7) 

 

Since we necessarily have two different expressions for f(dn), and f’(dn), depending on 

the value of dn, the convergence to a solution depends crucially on the choice of initial 

value d0.  In order to demonstrate how this choice is made, we present a typical graph of 

A(d) in Figure 6.3, where it is important to note that the maximum absolute value of 
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A’(d) occurs at the transition distance dtrans = (R1
2
 – R2

2
)
1/2

.  This has been highlighted 

by plotting the tangent line at this point on the figure (i.e. dashed line). 

If we consider a case where A
*
 ≲ A(dtrans) and choose d0 ≲ R1 + R2, then f’(d0) is 

very small and d1 may be less than dtrans, meaning that convergence cannot then be 

achieved.  This problem is mirrored if, conversely, A
*
 ≳ A(dtrans) and we choose d0 ≳ R1 

- R2.  Therefore, it is clear that we should always choose d0 such that we approach the 

solution from the other side.  As it happens, we can actually make an informed initial 

“guess” by utilising the linear function A0(d) (i.e. dashed tangent line) plotted on Figure 

6.3.  The equation of this line is given by: 
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By choosing our initial value d0 to be the solution of A0(d0) = A
*
, we find that we can 

get “close” to the solution whilst always approaching it from the correct direction; 

hence, convergence will be guaranteed for 0 < A
*
 < πR2

2
.  Specifically, the value of d0 

can be calculated from the equation: 
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(6.9) 

 

Returning to our original cell model notation, we therefore see that, given an overlap 

area a
ij
 between two elliptical cells (c.f. A

*
), and the equivalent sensing radii RS

i
 and RS

j
 

of the cells (c.f. R1 and R2), the above equations can be used to numerically calculate the 

equivalent distance d
ij
 between the cells (c.f. d

*
), had they both been spherical and of 

equivalent volume.  By simply replacing ‖q
ij‖ with d

ij
 in Equations 5.30, 5.34 and 5.35, 

cell-cell interactions between non-spherical cells can thus be modelled entirely 

consistently without the necessity of introducing any further equations. 
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Figure 6.3: Schematic plot showing the variation of overlap area A(d) between two 

circles of radii R1 and R2 (R1 > R2) with distance d between their centres (solid red line).  

When d ≥ R1 + R2 there is no overlap, while for d ≤ R1 – R2 the small circle is fully 

contained within the larger one (i.e. A(d) = πR2
2
).  The dashed black line indicates the 

tangent line A0(d) at the transition point dtrans = (R1
2
 – R2

2
)
1/2

 (c.f. Figure 6.2) where the 

gradient of A(d) takes its maximum absolute value.  If the overlap area between the 

circles is known to be A
*
, the distance d0 satisfying A0(d0) = A

*
 provides an initial guess 

that guarantees convergence when using Newton’s Method to solve for the exact 

distance d
*
 between the circle centres. 

 

In essence, this technique allows us to propose that the interaction behaviour between 

any two cells (spheroidal or ellipsoidal) is uniquely defined in terms of the area of 

overlap a
ij
 between their sensing boundaries in the plane of simulation.  To illustrate 

this point, Figure 6.4 presents a plot of the function ha
ij
(a

ij
) that is numerically 

equivalent to the plot of h
ij
(‖q

ij‖) given previously in Figure 5.14.  Whilst the 

definitions used in Figure 5.14 were only capable of accounting for the cell-cell 

interaction between two spherical cells, the generalised plot given in Figure 6.4 can 

additionally be used to account for the behaviour of two interacting ellipsoidal cells
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Figure 6.4: Typical plot of the function ha
ij
(a

ij
), which is assumed to govern the 

behaviour of two interacting cells as the area of overlap between their sensing 

boundaries varies (i.e. ha
ij
 > 0 indicates adhesion, ha

ij
 < 0 indicates repulsion); the inset 

shows the features of the adhesive region in greater detail.  The plot is numerically 

equivalent to that presented in Figure 5.14, where the function h
ij
 was expressed in 

terms of the distance ‖q
ij‖ between the centres of mass of two spherical cells.  As can be 

seen, the key qualitative features of the function have been conserved: a steep linear 

section indicating a notional overlap between the cells’ nuclear components (i.e. a
ij
 > 

400); an equilibrium point where adhesion and repulsion are in balance (i.e. a
ij
 ≈ 135); 

and a point of maximal adhesive strength (i.e. a
ij
 ≈ 90).  Adhesive contact is lost when 

the cells’ sensing boundaries no longer overlap (i.e. a
ij
 = 0). 

 

(with equivalent volumes).  Recall that, for ellipsoidal cells, it is necessary to instead 

define h
ij
(d

ij
), where d

ij
 ≡ d

ij
(a

ij
) is an “equivalent distance” which accounts for the 

particular overlap area.  Hence, although the functional form ha
ij
(a

ij
) cannot be written 

explicitly, we can relate this to our earlier definitions by the implicit expression ha
ij
(a

ij
) 

≡ h
ij
(d

ij
(a

ij
)). 

 

6.2.3. Cell Movement 

One of the biggest advantages of working with spherical cells is that it is not necessary 

to consider the concept of polarisation – each cell can be assumed to be equally 

polarised in all directions at all times.  When we extend the model to include cells that 
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elongate, however, we require additional rules to govern appropriate temporal dynamics 

when a cell changes direction.  Referring back to Section 5.5.2, we recall the definition 

of “active” and “passive” to denote the two distinct modes of cell movement – 

individual cell migration and biophysical cell-cell interactions, respectively (Palsson 

and Othmer, 2000).  These definitions are of much greater importance here since, 

although both modes of movement are combined to derive the overall movement 

direction u
i
(t), cell orientations will only be modified to achieve polarisation in the 

direction of the overall active vector vΣ
i
(t) (i.e. it is assumed that adhesive and repulsive 

effects do not cause cell re-orientation). 

The most consistent means of implementing change of cell migration direction 

within the existing model framework is to allow the cells to rotate around their centre of 

mass (although this is lacking biological realism to some extent).  The maximal degree 

of cell rotation can, however, be reduced by assuming that each ellipsoidal cell is 

essentially polarised at both extremities of its semi-major axis (i.e. a cell can reverse its 

migration direction without performing any rotation).  As detailed in the previous 

chapter, the vector vΣ
i
(t) is calculated only every ηu time units; with this in mind, we 

further assume that each cell is capable of fully re-orienting its migration direction 

between these calculations (i.e. between pseudopod extensions).  Combining these 

assumptions, and defining by ω the rate of cell rotation, we therefore derive the 

necessary condition ω ≥ π / 2ηu. 

In order to implement these modifications we firstly define the vector p
i
(t), which 

represents the orientation direction of any cell.  Upon each new calculation of vΣ
i
(t), we 

also calculate θ
i
p,Σ(t), representing the acute angle between vΣ

i
(t) and ±p

i
(t).  If the acute 

angle is made with –p
i
(t), the cell polarisation is reversed before any rotation takes 

place.  Parameterising the time since the beginning of cell rotation by tp, the orientation 

of a cell is subsequently rotated in the appropriate direction, and through the appropriate 

angle, according to: 

 

  (  )  6
   (   )     (   )

    (   )    (   )
7    ( ), (6.10) 

 

until p
i
(tp) ≡ vΣ

i
(0) ≡ vΣ

i
(tp), where 0 ≤ tp ≤ θ

i
p,Σ(0) / ω ≤ ηu.  Note that in order to satisfy 

this final condition, we first require the p
i
 and vΣ

i
 vectors to be appropriately normalised. 
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Due to the above stated constraint on the value of ω (i.e. ω ≥ π / 2ηu), upon the next 

calculation of vΣ
i
(t) the definition of persistence direction va

i
(t) (c.f. Equation 5.40) is, 

by design, always equivalent to the current direction of cell orientation.  That is, upon 

each new pseudopod extension, each cell will still have a certain tendency to maintain 

its current direction of migration.  In this new formulation, however, there are two of 

the previously defined equations that we need to update.  Specifically, Equations 5.33 

and 5.39 are modified according to: 
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and: 

 

  ( )      
 ( ), (6.12) 

 

respectively, to ensure that the active component of cell movement reflects the 

intermediate cell orientations obtained during rotation.  In order to reflect this change, 

the appropriate vector has been re-defined to v
i
q,p(t).  We also note, in Equation 6.11, the 

replacement of ‖q
ij‖ with the equivalent distance d

ij
 introduced in Section 6.2.2 above. 

  

6.2.4. Cell Morphology 

The final aspect of the model that is unique to the ellipsoidal cell concept is that of 

dynamic temporal variations in cell shape.  The stimuli for shape change that we assume 

are in line with those modelled by Palsson and Othmer (2000) in their mechanical 

model of Dictyostelium discoideum movement.  The overall approach to incorporating 

these stimuli is inherently different, however, and we do not consider viscoelastic 

deformations.  The three factors influencing cell shape at any point in time are assumed 

to be: a “de-polarisation” process during cell rotation; a set-point relationship between 

cell speed and semi-major axis length; and stretch or compression as a result of local 

cell-cell interactions.  We shall first provide the equation governing this process.  Note 

that we determine the cell shape by solving an equation for A
i
(t), and B

i
(t) is then 
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uniquely defined by Equation 6.1 at fixed cell volume.  Therefore, the equation 

governing the evolution of the semi-major cell axis length A
i
(t) is: 
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where R
i
(t) ≤ A

i
(t) ≤ A

i
max(t). 

In this equation we assume that the process of de-polarisation during cell rotation 

occurs independently of any other stimuli for shape change, where the parameter λω 

characterises the associated (linear) rate of cell body contraction.  We make this 

assumption on the basis that such an adjustment of morphology corresponds to an 

internal rearrangement of structure (Palsson and Othmer, 2000), which will transiently 

dominate any response to externally applied factors.  In some sense, this term helps to 

compensate for the somewhat biologically unrealistic assumption of cell rotation by 

drawing each cell towards a decreasingly polarised morphology.  Note that the larger 

the change in cell directionality (i.e. the longer the rotation process), the larger the 

potential decrease in A
i
(t). 

When not undergoing an adjustment to migration direction we assume that, in the 

absence of any further stimuli for shape change, the target morphology of each cell is 

uniquely coupled to its speed.  More precisely, we assume that the cell eccentricity 

increases with increasing speed.  Although characterised by the rate parameter λs, the 

overall response is seen to depend crucially on the magnitude of the difference between 

the value of A
i
(t) and the set-point semi-axis length A

i
speed(t) associated with the 

instantaneous cell speed.  This set-point relationship between cell speed and target cell 

size is given by the equation: 
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, (6.14) 

 

where βA,s determines the shape of this relationship, smax is the maximum attainable cell 

speed (calculable from the parameterisation of Equation 5.52) and A
i
max(s)(t) is the 
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maximum possible cell semi-major axis length attributable to this stimulus alone.  Note 

that the limiting value for this variable in fully-grown cells is Amax(s) ≤ Amax and, similar 

to Equation 6.4, we define: 
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An important point to highlight here is that, under certain circumstances, Equation 6.14 

can be seen to give rise to a cell “re-polarisation” process upon the cessation of any 

directional change (i.e. if A
i
(t) < A

i
speed(t), then dA

i
(t)/dt > 0). 

The final factor contributing to the elongation or contraction of cell morphology is 

the combined influence of other cells in close proximity.  This process is characterised 

by the rate parameter λq, whilst appropriate values of h
ij
(d

ij
) are also used to capture 

both the relative “strength” and direction of the push (i.e. repulsion; h
ij
(d

ij
) < 0) or pull 

(i.e. adhesion; h
ij
(d

ij
) > 0) exerted by each neighbour.  It is assumed that the 

contribution from each interacting cell is decomposed onto the major (i.e. cos term) and 

minor (i.e. sin term) cell axes (Palsson and Othmer, 2000).  Therefore, whether a cell is 

stretched or compressed by the push or pull of a neighbouring cell depends crucially on 

the variable θ
ij

p,q(t), representing the acute angle between q
ij
(t) and ±p

i
(t). 

 

6.2.5. Further Model Modifications 

Before we can conclude discussion of the ellipsoidal cell model, there are some further 

minor modifications to previous equations and methodologies that must be mentioned.  

The most important of these relate to the calculation of local cell density.  Given the 

now elongated cell morphologies, it is necessary to update the function ξ
i
(x,t); this is 

done by re-defining the coefficients of Equation 5.42 such that fixed values of this 

function now represent elliptical – rather than spherical – contours centred on the cell 

centroid position.  Note that Equations 5.41, 5.43, 5.44 and 5.45 are unchanged by this 

modification, as is Equation 5.57 describing the weight function for fibrous matrix 

modification.  We now define: 
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where θp ∈ (0, 2π) is the angle of the cell orientation p
i
(t) measured from the positive x1-

direction.  The overall algorithm for local cell density calculation remains unchanged 

(c.f. Equations 5.48 – 5.50), but in the interests of computational efficiency we modify 

the construction of the spatial grid within the sensing region of the target cell.  

Specifically, we now align the co-ordinate axes of our grid to coincide with the semi-

major and semi-minor target cell axes; this method minimises the number of wasted 

grid points lying outwith the sensing region of the target cell.  Therefore, modifying 

Equations 5.46, the set of grid points X
i
M,N, for –M

*
 ≤ M ≤ M

*
 and –N

*
 ≤ N ≤ N

*
, is now 

defined by: 
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and ∆X
i
 ≤ BS

i
 - B

i
 = R

i
 / A

i
 ∙ (RS

i
 – R

i
) is the grid spacing. Furthermore, the grid point 

extremities are now independently defined by: 
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A further notable feature of this calculation for ellipsoidal cells is that any two cells in 

close proximity may, due to their respective orientations, generate very different local 
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cell density values.  This is consistent, however, with the assumption that the cells have 

a greater sensing ability at the extremities of their semi-major axes. 

 

6.3. Ellipsoidal Cell Simulation Results 

Our cell migration model has now been presented in full.  Given the latest model 

definitions for the ellipsoidal case outlined above, we begin this section by presenting 

results from a simple test case.  Specifically, we simulate single cell chemotaxis in a 

series of sensitivities that examine the dynamic nature of cell shape evolution.  

Following this, we seek to benchmark our cell properties against real in vitro fibroblast 

data and, finally, discuss the implications of these results in the context of a healing 

scrape wound assay. 

 

6.3.1. Single Cell Chemotaxis 

The migratory response of cells to chemical stimuli is a widely used model system in 

the study of cell motility.  Here, we perform simulations that are analogous to the 

classical experimental assay whereby in vitro cells are exposed to a moving 

chemoattractant source (see, for example, Claviez et al. (1986); Figure 6.5).  The in 

silico cells in such simulations undergo a series of variations in orientation and speed, 

thus providing an excellent scenario in which to examine the cell shape evolution 

properties predicted by Equations 6.13 and 6.14. 

For each simulation we choose to focus on just a single cell, which is initially 

positioned at the centre of a 300 μm x 300 μm square domain.  A fixed concentric 

chemoattractant profile is initially centred in the top left of the domain, and is 

subsequently moved instantaneously every 3 hours to, successively, the top right, 

bottom left and bottom right of the domain.  In each case the maximal concentration is 

situated 75 μm from the two nearest domain boundaries, and the domain-wide profile is 

described by the equation: 

 

 ( )    
  

   , (6.19) 

 

where r is the normalised distance from this maximum.  The appropriate parameters 

governing migration of the cell correspond to those of the base case simulations in the 

previous chapter, and can be found in Table 5.1.  All additional base case parameter 
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values required in this section are listed in Table 6.1, whilst the specific values of the 

modified parameters in each sensitivity study can be found in the relevant figure 

caption. 

 

 (a) (b) (c) (d) (e)  

 

Figure 6.5: Time-series of experimental images showing the response of a 

Dictyostelium cell to a micropipette containing a source of the chemoattractant cyclic 

AMP.  Note that the cell undergoes a process of re-orientation when the position of the 

micropipette is changed.  Images were recorded (a) 43, (b) 57, (c) 63, (d) 71 and (e) 78 

seconds after initial insertion of the micropipette (scale bar = 20 μm).  Image taken from 

Claviez et al. (1986). 

 

Parameter Definition Value 

ω Cell rotation rate π/2ηu rad ∙ hr
-1 

Amax Maximal equivalent cell semi-major axis length 24 μm 

Amax(s) Maximal speed-related cell semi-major axis length 24 μm 

λω Cell body contraction rate during rotation 400 μm ∙ hr
-1

 

λs Speed-related morphology modification rate 5 hr
-1

 

βs,A Speed-related morphology modification shape parameter 1 

 

Table 6.1: Base case parameters used for all simulations in Section 6.3.1. 

 

The sensitivities that we consider only involve modification of parameters that 

control the evolution of cell morphology.  Therefore, the trajectory of the cell is not 

affected by any of these changes and remains consistent throughout each simulation that 

we perform.  The cell trajectory is presented in Figure 6.6, where the red circles indicate
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Figure 6.6: Cell trajectory exhibited during the single cell chemotaxis simulations; the 

red circles indicate the 4 peaks of chemoattractant concentration experienced by the cell 

over intervals of 3 hours.  The cell begins at the centre of the domain and is sequentially 

attracted by the chemical peak at the top left, top right, bottom left and bottom right of 

the domain (scale of image = 300 μm x 300 μm). 

 

the 4 respective positions of maximum chemical concentration.  It can be seen that, 

much like Figure 5.8, the cells lose directionality in the vicinity of these peaks due to 

the relative paucity of chemical gradients.  It should be noted that the cell speed does 

not remain fixed over the course of this trajectory, but in fact undergoes fluctuations in 

response to variations in the local chemical gradient.  By Equation 6.14, therefore, the 

semi-major axis length A
i
speed(t), which satisfies the set-point relationship between cell 

shape and cell speed, also fluctuates over time.  The temporal evolution of A
i
speed(t) in 

the base case simulation is shown in Figure 6.7, where the peaks indicate the time points 

at which the cell experiences maxima in the chemical gradient.  Inspection of Equation 

6.13 reveals that, in the absence of cell rotation (and cell-cell effects), A
i
speed(t) is the 

equilibrium semi-major axis length that the cell will always tend towards; in what 

follows, therefore, we shall refer to this as the “target” morphology. 

In Figure 6.8, we present a series of snapshots from the base case simulation, 

showing some typical variations in the cell morphology.  Figure 6.8a shows the initial 

condition where the cell is already oriented towards the chemical peak, and significantly 

elongated due to the steepness of the gradient and associated large cell speed.  This 

morphology is maintained for an extended period as the cell persists towards the
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Figure 6.7: Plot showing the evolution of the “target” cell semi-major axis length 

A
i
speed(t) in the base case single cell chemotaxis simulation.  This value is uniquely 

correlated to the instantaneous cell speed s
i
(t) – the oscillatory behaviour reflects the 

temporal fluctuations in speed as the migrating cell experiences variations in the local 

chemical gradient. 

 

chemical peak (Figure 6.8b).  A contracted morphology is displayed in Figure 6.8c 

where the chemical gradient flattens out and the cell undergoes a re-orientation – Figure 

6.8d indicates the subsequent “re-polarisation”.  Figures 6.8e and 6.8f, respectively, 

show cell morphologies that are contracted during the search for the new chemical 

source and elongated upon subsequent location of the gradient.  In initial response to the 

final chemoattractant profile, we see that the cell has again undergone extensive 

elongation (Figure 6.8g), before again contracting as the ability to sense the gradient is 

lost and random migration replaces directed movement (Figure 6.8h). 

We proceed to consider varying a series of pertinent parameters, in order that we can 

more rigorously assess the mechanisms by which the predicted cell morphologies 

evolve.  In each case we plot a graph of the temporal variation of the semi-major cell 

axis A
i
(t) compared against the temporal variation in A

i
speed(t), which represents the 

target semi-major axis length that is uniquely defined by the instantaneous cell speed 

(c.f. Equation 6.14).  Note that the lower limit of A
i
(t) in each of these plots represents 

the maximal extent of cell body contraction (i.e. the cell morphology has become 

identically circular, A
i
(t) = R

i
(t)). 
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(a) (b)  

 

(c) (d)  

 

Figure 6.8: Series of snapshots from the base case simulation of single cell chemotaxis 

showing typical morphologies exhibited by the cell under the influence of the varying 

chemical profiles it experiences over time (chemical concentrations are given by the 

colour bars).  Specifically, the images correspond to (a) 0 hr, (b) 1.1 hr, (c) 4.8 hr, (d) 

5.4 hr, (e) 6.3 hr, (f) 6.6 hr, (g) 9.8 hr and (h) 10.2 hr after the beginning of the 

simulation. 

 

The first sensitivity that we perform is on the parameter λω, which quantifies the rate 

of cell body contraction during rotation.  Recall that cell contraction during rotation is 

independent of any other stimuli for morphological change; that is, the speed-related 

term will not act to restore cell eccentricity until after rotation has been completed.  The 

results from the base case simulation are presented in Figure 6.9a, where the dashed line 

indicates the evolution of A
i
speed(t) (recall that the 4 pronounced peaks represent the
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(e) (f)  

 

(g) (h)  

 

Figure 6.8 (cont’d): Series of snapshots from the base case simulation of single cell 

chemotaxis showing typical morphologies exhibited by the cell under the influence of 

the varying chemical profiles it experiences over time (chemical concentrations are 

given by the colour bars).  Specifically, the images correspond to (a) 0 hr, (b) 1.1 hr, (c) 

4.8 hr, (d) 5.4 hr, (e) 6.3 hr, (f) 6.6 hr, (g) 9.8 hr and (h) 10.2 hr after the beginning of 

the simulation. 

 

maxima in the chemical gradient as experienced by the migrating cell).  Although the 

cell comes close to attaining its target shape at each of these peaks, the shape is seen to 

oscillate rather extensively in regions of shallower chemical gradient as the cell 

undergoes a persistent random walk that is interspersed by a series of rotations.  The 

extent to which the cell is restored towards its target shape at any point in time 

ultimately depends on both the amount of time spent persisting in particular directions,
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(a) 

 

(b) 

 

(c) 

 

Figure 6.9: Plots showing the evolution of the cell semi-major axis length A
i
(t) during 

single cell chemotaxis simulation for a range of values of the parameter λω, which 

quantifies the linear rate of cell body contraction during rotation.  The dashed black line 

in each case shows the evolution of the target semi-major axis length A
i
speed(t), which is 

uniquely correlated to the instantaneous cell speed s
i
(t) (c.f. Equation 6.14).  Images 

correspond to the parameter values (a) 400 μm ∙ hr
-1

 (base case), (b) 100 μm ∙ hr
-1

 and 

(c) 1600 μm ∙ hr
-1

. 
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and the particular angles through which the cell rotates (i.e. time spent rotating).  A 4-

fold decrease in the value of λω is seen to have a profound effect: throughout simulation 

the cell shape remains elongated and much closer to its target morphology, due to 

significant damping of the oscillatory behaviour (Figure 6.9b).  An equivalent increase 

in the parameter once again results in a cell that largely achieves the target elongation at 

the peaks of the chemical gradient; away from this strong directional stimulus, however, 

the cell remains approximately spherical due to an inability to recover from the rapid 

body contractions undergone during de-polarisation (Figure 6.9c). 

Our second sensitivity considers the implications of varying λs, which describes the 

rate of cell shape recovery upon a perturbation away from the target morphology.  We 

firstly impose a 5-fold decrease in this value, and note that this results in an evolution of 

A
i
(t) which largely remains significantly contracted with respect to the target value 

(Figure 6.10b).  One interesting aspect of this result is the inherent delay that is imposed 

in cell elongation as the cell senses the peaks of chemical gradient, with A
i
(t) continuing 

to increase even though A
i
speed(t) has long since been decreasing.  This type of delay was 

also weakly observable in the base case simulation (Figure 6.10a), but there is no such 

occurrence when λs is increased.  In this latter case the target shape is largely attained at 

all times, with the exception of the various strong contractions of the cell body during 

changes in migration direction (Figure 6.10c). 

The final sensitivity study that we perform relates to the parameter βs,A, which 

determines the precise manner of the set-point relationship between cell speed and cell 

morphology.  The effect of reducing this parameter is shown in Figure 6.11b where the 

sensitivity of cell shape to variations in cell speed is reduced, resulting in a temporal 

evolution of target shape that is significantly damped in comparison to the base case 

simulation (Figure 6.11a).  Due to the tendency of the cell to lose directionality in the 

presence of weak chemical gradients, however, this results in a tendency to exhibit a 

morphology that is generally contracted with respect to the target elongation.  

Increasing the value of βs,A is seen to produce the exact opposite result.  Oscillations in 

the evolution of the target shape are now strongly accentuated, such that A
i
speed(t) has a 

greater tendency to reflect the temporal variations in strongly chemotactic and strongly 

random migration; therefore, the cell is seen to more readily attain the desired 

morphology (Figure 6.11c). 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.10: Plots showing the evolution of the cell semi-major axis length A
i
(t) during 

single cell chemotaxis simulation for a range of λs values; this parameter quantifies the 

rate at which the cell semi-major axis length recovers when perturbed away from its 

target value A
i
speed(t).  The dashed black line in each case shows the evolution of 

A
i
speed(t), which is uniquely correlated to the instantaneous cell speed s

i
(t) (c.f. Equation 

6.14).  Images correspond to the parameter values (a) 5 hr
-1

 (base case), (b) 1 hr
-1

 and 

(c) 25 hr
-1

. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.11: Plots showing the evolution of the cell semi-major axis length A
i
(t) during 

single cell chemotaxis simulation for a range of values of the parameter βs,A, which 

describes the shape of the set-point relationship between instantaneous cell speed s
i
(t) 

and target cell semi-major axis length A
i
speed(t) (c.f. Equation 6.14).  The evolution of 

A
i
speed(t) in each case is shown by the dashed black line.  Images correspond to the 

parameter values (a) 1 (base case), (b) 0.25 and (c) 4. 
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6.3.2. Benchmarking Against in vitro Fibroblast Behaviour 

In Section 6.3.1 above, and throughout the previous chapter, we have designed a series 

of simple in silico “assays” with which to examine the mechanisms driving the 

behaviour of the cells in our model.  Using the knowledge gained from these studies, we 

now bring a more realistic focus to our results by reproducing real experimental data 

describing in vitro fibroblast migration and proliferation.  For this purpose we look to 

the papers of Cai et al. (2007) and Tremel et al. (2009), who obtained cell trajectories at 

both low and high cell density during monolayer formation, as well as temporal 

measures of the population growth.  These 3 data sets are presented in Figure 6.12, 

whilst in Table 6.2 we list the persistent random walk, cell-cell interaction and 

proliferation parameters we have used to benchmark our simulations against the 

experimental results.  Before proceeding to present our results, however, we require 

some explanation as to how cell trajectory data can be processed to produce quantitative 

measures that allow valid comparison between simulation and experiment.  

At low density the in vitro fibroblasts are observed to migrate in a uniform 

environment, whilst at high density (i.e. confluence) the cells remain motile despite 

almost constant contact with surrounding neighbours.  Since these two scenarios 

suggest that the cells are essentially undergoing a process of homogeneous isotropic 

diffusion, Cai et al. (2007) proposed the use of statistical techniques to estimate values 

for the effective diffusion coefficient of a single cell in each case.  Although full details 

can be found in the relevant publication, for clarity we proceed to summarise the key 

assumptions of this methodology. 

Adopting the notation of Cai et al. (2007), we begin by defining the random vector Rt 

= (Xt, Yt), where the Cartesian co-ordinates Xt and Yt denote the position of a cell at time 

t relative to its initial position at t = 0.  In addition, we also define a probability density 

function p(x, y, t) such that for any planar region Ω the probability that the cell can be 

found there at time t is: 

 

  *(      ) ∈  +  ∬  (       )     
 

. (6.20) 

 

Assuming that the cell movement can be approximated as undergoing homogeneous 

isotropic diffusion with diffusion coefficient D0, we have: 
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  . (6.21) 

 

The appropriate initial condition for this analysis is p(x, y, 0) = δ(x)δ(y), and the 

probability density function can accordingly be expressed as: 

 

 (       )  
 

     
    0 .

     

    
/1. (6.22) 

 

In the Cartesian plane we can also define two further marginal probability density 

functions, given by: 

 

  (    )  ∫  (       )  
 

  
,    (    )  ∫  (       )  

 

  
. (6.23) 

 

Using these expressions to compute appropriate moments of Xt and Yt by the standard 

method: 

 

〈  
 〉  ∫     (    )  

 

  
,  〈  

 〉  ∫     (    )  
 

  
, (6.24) 

 

the following relationships are obtained: 

 

〈  〉   ,  〈  〉   ,  〈  
 〉      ,  〈  

 〉      . (6.25) 

 

Given a particular data set consisting of a series of discrete cell positions (Xt, Yt) from 

any number of trajectories over a time interval 0 ≤ t ≤ T, it is possible to calculate an 

equivalent series of averaged values ⟨Xt
2⟩ and ⟨Yt

2⟩.  For a sufficiently large data set, the 

above theory (i.e. Equation 6.25) indicates that plotting these values against t should 

produce a straight line relationship.  Thus, the effective diffusion coefficient D0 can be 

estimated by determining the gradient of a constrained linear regression through the 

origin.  Moreover, applying the same method for ⟨Xt⟩ and ⟨Yt⟩, where the expected value
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 (a)  (b)  

 

(c) 

 

Figure 6.12: Experimental data obtained from Cai et al. (2007) and Tremel et al. (2009) 

showing fibroblast (a, b) migration and (c) proliferation during in vitro monolayer 

formation.  Cell trajectories were recorded at both (a) low and (b) high cell density; in 

the plots, the black circles represent initial cell positions (axis values denote μm).  At 

low density there are 2 trajectories obtained over 16 hours (red and purple lines) and 3 

obtained over 24 hours, whilst at high density there are 15 trajectories obtained over 10 

hours.  All trajectories were obtained by recording cell positions at 10 minute intervals.  

In the population growth data, the normalising cell density is 950 cells ∙ mm
-2

.  Plots (a) 

and (b) were taken directly from Cai et al. (2007), while plot (c) was generated by 

reading off data from Tremel et al. (2009). 

 

of the gradient is zero, will illuminate whether there is any discernable positive or 

negative bias in either of the axial directions. 

As can be seen, this technique gives two distinct means by which to estimate the 

effective cell diffusion coefficient; it is possible, however, to derive a further two 

equivalent equations by instead considering the probability density function θ(r, t) for 
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the radial displacement ‖Rt‖.  This function is related to the earlier probability density 

function by the equation: 

 

 (    )       (     ), (6.26) 

 

and is consequently found to take the form of the Rayleigh distribution: 

 

 (    )  
 

    
    0 

  

    
1. (6.27) 

 

Hence, computing appropriate moments in the same manner as above: 

 

〈‖  ‖
 〉  ∫    (    )  

 

 
, (6.28) 

 

we now obtain the relationships: 

 

〈‖  ‖〉
      ,  〈‖  ‖

 〉      , (6.29) 

 

which provide two additional means of estimating the diffusion coefficient D0 by 

applying a constrained linear regression to plots of ⟨‖Rt‖⟩
2
 and ⟨‖Rt‖

2⟩ against time. 

With the appropriate tools now in place, we begin by benchmarking simulated low 

density cell trajectories (i.e. no cell-cell interactions) against those obtained 

experimentally (c.f. Figure 6.12a).  In general, the effective diffusion coefficient of a 

cell performing a random walk in a uniform environment is determined by the particular 

combination of its speed and tendency to persist in particular directions.  An isolated 

measure of the diffusion coefficient does not, therefore, uniquely describe the cell 

behaviour: fast-moving cells with a short persistence may, for example, diffuse at a 

comparable rate to slow-moving cells with a long persistence time.  Fortunately, 

however, Tremel et al. (2009) used the low density cell trajectory data from Cai et al.
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Parameter Definition Value 

s0 External cue-free cell speed 42 μm ∙ hr
-1 

ηu Pseudopod establishment time 0.03 hr 

ηr
*
 Cell persistence time 0.265 hr 

γp Random migration weighting 0.05 

γr Cell “memory” weighting 1 

smax Reference maximal cell speed 63 μm ∙ hr
-1

  

RN Cell nuclear radius 5 μm
 

Rmax Maximal equivalent cell radius 18.2 μm 

RSmax Maximal cell sensing radius 22.8 μm 

ηadh Potential function cell-cell adhesion coefficient 12996/474721 

ηrep Potential function cell-cell repulsion coefficient 1 

βadh Potential function cell-cell adhesion shape parameter 1 

βrep Potential function cell-cell repulsion shape parameter 1 

χadh Maximal cell-cell adhesion weighting 0.34 

χrep Maximal cell-cell repulsion weighting 20 

βχadh Cell-cell adhesion weighting shape parameter 1 

βχrep Cell-cell repulsion weighting shape parameter 0.85 

νD Cell speed-modulation factor (local cell density) 0.35 

βs,D Cell speed-modulation shape parameter (local cell density) 2 

ηG1 Time spent in G1 phase of cell cycle 4.3 hr 

ηG2 Time spent in S/G2 phase of cell cycle 4.6 hr 

ηM Time spent in M phase of cell cycle 0.3 hr 

Dcrit Critical local cell density for quiescence 0.075 

ω Cell rotation rate π/2ηu rad ∙ hr
-1 

Amax Maximal equivalent cell semi-major axis length 32 μm 

Amax(s) Maximal speed-related cell semi-major axis length 28.5 μm 

λω Cell body contraction rate during rotation 375 μm ∙ hr
-1

 

λs Speed-related morphology modification rate 10 hr
-1

 

λq Cell-cell interaction morphology modification rate 1500 μm ∙ hr
-1

 

βs,A Speed-related morphology modification shape parameter 1.3 

βG2 Cell speed-modulation shape parameter (mitosis) 0.25 
 

Table 6.2: Parameters used for all simulations in Sections 6.3.2 and 6.3.3. 
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(2007) to obtain an approximate value for the average cell speed.  This was achieved by 

simply summing straight line displacements between successive data points and 

dividing by the accumulated migration time.  An estimate of 42 μm ∙ hr
-1

 was obtained; 

hence, we adopted this value for s0 in our simulations and subsequently predicted an 

average persistence time ηr
*
 of approximately 16 minutes (c.f. Table 6.2). 

Since the experimental data set comprised only 5 long (i.e. 16 – 24 hours) 

trajectories, the number of realisations was increased by splitting each into many shorter 

(i.e. 40 minutes) paths under the assumption that each step was independent of its 

predecessor (Cai et al., 2007).  The simulation data consists of 240 trajectories over 10 

hours.  Summaries of the bias and diffusivity estimates for both the experimental and in 

silico cells are presented in Tables 6.3 and 6.4, respectively.  Both data sets are found to 

predict negligible bias in the cell migration, and the simulated diffusivity estimates 

match up well to the averaged experimental values (i.e. 3.6 μm
2
 ∙ min

-1
 in vitro vs. 3.61 

μm
2
 ∙ min

-1
 in silico).  Some typical simulated cell trajectories are given in Figure 6.13, 

while Figure 6.14 presents the plots that were used to obtain the various in silico 

estimates of bias and diffusivity (c.f. Equations 6.25 and 6.29). 

 

 Paths Time Points Time Interval (min) ⟨Xt⟩  ⟨Yt⟩ 

Cai et al. (2007) 125 5 10 -0.080 0.010 

Simulation 240 501 1.2 0.008 -0.009 

 

Table 6.3: Comparison of the simulated low density bias estimates with those obtained 

in vitro by Cai et al (2007).  All values are given in units of μm ∙ min
-1

. 

 

 Paths Time 

Points 

Time Interval 

(min) 

⟨Xt
2⟩ ⟨Yt

2⟩ ⟨‖Rt‖⟩
2
 ⟨‖Rt‖

2⟩ Avg. 

Cai et al. 

(2007) 

125 5 10 3.3 4.2 3.2 3.7 3.6 

Simulation 240 501 1.2 3.63 3.56 3.66 3.59 3.61 

 

Table 6.4: Comparison of the simulated low density diffusivity estimates with those 

obtained in vitro by Cai et al (2007).  All values are given in units of μm
2
 ∙ min

-1
. 

 



Chapter 6: A New Generalised Model of Cell Migration II 

 

213 

 

 

Figure 6.13: Selection of 40 in silico fibroblast trajectories obtained over a period of 10 

hours at low cell density (axis values denote μm).  Statistical analysis of the full data set 

of 240 trajectories revealed the effective cell diffusion coefficient to be approximately 

3.6 μm
2
 ∙ min

-1
, in line with the in vitro estimates of Cai et al. (2007). 

 

Having benchmarked the movement properties of fibroblasts migrating in isolation, 

we now proceed to consider the two other experimental data sets obtained by Cai et al. 

(2007) and Tremel et al. (2009).  These measures, namely the rate of growth of a 

confluent cell population and the resultant high density cell diffusivity, are strongly 

interlinked; Section 5.6.2, for example, clearly illustrated that the manner in which the 

cells interact can have significant implications for the rate of population growth.  Thus, 

although the two sets of simulation results shall be presented entirely separately, it is 

important to bear in mind that many of the underlying cell-cell interaction parameters 

contribute to both outcomes. 

In both experiment and simulation, growth to confluence of the cell population was 

performed prior to extracting cell trajectory data at sufficiently high density.  Therefore, 

in the interest of chronology, we shall firstly present the results obtained from our 

simulation of cell population growth.  In the experimental data presented in Figure
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 (a) (b)  

 

 (c) (d)  

 

 (e) (f)  

 

Figure 6.14: Series of plots depicting the constrained linear regression technique used to 

obtain estimates of the (a, b) bias and (c-f) diffusivity of 240 in silico cell trajectories 

obtained at low cell density over a period of 10 hours.  Each individual trajectory 

consists of 501 discrete cell positions Rt = (Xt, Yt), obtained at 1.2 minute intervals, 

where the Cartesian co-ordinates Xt and Yt denote the position of a cell at time t relative 

to its initial position at t = 0.  The blue lines on each plot depict the variation of the 

averaged values (a) ⟨Xt⟩, (b) ⟨Yt⟩, (c) ⟨Xt
2⟩, (d) ⟨Yt

2⟩, (e) ⟨‖Rt‖⟩
2
, and (f) ⟨‖Rt‖

2⟩ with 

time, while the black lines represent a constrained linear regression in each case.  The 

estimated bias or diffusivity is given by the gradient of these lines; see Equations 6.20 – 

6.29 for the full rationale of this technique. 
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6.12c the normalising cell density was 950 cells ∙ mm
-2

; on this basis we approximated 

the cell size by setting the maximum equivalent cell radius Rmax to be 18.2 μm (i.e. 2D 

cell surface area ≈ 0.00104 mm
2
).  In addition, we also set RSmax = 22.8 μm and Amax = 

32 μm, which, by Equations 6.1 – 6.3, constrains the maximum semi-major sensing axis 

of each cell AS
i
(t) to be roughly 40 μm.  Given the lack of explicit information regarding 

physical cell sizes, these values were approximated from the experimental images 

presented in Cai et al. (2007) and Tremel et al. (2009).  It should also be noted that smax 

in Equation 6.14 was chosen to be larger than the external cue-free maximum speed s0 

in order to account for the fact that we would expect the cells to elongate more readily 

in the presence of a chemoattractant gradient, for example. 

For our simulation we chose to use a domain size of 1.28 mm x 1.28 mm; the 

appropriate initial condition was accordingly achieved by placing 64 cells uniformly 

within the domain (i.e. normalised cell density ≈ 0.04), whilst it was assumed that 

confluence was achieved upon reaching a population size of 1536 cells (i.e. normalised 

cell density ≈ 0.985).  As in the simulations performed in Section 5.6.2, the initial cells 

are assigned both random migration directions and positions in their cell cycle.  

Furthermore, we once again randomise the order of solution of our equations at each 

time step, and also implement the same assumption of solid domain boundaries (see 

Appendix B for details) that can be “sensed” by the cells.  The only difference in this 

case is that, in order to achieve migration along the solid wall, an elongated cell may be 

incrementally re-oriented towards the direction of the boundary. 

In this benchmarking exercise, the best fit to the experimental data was found to be 

achieved by designating an overall cell cycle length (i.e. ηG1 + ηG2 + ηM) of 9.2 hours.  

Also pertinent was the choice of value for Dcrit, which directly governs progression into 

the S phase of the cycle; the selection of 0.075 suggests a strong contact inhibition of 

proliferation, but the concurrently weak cell-cell adhesion (i.e. χadh = 0.34) means that 

sufficient space is found with relative ease.  A series of snapshots from the simulation 

are presented in Figure 6.15; note that the colour-coding of individual cells represents 

the different stages of the cell cycle (i.e. red = G1; blue = S/G2; green = M; yellow = 

G0).  In the early stages the majority of cells are seen to migrate largely in isolation, so 

cellular quiescence is rare and morphologies tend to be elongated (Figure 6.15a, b).  As 

confluence is approached, however, the dominance of contact inhibition means that 

many more cells exhibit spherical shapes and remain arrested in the G0 phase of their
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(a) (b)  

 

(c) (d)  

 

Figure 6.15: Series of snapshots from a simulation in which a fibroblast population 

undergoes contact inhibited migration and proliferation until reaching confluence (note 

that the domain is assumed to have solid boundaries).  The domain was initialised with 

64 uniformly positioned cells; the images depict the subsequent cell configurations after 

(a) 5, (b) 25, (c) 45 and (d) 65 hours.  The colour-coding of cells represents position in 

the cell cycle, namely: G1 (red), S/G2 (blue), M (green) and G0 (yellow).  The rate of 

population growth in this simulation was benchmarked against in vitro growth to 

confluence data obtained by Tremel et al. (2009). 
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cell cycle (Figure 6.15c, d).  A comparison between the population growth data from 

simulation and experiment is given in Figure 6.16, where it is clear that an excellent 

match has been achieved. 

 

 

Figure 6.16: Plot comparing the rate of fibroblast population growth obtained during 

growth to confluence both experimentally (black diamonds) and by simulation (red line; 

c.f. Figure 6.14).  The normalising cell density in each case was 950 cells ∙ mm
-2

; note 

that the experimental data, taken from Tremel et al. (2009), corresponds to that 

presented earlier in Figure 6.11c. 

 

Upon reaching the target cell population size, all in silico cells were given sufficient 

time to attain their maximal volume before high density trajectories were subsequently 

recorded over a period of 10 hours.  In order to minimise any potential boundary effects, 

for the analysis that follows we considered only cells that did not come within 250 μm 

of any boundary during this timeframe.  As in the case of low density trajectories 

discussed above, Tremel et al. (2009) used an identical technique of summing straight 

line displacements between recorded cell positions in order to estimate the average 

individual cell speed at high cell density.  A value of 15 μm ∙ hr
-1

 was obtained and 

subsequently informed our choice of νD to be 0.35, giving a minimum cell speed of 14.7 

μm ∙ hr
-1

 when the entire cell boundary is deemed to be in contact with neighbouring 

cells (i.e. D
i
(t) = 1; c.f. Equations 5.51 and 5.52). 
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Summaries of the bias and diffusivity estimates at high cell density for both the 

experimental and in silico cells are presented in Tables 6.5 and 6.6, respectively; the 

simulation data is again based on 240 trajectories, and the in vitro data set has once 

again been extended by splitting up each of the 15 original cell paths into shorter 

sections (c.f. Figure 6.12b).  As in the low density case, neither data set is found to 

predict any appreciable bias in the axial directions.  In addition, the simulated 

diffusivity estimates are seen to lie within the range predicted in vitro, and the averaged 

values in each case match up relatively well (i.e. 0.303 μm
2
 ∙ min

-1
 in vitro vs. 0.295 

μm
2
 ∙ min

-1
 in silico).  Some randomly selected in silico cell trajectories are presented in 

Figure 6.17, where they are shown both in their relative positions within the domain 

during simulation (Figure 6.17a) and upon normalisation from a fixed origin (Figure 

6.17b). 

 

 Paths Time Points Time Interval (min) ⟨Xt⟩  ⟨Yt⟩ 

Cai et al. (2007) 180 5 10 -0.011 -0.015 

Simulation 240 501 1.2 -0.002 0.006 

 

Table 6.5: Comparison of the simulated high density bias estimates with those obtained 

in vitro by Cai et al (2007).  All values are given in units of μm ∙ min
-1

. 

 

 Paths Time 

Points 

Time Interval 

(min) 

⟨Xt
2⟩ ⟨Yt

2⟩ ⟨‖Rt‖⟩
2
 ⟨‖Rt‖

2⟩ Avg. 

Cai et al. 

(2007) 

180 5 10 0.32 0.32 0.25 0.32 0.303 

Simulation 240 501 1.2 0.323 0.269 0.290 0.296 0.295 

 

Table 6.6: Comparison of the simulated high density diffusivity estimates with those 

obtained in vitro by Cai et al (2007).  All values are given in units of μm
2
 ∙ min

-1
. 

 

6.3.3. Fibroblast Scrape Wound Healing 

The in vitro cell trajectory analysis performed by Cai et al. (2007) has revealed an
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(a) 

 

(b) 

 

Figure 6.17: Caption overleaf. 
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Figure 6.17: Selection of 40 in silico fibroblast trajectories obtained over a period of 10 

hours at high cell density (i.e. confluence).  The trajectories are shown both (a) in their 

relative positions within the domain, and (b) normalised to a common origin (axis 

values denote μm in both cases). Statistical analysis of the full data set, consisting of 

240 trajectories isolated from the domain boundaries, revealed the effective cell 

diffusion coefficient to be approximately 0.3 μm
2
 ∙ min

-1
, in line with the in vitro 

estimates of Cai et al. (2007). 

 

approximately ten-fold decrease in the effective cell diffusion coefficient between 

uniform low density and high density environments (c.f. Tables 6.4 and 6.6).  Thus far 

our mathematical model has successfully replicated these results, as well as the rate of 

cell population growth, under the assumption of cell-cell interactions and related contact 

inhibition effects.  Given these results, it seems pertinent to consider the resultant cell 

behaviour in a scenario that allows cells to smoothly transition between distinct regions 

of both low and high cell density.  Indeed, this is precisely the route followed by Cai et 

al. (2007) who proceeded to introduce just such an interface in their confluent cell 

population by removing a region of cells to create an in vitro scrape wound (Figure 

6.18).  Naturally, our next goal is to investigate the implications of reproducing this 

assay in silico with our experimentally benchmarked cell migration model. 

Experimental data, including further cell trajectories and cell density measurements, 

were collected by Cai et al. (2007) over a 48 hour period after inflicting the scrape 

wound.  In order to be able to perform our simulation over the same time range, we 

elect to create a wound of width 680 μm.  Using the final cell configuration from the 

high density trajectory simulation as our starting point, we impose our scrape wound 

initial condition by removing all cells with centroid position more than 600 μm from the 

left domain boundary (Figure 6.19).  This setup preserves sufficient depth in the initial 

cell population such that the overall results of our simulation are not adversely affected. 

A series of snapshots showing the healing progression of the in silico scrape wound 

are presented in Figure 6.20.  Although cell-cell adhesion could be expected play a role 

in holding back migration at the leading edge, the sharp interface is readily disrupted in 

the early stages with a number of cells breaking free and, accordingly, sensing sufficient 

space to re-enter their cell cycle (Figure 6.20a).  Consequently, as time progresses, a
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Figure 6.18: Experimental image, taken from Cai et al. (2007), showing an in vitro 

fibroblast scrape wound that has been created by removing a region of cells from an 

initially confluent population. 

 

 

Figure 6.19: Initial condition used for the in silico fibroblast scrape wound simulation.  

After collecting trajectory data for 10 hours at high density, this cell configuration was 

obtained by removing all cells with centroid position more than 600 μm from the left 

domain boundary.  Note that all cells are initially in the quiescent G0 phase of their cell 

cycle. 
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(a) (b)  

 

(c) (d)  

 

Figure 6.20: Series of snapshots from the in silico fibroblast scrape wound simulation, 

where the cells undergo contact inhibited migration and proliferation.  The images show 

the evolving cell configuration at (a) 4, (b) 20, (c) 32 and (d) 48 hours post-scraping.  

The colour-coding of cells again represents the position in the cell cycle: G1 (red), S/G2 

(blue), M (green) and G0 (yellow). 

 

significant amount of proliferation is seen to have occurred at the cell front; however, it 

is also notable that some cells, although relatively few, have undergone mitosis in 

positions further back from the leading edge where pockets of space transiently develop 

(Figure 6.20b).  The cell behaviour seen at early times subsequently persists for the rest 

of the simulation, and it becomes clear that the population is invading the scrape at a 
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roughly constant rate in a manner driven largely by proliferation rather than migration 

(Figure 6.20c, d). 

In order to obtain a quantitative measure of the predicted rate of healing progression, 

we split the domain into a number of 50 μm wide vertical sub-domains, sum the number 

of cells in each and, finally, calculate a series of appropriately normalised cell densities.  

In Figure 6.21, we compare these calculated values at selected time points with an 

equivalent set of measures made experimentally by Cai et al. (2007).  The two data sets 

are seen to produce an excellent match after 24 hours of healing time (Figure 6.21a), but 

the advancement of the in vitro cell population is subsequently seen to undergo a 

marked increase that is not reproduced in the simulation results (Figure 6.21b-d). 

In Cai et al. (2007), it was shown that healing at these later times occurs at an 

approximately fixed rate, and the evolution of cell density can accordingly be described 

as a travelling wave solution of the Fisher equation.  As such, the earlier stage of slow 

healing was simply interpreted as a period of evolution required to transition from a cell 

population exhibiting a sharp wound edge into this co-ordinated wave-like motion.  One 

significant assertion, however, is that this early healing phase is “dominated by cell 

proliferation” (Tremel et al., 2009) – recall that we noted a similar feature in our 

simulation results (Figure 6.20).  Thus, given this observation and the excellent match 

produced in Figure 6.21a (as well as the earlier benchmarking results), our simulation 

results suggest that the cell behaviour displayed over this initial period is “normal”.  

Perhaps more significantly, however, this also suggests that a distinct behavioural 

change may be required to induce the observed increase in the rate of healing. 

There are a number of potential modifications to the fibroblast behaviour that could 

be proposed as an explanation of the increase in the rate of wound closure, including 

increased cell speed, decreased cell-cell adhesion, reduced contact inhibition of 

proliferation or a combination of these and other factors.  A more complex but equally 

viable explanation could be, for example, the response of the cell population to a 

diffusible chemoattractant produced by cells in the wound edge region.  Directed 

movement of this type, co-ordinated by so-called “pacemaker” cells, has been both 

experimentally observed (Gross et al., 1976) and mathematically modelled (Palsson and 

Othmer, 2000) during Dictyostelium discoideum aggregate formation. 
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 (a)  (b)  

 

 (c)  (d)  

 

Figure 6.21: Series of plots comparing the spatial distribution of cell density obtained 

by both experiment (blue circles) and simulation (red squares) in the healing fibroblast 

scrape wound; the normalising cell density in each case was 950 cells ∙ mm
-2

.  The plots 

correspond to (a) 24, (b) 32, (c) 40 and (d) 48 hours post-scraping. 

 

Further cell trajectories were obtained by Cai et al. (2007) and Tremel et al. (2009) 

during the in vitro scrape wound assay, and examining these results provides a simple 

means to investigate potential mechanisms that may be at play.  Figure 6.22 shows two 

typical sets of trajectories that were obtained either near the leading edge (Figure 6.22a, 

right) or behind the wavefront (Figure 6.22a, left) between 36 and 48 hours post-

scraping, while Figure 6.22b plots calculated estimates of cell speed at different 

distances behind the leading edge between 30 and 36 hours post-scraping.  It is 

immediately clear that the results are consistent with the previous assumptions of 

contact inhibited migration: cells at the leading edge have more freedom to move and, 

accordingly, migrate more quickly (Figure 6.22b) and cover a longer distance than those

 



Chapter 6: A New Generalised Model of Cell Migration II 

 

225 

 

 (a)  (b)  

 

Figure 6.22: Experimental data showing (a) cell trajectories (image taken from Cai et al. 

(2007)) and (b) estimated cell speeds (image taken from Tremel et al. (2009)) at various 

distances behind the wavefront during in vitro fibroblast scrape wound healing.  The 

given cell trajectories were recorded at 10 minute intervals between 36 and 48 hours 

post-scraping; black circles represent initial cell positions (axis values denote μm).  Cell 

speed estimates were obtained from trajectories recorded at 10 minute intervals between 

30 and 36 hours post-scraping: straight line displacements between successive data 

points were summed, and the speed calculated via division by the accumulated 

migration time. 

 

further back from the wounded region (Figure 6.22a).  The range of estimated cell 

speeds (i.e. ~ 10 – 40 μm ∙ hr
-1

) is also notable because this is entirely consistent with 

the previously benchmarked “normal” cell behaviour; hence, it seems highly unlikely 

that an increase in cell speed could account for the increased rate of healing.  Overall, 

therefore, the observed bias in the cells’ movement direction seems to suggest that the 

travelling wave in fact evolves as a result of a tendency of cells to reduce random 

migration and instead maintain polarisation towards the wound gap.  Although other 

factors such as increased cell proliferation may also be involved, we are led to conclude 

that our present simulation model seems to currently lack an important directional cue 

that is required to inform the fibroblast migration. 

 The evidence detailed above strongly suggests that an additional directional cue is 

required in order to adequately explain the experimental results; it remains unclear, 

however, as to how such a stimulus may be initiated, co-ordinated and sustained.  These 

precise details may not be readily uncovered, but recent experimental findings at least 
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provide a suggestion as to the mechanism that may be underlying the observed phase of 

directed cell migration.  Connexins, a family of transmembrane proteins involved in the 

assembly of intercellular communication channels known as gap junctions (Figure 

6.23), have been shown to modify their expression during both in vitro and in vivo 

wound repair processes (Goliger and Paul, 1995; Wright et al., 2009).  Although both 

connexins and gap junctions have been linked to a wide variety of roles in a wide 

variety of cell types (Evans et al., 2012), our findings suggest that co-ordinated 

perturbation of cell-cell communication patterns could be a critical regulator of the 

scrape wound healing process. 

Connexin 43 (Cx43), the most commonly expressed connexin in skin cells, has been 

found to elicit a naturally reduced expression in migrating keratinocytes at the margins 

of in vivo wounds (Goliger and Paul, 1995), and in both keratinocytes and fibroblasts 

near the leading edge of in vitro scrape wounds (Wright et al., 2009).  Furthermore, 

upregulation of Cx43 expression at the wound edge has been observed in a diabetic rat 

model, with an associated delay in cell migration and healing (Wang et al., 2007).  

Consistent with these findings is also the intriguing observation that inhibiting either 

Cx43 expression (Mori et al., 2006) or, more directly, Cx43 function (Wright et al., 

2009) accelerates wound closure rates (Figure 6.24).  In the latter case, inhibition of 

Cx43 function was achieved through the use of specifically designed gap junction 

blockers known as connexin mimetic peptides (CMPs).  These peptides are believed to 

have great potential as a novel therapeutic tool for improving wound closure; however, 

their precise mechanisms of action at the molecular and cellular scales are yet to be 

fully elucidated. 

Mathematical modelling may well provide a powerful tool in this respect, and such 

an investigation provides a challenging future target for our cell migration model.  

Coupling appropriate models of intracellular and intercellular molecular dynamics to the 

existing framework, and benchmarking cell movement against real experimental data in 

the manner performed above, may help to provide key insights into the individual and 

collective behaviour displayed by cells both in the presence and absence of CMPs.  

Specifically, the model has the potential to investigate the relative impact on key aspects 

of the wound healing process such as cell directionality, speed and proliferation. 
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Figure 6.23: Schematic diagram showing the life cycle of connexins and gap junction 

intercellular channels.  Connexins are initially synthesised within the rough 

endoplasmic reticulum, a membrane-bound internal cell compartment (Stage 1).  Sets of 

six connexins come together to form hemichannels known as connexons (Stage 2), and 

these are subsequently transported along the secretory pathway (Stage 3) before 

insertion into the plasma membrane (Stage 4).  These hemichannels, which can 

translocate around the membrane, then proceed to dock with partners from adhesively 

attached neighbouring cells to form gap junctions (Stage 5).  In an open configuration, 

cell-cell communication can occur by the passage of small molecules through the 

channel (Stage 6); this may occur simultaneously with the aggregation of many 

channels to form aggregates known as gap junction plaques (Stage 7).  The individual 

components of these plaques are rapidly turned over: new gap junctions can be added, 

while others are lost due to internalisation (Stage 8) and breakdown (Stage 9) by one of 

the host cells.  Image adapted from Evans et al. (2006). 
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 (a)  (b)  

 

Figure 6.24: Experimental data from an in vitro fibroblast scrape wound assay 

examining the implications of connexin mimetic peptide (CMP) application; CMPs are 

believed to operate by blocking gap junction intercellular channels and preventing cell-

cell communication.  The images show (a) photomicrographs of cell configurations at 0 

hours (wound width ≈ 600 μm) and 24 hours post-scraping, and (b) a plot quantifying 

the rate of wound closure both in the absence (control) or presence (Gap26M and 

Gap27) of CMPs.  The dashed lines in (b) indicate the time taken to reach 50% wound 

closure; note that the peptide treated cells exhibit a significantly increased rate of 

healing.  Images taken from Wright et al. (2009). 

 

6.4. Discussion 

Tissue development and maintenance procedures require the large-scale co-ordination 

of a wide variety of cell types with typically diverse morphologies – each of which is 

regarded to be function-specific (Bray, 2001).  The crawling dermal fibroblast, for 

example, is well-known for its elongated form and concurrent polarisation towards the 

direction of migration.  Such features undoubtedly have a strong impact on the manner 

in which cells of this type behave both individually within a prescribed environment 

and, furthermore, in the presence of other cells.  Therefore, in this chapter we have 

generalised our spherical cell migration model in order to capture the movement 

properties of cells with elongated morphologies. 

A consistent generalisation from identically spherical cells to those of an elongated 

nature has been achieved by stipulating that each cell now assumes an ellipsoidal form, 
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characterised by three semi-axis lengths rather than a single radius.  The concept of cell 

polarisation has been achieved, in addition, by assuming that the cell body undergoes 

rotation in order to maintain alignment with the instantaneous migration direction.  

Rotation per se, however, inadequately describes the mechanisms of directional change 

in real cells; instead, the process is more likely achieved by an internal re-organisation 

of structure.  Thus, by endowing each cell with the ability to dynamically adapt its 

shape, an assumed contraction of the cell body throughout rotation more readily 

captures this phenomenon.  Consistent with a previous mechanical cell migration model 

(Palsson and Othmer, 2000), the cells have also been allowed to modify their 

morphology in response to evolving environmental factors: adhesive and repulsive 

interactions with local cells cause the cell body to either stretch or compress, whilst 

cells also act to maintain a target morphology that is uniquely correlated to their 

instantaneous speed. 

The dynamic interaction between cell migration and cell shape was subsequently 

examined in a simple sensitivity study that considered the response of an isolated cell to 

a moving source of chemoattractant.  By the nature of the assumed migratory response, 

the cell experienced significant variations in both cell speed and frequency of 

directional changes throughout the simulation.  Accordingly, this was reflected by a 

simultaneously oscillatory evolution of the cell morphology in all cases.  The relative 

values of the parameters λω and λs, which quantify, respectively, the rate of cell body 

contraction during rotation and the rate of recovery of the target morphology, were 

found to strongly impact upon the manner of this evolution (Figures 6.9 and 6.10).  The 

greatest competition between these two stimuli for morphological change was seen to 

occur in regions of shallow chemical gradient where the incidence of pronounced 

directional changes experiences a significant increase.  In these regions, the ability of 

the cell to attain the speed-associated target morphology was seen to depend crucially 

on the intensity of the repeated cell body contractions, and the tendency to 

intermittently recover the required elongation (i.e. “re-polarise”).  The final sensitivity 

examined the impact of the parameter βs,A (Figure 6.11), which defines the precise shape 

of the assumed set-point relationship between cell speed and cell morphology.  The 

evolution of cell shape most consistently resembled this target morphology in the case 

of large βs,A, where the target cell length underwent large temporal oscillations that 

reflected the concurrently strong variations between directed and random modes of 

movement (Figure 6.11c). 
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As summarised above, reproducing the movement properties of single elongated 

cells requires the introduction of several new definitions and equations.  Incorporating 

cell-cell interactions in the new model formulation, on the other hand, has been 

achieved by conserving all of the assumptions from the earlier spherical cell 

formulation.  Each cell is still endowed with a sensing region beyond its boundary, 

accounting for uncertainty in the precise morphology and the ability to maintain 

adhesive contact at distance, and each cell still interacts with neighbours in a manner 

governed by the potential function h
ij
.  The key advancement that allows simple 

transition between spherical and ellipsoidal model formulations, however, relies on a 

consistent transformation of this potential.  Since the area of overlap between two 

circles can be uniquely expressed in terms of the distance between their centres, it 

follows that h
ij
 can also be uniquely expressed as a function of overlap area between cell 

sensing regions rather than a distance between (spherical) cell centres.  Thus, in the 

ellipsoidal case, where the distance between two cell centres alone cannot precisely 

describe their relative configuration, calculating the extent of sensing region overlap 

provides a superior measure to feed into the potential function and appropriately 

determine their manner of interaction.  It is worth noting here that, although extension 

to 3D is a desirable future target for the model, it is highly unlikely that this precise 

mechanism for ellipsoidal cell-cell interactions could be conserved.  The current 

calculation of overlap area requires solution of a quartic equation; solving polynomials 

of degree six for overlap volumes would prove more difficult and so some other 

approach may be necessary. 

Having completed the full model formulation for ellipsoidal cells, the potential of the 

model was subsequently demonstrated by using in vitro experimental data from Cai et 

al. (2007) and Tremel et al. (2009) to benchmark the behaviour of migrating and 

proliferating fibroblasts.  Appropriate quantification of cell-cell interactions and contact 

inhibition effects allowed us to successfully predict the experimentally observed rate of 

cell population growth (Figure 6.16).  Furthermore, statistical analysis of in silico cell 

trajectories obtained over a 10 hour period at both low and high cell density revealed a 

strong synergy with the estimated in vitro cell diffusion coefficients. 

Accepting the parameterisation underlying these results to therefore represent 

“normal” cell behaviour, we proceeded to examine the response of our cells to the 

creation of an in silico scrape wound (Figure 6.19).  Invasion of the wounded region 

was subsequently seen to be relatively slow; random cell movement near the leading 
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edge provided insignificant penetration and closure of the gap was instead driven 

largely by proliferation at the cell front (Figure 6.20).  Comparing quantitative cell 

density results with those obtained from an analogous experiment, the two data sets 

were found to match up well – but only over a 24 hour period (Figure 6.21).  Beyond 

this time point, the in vitro cell population was found to undergo a striking change in 

behaviour and invade the wound gap at a significantly increased rate. 

With no apparent increase in cell speeds, the in vitro results are suggestive of an 

additional stimulus that co-ordinates collective outward cell movement (Figure 6.22).  

Given the current model formulation, only the inclusion of a chemoattractant gradient 

could possibly allow reproduction of this type of behaviour.  Recent experimental 

evidence, however, suggests that cell-cell communication may provide a more viable 

explanation: expression patterns of connexins, the building blocks required to form gap 

junction intercellular channels, have been shown to be perturbed at the leading edge of 

both in vitro and in vivo wounds (Goliger and Paul, 1995; Mori et al., 2006; Wang et al., 

2007; Wright et al., 2009). 

Although the molecular biology of connexins and gap junction communication is 

undoubtedly complex and remains poorly understood, the apparent impact on collective 

cell behaviour provides an intriguing prospect for mathematical modelling.  In vitro 

scrape wound healing, in particular, provides a relatively simple assay with which study 

the mechanisms by which cell-cell signalling could impact upon both individual and 

population level cell migratory properties.  The experimental benchmarking presented 

in this chapter has indicated that the current modelling approach can successfully 

predict “normal” in vitro cell behaviour; incorporating the additional effects of cell-cell 

communication provides an intriguing challenge for future studies. 
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Discussion 

 

 

 

The development of multi-cellular organisms, and subsequent maintenance of their 

tissues, requires the co-ordination of a cascade of events at both the cellular and 

molecular scales.  The multi-scale nature of such phenomena signals the potential of 

mathematical modelling as an investigative tool. In this thesis, we have presented a 

variety of new models of discrete cell migration to study the mechanisms by which cells 

respond to their temporally-evolving environments and have applied our methods to two 

specific physiological processes: viz, wound healing and retinal vascular plexus (RVP) 

development.  Using two distinct mathematical approaches – one lattice-based, the other 

lattice-free – we have reproduced a range of experimental data and provided a number 

of novel insights into the dynamics of the underlying biology. 

Our extensive review of the modelling literature in Chapter 1 revealed that, outwith 

the context of tumour-induced angiogenesis, relatively few studies of discrete vessel 

growth have been performed.  As such, we believe that the models of wound healing 

angiogenesis (Chapter 3) and RVP development (Chapter 4) presented here are the first 

of their kind in this field.  In addition to successfully reproducing the capillary plexus 

data observed experimentally, these models have also been used to predict the 

subsequent evolution of the emergent vascular architectures themselves. 

In Chapter 2, we presented an extended model of blood perfusion that included 

empirically-derived equations describing both phase separation at capillary junctions 



Chapter 7: Discussion 

 

233 

 

and shunt-preventing angioadaptation stimuli.  Although these aspects of the 

microcirculatory dynamics have been largely neglected in previous angiogenesis 

models, our results intimated that their inclusion would prove to be significant.  Using a 

series of simple, idealised vessel networks, we highlighted the strong impact on the 

resultant distributions of both haematocrit and capillary radii.  This was demonstrated 

more profoundly in the later simulations of RVP development: phase separation was 

seen to result in strongly heterogeneous distributions of haematocrit with corresponding 

implications for oxygen delivery, while shunt prevention was seen to be largely 

responsible for the evolution of realistic capillary architectures.  Even though the 

precise biology of these two phenomena may not yet be fully understood, our results 

suggest that their inclusion in future angiogenesis models will be crucial in order to 

faithfully reproduce vascular architectures resembling those observed in vivo. 

A novel approach to studying wound-induced angiogenesis was presented in Chapter 

3, where our in silico results were benchmarked against longitudinal in vivo 

experimental data obtained from a dorsal skinfold window chamber (DSWC) assay.  In 

both the presence and absence of an anti-angiogenic treatment, the model was found to 

be capable of reproducing spatial and temporal measures of in vivo capillary density and 

branch point density, as well as the experimentally-observed reduction in wound area.  

Although the model provides predictions regarding the distribution of intra-wound 

haematocrit in the evolving neo-vasculature, a future goal would involve a more 

detailed investigation into how this impacts upon oxygen delivery to the wounded 

region.  Using the model of retinal oxygenation presented in Chapter 4, such a study 

would now be eminently possible, and could provide valuable predictions regarding the 

spatio-temporal evolution of wound oxygen concentration. 

The inclusion of oxygen delivery and associated capillary pruning are two of the 

extensions to the wound healing angiogenesis model that needed to be developed in 

order to successfully reproduce in vivo observations of RVP development.  Although 

growth of the RVP was driven by identical mechanisms – diffusion, chemotaxis and 

haptotaxis – the system was seen to be much more dynamic than that assumed for the 

earlier wound model.  Incorporating the migration of VEGF-producing astrocytes 

allowed the EC plexus to expand outwards across the retinal surface in response to an 

evolving, rather than fixed, chemoattractant profile.  The manner of this VEGF 

evolution, namely an outwardly moving wave-like profile, is one of the valuable 

insights derived from our model; others include the demonstration that both phase 
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separation and capillary pruning play prominent roles in promoting oxygen delivery to 

distal regions of the retina. 

The series of parameter sensitivities presented towards the end of Chapter 4 provide 

a brief glimpse as to the future potential of the model.  Having benchmarked the model 

against normal RVP development, a variety of pathological scenarios – such as diabetic 

retinopathy or retinopathy of prematurity (ROP) – could be investigated in significantly 

greater detail.  Such a study, however, may require further expansion of the model to 

include the development of the two deeper layers of the retinal vasculature.  The 

molecular mechanisms controlling downward sprouting and migration from the 

superficial layer are as yet poorly understood – a modelling study may prove valuable in 

helping to test experimental hypotheses. 

During our studies of angiogenesis in both wound healing and retinal development, 

the in silico modelling approach has been rigorously tested.  Through various 

extensions, the model has been shown to be capable of successfully predicting both the 

topology and architecture of in vivo capillary networks.  As it stands, however, our 

simulations largely assume angiogenesis to be a stand-alone process and, in truth, this 

may limit future applications of the model.  In vivo angiogenesis generally occurs as 

part of a wider response to hypoxia, and may involve an abundance of cellular activity; 

dermal wound healing, for example, requires the co-ordinated response of a variety of 

cell types including macrophages, fibroblasts and neutrophils.  Naturally, therefore, 

future iterations of the angiogenesis model may wish to incorporate more complex 

feedbacks with other cells in the surrounding milieu. 

It is clear that the generalised cell migration model presented in Chapters 5 and 6 

could provide a first step towards realising such a goal.  Our simulations have 

demonstrated, however, that this off-lattice model also has the potential to be applied, in 

its own right, to a wide range of scenarios.  Much of this is down to its inherent 

adaptability: we have developed discrete-point, spherical and ellipsoidal cell 

formulations capable of simulating cell movement in response to a variety of 

environmental stimuli.  The current 2D nature of this model immediately marks it out as 

an appropriate tool for investigating in vitro cell behaviour and it is clear that such 

studies could be used in future to minimise parameter searches in experimental 

programmes. 

The experimental benchmarking performed in Chapter 6 indicates the predictive 

power of such an approach.  Utilising an experimental dataset gathered during in vitro 
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fibroblast migration and proliferation, we reproduced the observed rate of growth to a 

confluent population, as well as measures of cell diffusivity at both low and high cell 

density.  Introducing a scrape wound into the confluent in silico fibroblast population, 

and comparing the predicted behaviour with that observed in vitro, suggested that an 

interesting biphasic response was taking place in the experimental setting: the cells 

spend an initial period behaving in a “normal” manner, before largely reducing random 

movement and increasing polarisation towards the wounded region.  In its present form, 

the model was unable to capture the behavioural change at later times, and future work 

will examine whether cell-cell communication or a chemotactic mechanism could 

explain the source of this discrepancy. 

As mentioned above, an important consideration for future investigations is the 

possibility that our two modelling approaches (angiogenesis in the presence of discrete 

fibroblast migration, for example) could be applied in combination.  Given that it 

represents one of our key focuses in this thesis, wound healing would be an attractive 

system with which to commence such a study.  In vivo wound healing angiogenesis 

could, for example, be simulated alongside migration of pertinent cell types such as 

macrophages or fibroblasts.  There are a number of feedbacks that could be introduced 

between the two models, including: EC chemotaxis in response to macrophage-derived 

cytokines; EC haptotaxis, or contact guidance, in response to fibroblast-produced 

collagen fibres; and capillary dilatation in response to cell-produced nitric oxide.  In 

light of earlier work by Cobbold and Sherratt (2000), such a model could provide a 

more detailed 2D investigation into the role played by angiogenesis in pathological scar 

formation.  More generally, however, combining different model components in this 

manner broadens the scope for investigating the dynamics of impaired healing, as 

observed in chronic or diabetic wounds. 

Another potential application of the combined modelling approach concerns another 

type of healing – that of the bone fracture.  Similarly to wound healing, it has been 

found that successful bone generation (osteogenesis) can only be achieved with blood 

vessels in close attendance; hence, angiogenesis is a critical factor in this healing 

process.  As well as providing oxygen and nutrients, blood vessels also deliver 

osteoprogenitor cells, which can differentiate into bone-forming osteoblasts under 

favourable mechanical and metabolic conditions (Cenni, 2005).  Models of bone 

formation have previously been developed to study normal fracture healing (Geris et al., 

2008), but also to investigate the viability of tissue engineered implants (Checa and 
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Prendergast, 2008).  The latter case, involving simultaneous bone cell migration and 

vascularisation within a porous scaffold, provides an intriguing future application for 

our models. 

In conclusion, we re-iterate that we have taken two existing discrete approaches to 

modelling cell migration and extended them by incorporating various aspects of the 

underlying biology that had previously been neglected.  In so doing, we have shown our 

models to be capable of reproducing a range of pertinent experimental data, and also 

providing a number of novel insights into the progression of both retinal development 

and wound healing.  In these studies, we have largely focussed on benchmarking our 

models against observations from normal healing and development; this work paves the 

way for important future studies that examine the mechanisms controlling aberrant and 

pathological cases. 
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Numerical Implementation of the Angiogenesis Model 

 

 

 

Here we provide some additional information regarding the numerical implementation 

and solution of the different aspects of the angiogenesis model.  All solution techniques 

utilised throughout this work have been coded in the C++ programming language. 

 

A.1. Basic Network Model 

The starting point for the simulation of angiogenesis is a network model, which consists 

of a three-dimensional regular cubic lattice of bonds that meet at nx x ny x nz nodes.  The 

total number of bonds is given by the expression: 3nxnynz + nynz; this indicates that each 

node has three bonds associated with it (one in each space direction), whilst one 

additional x-bond is appended to each node on the right-hand y-z plane (Figure A.1).  

This set-up allows the entrance and exit of fluid across the y-z boundaries when a 

pressure gradient is maintained in the x-direction. 

All of the simulations performed in this thesis, however, were achieved using a 

distorted network.  It has been found that flow simulations performed on regular 

networks exhibit a flow bias parallel to the pressure gradient with a concurrent 

reduction in transverse flow.  To remedy this, each of the nxnynz nodes are displaced 

from their original positions (i, j, k) to new positions (i + εi, j + εj, k + εk) (Figure A.2).  

The ε are random numbers chosen uniformly from the range [-α, α] where, in general, α
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Figure A.1: Two-dimensional schematic showing the basic network model structure, 

and rationale of the bond and node labelling.  The nodal dimensions of the network are 

nx x ny (i.e. nz = 1, and z-bonds neglected for clarity). 

 

 ≤ 0.5 to prevent bonds crossing; for all simulations in this work we chose α = 0.35.  

Thus, whilst the global structure of the network remains intact, the bonds of the network 

now exhibit a variety of lengths. 

 

A.2. Flow Calculation 

The calculation of flow in the simulated vessel networks proceeds on the basis of mass 

conservation, by assuming that all of the individual flows in and out of each node at 

each time step must sum up to zero.  Allowing the subscript a,b to denote a bond 

connecting adjacent nodes a and b, then the flows at each nodal point a must satisfy: 

 

∑     
 
      (              ). (A.1) 
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Figure A.2: Two-dimensional schematic of a distorted network structure.  Each node 

has been displaced from its original position (i, j) to a new position (i + εi, j + εj) where 

the ε are random numbers selected uniformly from the interval [-0.5, 0.5].  Note that the 

positions of the inlet and outlet “nodes” remain fixed. 

 

Assuming that Poiseuille’s law holds in each individual bond, we also have: 

 

     
      

       

           
, (A.2) 

 

where ΔPa,b = Pa – Pb is the pressure difference across the bond, Ra,b the radius of the 

bond, La,b the length of the bond and ηa,b the apparent viscosity of the blood in the bond.  

Given that Ra,b, La,b and ηa,b have known values at any one time, the expressions in 

Equation A.2 can be appropriately substituted into Equation A.1 to produce a linear 

system of nxnynz equations relating the pressures at each node of the network.  

Throughout this work, the sparse linear system of pressure equations has been solved 

iteratively using successive over-relaxation (SOR). 

It is clear from this explanation that solution of the pressure equations requires 

consideration of all nodes and bonds in the network model.  For a given vessel network, 
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however, not all bonds will correspond to capillary vessels.  Therefore, we assign to 

each of these non-capillary bonds a negligible conductance (i.e. assume it is filled with a 

fluid of arbitrarily large viscosity), and the overall pressure solution can be calculated as 

detailed. 

In addition, unique solution of the pressure equations also requires the assignment of 

appropriate boundary conditions.  Fixed pressures (Pin and Pout) are set at each 

respective inlet and outlet bond of the network.  Furthermore, periodic boundary 

conditions are imposed on the x-y and x-z boundaries.  This assumption has no 

appreciable impact on any of our results, since the bonds at these boundaries never 

become capillaries and maintain negligible conductance throughout. 

Finally, in order to ensure that mass conservation continues to be observed 

throughout simulation, we must impose a restriction on the flow time step.  The volume 

of fluid leaving a bond at any time step (i.e. QΔt) cannot be allowed to exceed the 

volume of fluid contained instantaneously within that bond (i.e. πR
2
L).  Therefore, the 

(adaptive) time step size is calculated to be: 

 

      .
    

 
/, (A.3) 

 

where we consider all bonds in the network. 

 

A.3. Discrete Cell Migration 

In our simulations, both individual ECs and astrocytes are assumed to occupy individual 

bonds of the network model; subsets of these cells are the so-called tip-cells that 

constitute the growing front of the cellular structures.  The unconnected end of such a 

bond thus lies at a particular node of the network, and migration occurs by subsequent 

movement to an adjacent node.  The hybrid PDE-discrete approach to this migration 

involves the discretisation of a PDE describing the cell behaviour at a macroscopic 

level, and derivation of a set of movement weightings that determine the likelihood of 

an individual cell to remain stationary (P0) or move left (P1), right (P2), up (P3) or down 

(P4) on a two-dimensional network lattice (Figure A.3). 

The relevant PDEs were discretised using the following representative finite
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Figure A.3: Schematic diagram showing the rationale of cell movement in the 

angiogenesis model.  A cell located at position (l, m) can either move to one of the four 

orthogonal neighbouring nodes (characterised by the respective weightings P1, P2, P3 

and P4) or remain stationary (characterised by P0).  Note that, in practice, it is in fact the 

cell tip that lies at (l, m), and the cell itself occupies one of the four connected bonds; 

the appropriate weighting is therefore set to zero so the cell cannot grow back on itself. 

 

difference formulae (A is an arbitrary variable): 
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where l and m characterise the spatial discretisations in the x- and y-directions, 

respectively, and q denotes the discretisation of time.  Note, in addition, that Δx = 1/nx 
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and Δy = 1/ny.  Upon rearrangement of the appropriately discretised expression, we 

have an equation of the form: 

 

    
          

          
          

          
          

 
, (A.9) 

 

The movement direction of an individual tip-cell is then determined by the following 

procedure: 

1. The coefficient characterising growth of a sprout back on itself is set to 

zero. 

2. Any negative coefficients are set to zero and the absolute value is added to the 

directly opposing coefficient. 

3. Calculate the sum of all coefficient values, Ptot = P0 + P1 + P2 + P3 + P4. 

4. Normalise the coefficients such that they sum to unity (i.e. P0
*
 = P0/Ptot etc.). 

5. Define the five ranges [R0, S0], [R1, S1], [R2, S2], [R3, S3] and [R4, S4] by the 

equations: 

 

     ,       
 , 

       ,            
 ,             

(A.10) 

 

6. Generate a random number between 0 and 1, then move the cell tip according 

to the range in which the number falls. 

 

A.4. Growth Factors, ECM Components and MMPs 

Taking advantage of the basic network model structure, the various continuum 

representations of growth factor concentration, matrix density and MMP concentration 

are spatially discretised such that their values are updated at the nodes of the network 

(Figure A.4).  The equations absent of diffusive terms were solved at each time step by 

using a time derivative discretisation equivalent to that given in Equation A.4.  The 

more involved solution of those equations containing diffusive terms was instead 

performed using the Alternate Direction Implicit (ADI) method.  For an n-dimensional 

domain (n = 2 or 3), this method proceeds by splitting each time step Δt into n distinct 

intervals of equal length (i.e. Δt/n).  Over the first interval, each node is visited and the
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Figure A.4: Two-dimensional schematic of the spatial discretisation applied for 

calculating the growth factor concentrations, ECM densities and MMP concentrations 

(arbitrarily represented by A here) in the angiogenesis model.  Note that the grid values 

of these variables lie in identical positions to the nodes of the basic network structure. 

 

PDE is discretised implicitly in one direction (i.e. x-direction) and explicitly in the 

remaining n-1 directions (i.e. y-direction or y- and z-directions).  The explicit 

discretisation is performed using expressions equivalent to Equations A.7 and A.8, 

while the implicit discretisation corresponds to the Crank-Nicolson method (given for 

the x-direction in a two-dimensional domain): 

 

   

    
.      

   
      

   
       

   
/ .      

 
      

 
       

 
/

 (  ) 
. (A.9) 

 

These assumptions ultimately lead to a tri-diagonal system of linear equations, which 

are solved by the Thomas Algorithm and the variable updated at each node.  This 

process is then repeated a further n-1 times, where a new space direction is subject to 

the implicit discretisation on each occasion, until a full time step Δt has elapsed. 
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A.5. Oxygen Transport 

Here we highlight that the scheme of spatial discretisation for obtaining the oxygen 

solution is different to that used for the other continuous variables.  Given that oxygen 

is delivered from the vessels (i.e. bonds) to the extracellular tissue (i.e. voids in 

between), it is somewhat simpler to define grid points for the tissue oxygen solution in 

the manner shown in Figure A.5. 

 

 

Figure A.5: Two-dimensional schematic of the spatial discretisation applied for 

calculating the tissue oxygen concentration ST in the angiogenesis model.  The black 

circles represent the discretised grid value positions of ST, whilst the clear circles 

represent the nodes of the basic network structure.  Note that each tissue block is 

bounded by four potential vessel sources (becoming twelve in the three-dimensional 

analogue), and the surface of each vessel source shares an interface with two tissue 

blocks (becoming four in the three-dimensional analogue). 

 

Once again, the reaction-diffusion system describing the evolution of oxygen 

concentration is solved using a combination of the ADI method and the Thomas 

Algorithm.  A fixed time step for solution of these coupled equations is chosen in order 
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to ensure that, throughout simulation, mass is conserved in all tissue blocks and all 

capillary vessels. 
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Appendix B 

 

Numerical Implementation of the Cell Migration 

Model 

 

 

 

Here we provide some additional details regarding the numerical implementation and 

solution of the cell migration model.  In particular, we focus only on aspects of the 

model that were borne out in the simulations performed (e.g. we provide no further 

details regarding modification of the fibrous matrix).  Once again, all solution 

techniques utilised throughout this work have been coded in the C++ programming 

language. 

 

B.1. Model Set-Up and Discrete-Continuum Interpolation 

The two-dimensional simulation domain for the cell migration model is designed in a 

manner that allows simple interpolation between the movement of the discrete off-

lattice cells and the continuum representations of collagen matrix and chemoattractant 

concentration.  The continuum variables are discretised spatially on a nx x ny grid, and 

the values of the Cartesian co-ordinate system (x, y) describing the cell positions 

coincide identically with the integer labelling system (l, m) at the grid block centres 

(Figure B.1).  Although the dimensional domain size was varied throughout, all 

simulations in this thesis were performed on a square domain with nx = ny = 100. 

At each grid point (l, m) we assign appropriate values defining the collagen
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Figure B.1: Schematic diagram showing the set-up of the simulation domain for the cell 

migration model.  Note that the values of the Cartesian co-ordinate system (x, y), 

describing the cell positions, coincide numerically with the discretised grid block values 

(l, m) representing the continuum variables. 

 

orientation, the collagen density, the chemoattractant concentration and the 

chemoattractant gradient.  In order to solve the equations governing cell speed and 

migration direction, however, we must quantify these variables in the Cartesian co-

ordinate system (x, y).  Therefore, for each integer-valued grid point (l, m) we define the 

following interpolation function: 

 

 (   )    (   ), where  ∈ (           - and  ∈ (           -. (B.1) 

 

Here, X arbitrarily represents any one of the above variables in the Cartesian system, 

and X
*
 is its discrete analogue defined only at grid points.  Importantly, this function 
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asserts that, at each time step, each cell will only be influenced by the properties of the 

collagen matrix and chemoattractant profile within the grid block containing its centroid 

f 
i
(t). 

One further clarification must also be made regarding the implementation of contact 

guidance (c.f. Equation 5.11).  When the persistent-random walk component of cell 

directionality v
i
a,r(t) is weighted against the matrix-associated component v

i
c,b(t), it 

should be noted that v
i
c,b(t) is assumed to be bi-directional.  This stipulates that the 

resultant vector v
i
(a,r),(c,b) is always directed towards the acute angle between these two 

components.  Hence, the cell migration direction can never be “reversed” by the fibrous 

matrix. 

 

B.2. Finite Difference Approximations 

Calculating the evolving cell positions and morphologies during simulations requires 

the approximation of a number of spatial and temporal derivatives.  All temporal 

derivatives (e.g. update of cell positions) were represented by the following finite 

difference approximation: 

 

  

  
 

       

  
, (B.2) 

 

where X again represents an arbitrary variable, Δt is the time step, and q denotes the 

discretisation of time.  Furthermore, all spatial derivatives (e.g. calculation of the 

chemoattractant gradient) were approximated by the following equations: 

 

  

  
 

           

  
, (B.3) 

  

  
 

           

  
, (B.4) 

 

where Δx and Δy represent the spatial step sizes of the grid discretisation. 

 

B.3. Solid Domain Boundaries 

The simulations presented in Sections 5.6.2, 6.3.2 and 6.3.3 were performed under the 

assumption that the domain boundaries were solid walls that the cells were not 
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permitted to cross.  Here, we provide some further details regarding the implementation 

of these boundary conditions for both spherical and ellipsoidal cells. 

 

B.3.1. Spherical Cells 

Although these boundary conditions are implemented for both spherical and ellipsoidal 

cells using the same algorithm, the spherical case is much simpler and, as such, can be 

summarised more briefly.  The procedure (illustrated graphically in Figure B.2) is as 

follows: 

4. Calculate the cell migration direction u
i
(t) and the cell speed s

i
(t).  

5. Update the cell centroid position f 
i
(t). 

6. Determine whether f 
i
(t) is less than the cell radius R

i
(t) from any of the domain 

boundaries (N.B. a cell near one of the domain corners may have crossed two 

boundaries). 

7. If so, shift the cell centroid perpendicularly to the appropriate boundary (or 

boundaries) until the whole cell body is just within the domain. 

These assumptions ensure that, rather than exit the domain, cells will generally be 

forced to migrate along the boundary. 

 

B.3.2. Ellipsoidal Cells 

The ellipsoidal cell case becomes rather more complicated due to the elongated nature 

of the cell body; in this case we assume that any cell which crosses the domain 

boundary must be repositioned and/or reoriented in order to force migration along, 

rather than across, the wall.  Determining whether or not any part of a particular cell has 

crossed a domain boundary in the first place, however, requires a non-trivial calculation.  

In order to make this possible, we must determine the left-, right-, lower- or upper-most 

extreme of the cell boundary.  For this purpose, we parameterise the cell boundary x
i
(r) 

= (x
i
(r), y

i
(r)) using the following equations: 

 

  ( )    
       (  )    ( )       (  )    ( ), (B.5) 

  ( )    
       (  )    ( )       (  )    ( ), (B.6) 
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 (a) (b) (c)  

 

Figure B.2: Schematic diagram illustrating the implementation of solid domain 

boundaries in the case of spherical cells: (a) at t = t
*
, the cell is inside the domain but is 

migrating towards the boundary; (b) after a time step Δt, some of the cell body has 

crossed the domain boundary; (c) hence, before the next time step, the cell is shifted in a 

direction perpendicular to the boundary until its body is just touching the wall. 

 

where r ∈ (0, 2π] is the parameter, f 
i
 = (fx

i
, fy

i
) is the position of the cell centroid, and θ

i
 

∈ (-π/2, π/2) is the angle of orientation of the cell’s major axis with respect to the 

horizontal.  The desired quantities (x
i
min, x

i
max, y

i
min and y

i
max) are then found by 

identifying the stationary points of these expressions and eliminating r to give: 

 

        
    

  
      (  )       (  )    (  )

√           (  )

, (B.7) 

        
    

  
      (  )       (  )    (  )

√           (  )

. (B.8) 

 

If any of these four cell extremities lie beyond the domain boundary, it is then clear that 

the cell position f 
i
(t) and/or the cell orientation p

i
(t) must be modified.  Unlike the 

spherical case, however, it is necessary to implement this modification by an iterative 

process.  The procedure is as follows: 

1. Calculate the cell migration direction u
i
(t) and the cell speed s

i
(t). 

2. Update the cell centroid position f 
i
(t). 

3. Use Equations B.5 – B.8 to determine whether any part of the cell body has 

crossed a domain boundary. 

4. If two boundaries have been crossed, shift the cell centroid perpendicularly to 

the appropriate boundaries until the whole cell body is just within the domain.  
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Alternatively, if only one boundary has been crossed and the cell centroid is 

less than the cell semi-minor radius B
i
(t) from this boundary, shift the cell 

centroid perpendicularly inwards until it is no closer than B
i
(t). 

5. If the cell remains outside the domain, there are two alternatives: 

i. If the cell is oriented towards the boundary, increment the cell orientation 

p
i
(t) a small amount away from the boundary.  A cell initially oriented 

perpendicular to the boundary is randomly rotated in one of the two 

directions. 

ii. If the cell is oriented away from the boundary, the cell centroid is shifted 

perpendicular to the boundary until the whole cell body lies within the 

domain. 

6. Iterate steps 3-5 until the whole cell body lies within the domain (i.e. a cell 

may not yet have been rotated sufficiently, or the rotation may have caused 

crossing of a second boundary). 

7. If the number of iterations exceeds the maximum number nmax, reverse the cell 

orientation (i.e. the cell must be “stuck” in a corner of the domain). 

A simple example illustrating the rationale of this process is shown in Figure B.3. 

 

 (a) (b) (c)  

 

Figure B.3: Schematic diagram illustrating a typical example of the implementation of 

solid domain boundaries in the case of ellipsoidal cells: (a) at t = t
*
, the cell is inside the 

domain but is migrating towards the boundary; (b) after a time step Δt, the lower-most 

extremity of the cell ymin lies beneath the boundary; (c) hence, before the next time step, 

the cell is incrementally rotated until ymin is coincident with the wall. 
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