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Impedance Eduction in Ducts
with Higher-Order Modes and Flow

W. R. Watson*and M. G. Jones'
NASA Langley Research Center, Hampton, Virginia 23681-2199, USA

An impedance eduction technique, previously validated for ducts with plane waves at the source and duct
termination planes, has been extended to support higher-order modes at these locations. Inputs for this method
are the acoustic pressures along the source and duct termination planes, and along a microphone array located
in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented
that eliminates the need for the microphone array. The integrity of both methods is tested using three sound
sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a
test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary
conclusion of the study is that the second method performs well in the presence of higher-order modes and flow.
However, the first method performs poorly when most of the microphones are located near acoustic pressure
nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode
structure in the sound source. The paper closes by using the first impedance eduction method to design a
rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test
Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.

1. Introduction

NCREASINGLY stringent noise constraints in the United States and abroad have resulted in continued emphasis
Ion the development of improved acoustic liner technologies to reduce the overall levels of fan noise radiated to
communities surrounding airports. Consequently, various numerical methods have been developed by government,
industry, and academia to support locally-reacting liner impedance evaluation. This procedure is commonly referred
to as impedance eduction although some researchers abroad refer to it as “impedance determination using an inverse
method.” The numerical methods'~'* include codes based on modal and finite element analyses. Of these, finite
element codes developed at the NASA Langley Research Center (LaRC) have been the most thoroughly tested in the
open literature*> 1-13 and have been demonstrated to provide quality results in ducts where a single plane wave mode
can be isolated between a pair of opposite hard walls.

A number of experimental test rigs have also been used by the U.S. aircraft industry to evaluate locally-reacting
liners using various levels of detail. Of particular note are the Spirit Aerosystems (formerly a Boeing facility),® the
United Technology Research Center flow impedance tubes,'> and the Goodrich Aerostructures insertion loss facility.5
Further, over the last three decades LaRC has developed a number of test rigs for the evaluation of locally-reacting
acoustic liners in the presence of grazing flow. The most notable of these are the Grazing Incidence Tube (GIT)'® and
the Curved Duct Test Rig (CDTR).!”

Impedances are educed for test liners in the GIT using the following four-step procedure:*

1. Measure the plane wave acoustic pressures at a microphone array distributed along the lower wall in the hardwall
section upstream of the test liner.

2. Measure a near anechoic duct termination impedance in the hardwall section downstream of the test liner.

3. Measure the acoustic pressures at a microphone array distributed along a hardwall opposite the test liner.

*Senior Research Scientist, Research and Technology Directorate, Computational AeroSciences Branch, Liner Physics Group, Associate Fellow,
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4. Use a duct propagation model based upon a finite-element methodology to educe the liner impedance by iterating
on an assumed value of test liner impedance (via a gradient based optimizer) until the predicted and measured
wall pressures are matched (within some tolerance) along the microphone array.

More recently, a new test rig has been built to replace the GIT. This rig, labeled the Grazing Flow Impedance Tube
(GFIT), has a 63.5 mm by 51 mm cross-section and supports single-tone sources of up to 145 dB over a frequency
range of 0.4 to 3.0 kHz, with mean flow Mach numbers up to 0.5.

It was clear from the onset of the current effort that the impedance eduction methodology described above for
the GIT and currently modified for the GFIT, is not suited for application to the CDTR. This occurs for two reasons.
First, the dimensions of the CDTR are closer to those of a full-scale engine; therefore, the source and exit planes must
support higher-order modes (the GIT is generally operated at frequencies where no higher-order modes propagate in
hardwall sections). Second, the wall opposite the test liner in the CDTR was designed to contain another liner and
populating it with a microphone array (as in the GIT and GFIT) is not convenient.

This paper has three primary objectives. First, the impedance eduction methodology used in the GIT*> 1113 (and
now the GFIT) is extended to support higher-order mode inputs in the hardwall sections upstream and downstream
of the test liner. Second, an acceptable microphone array is designed for the CDTR that can be used to educe liner
impedance in the presence of higher-order modes, mean flow, and measurement uncertainties. The microphone array
is imbedded in the hardwall adjacent to the test liner. Third, an impedance eduction methodology is presented for
ducts in which the need for a microphone array imbedded in a wall opposite or adjacent to the test liner is eliminated.

II. Description of Duct Configurations
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Figure 1. Schematic of 3D duct configurations.

Figure 1 shows the three duct configurations for which impedance eduction is desired. Each configuration contains
hardwall sections upstream and downstream of the test liner/liners and the left and right sidewalls are rigid. The config-
uration depicted in Fig. 1a (for which the microphone array in the liner test section is flush-mounted into the hardwall
opposite the test liner) is consistent with the current GFIT setup. This configuration has been thoroughly tested for
a plane acoustic wave at the source plane and a near anechoic termination impedance. An array of flush-mounted
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microphones (not shown in Fig. 1) is used to measure the source plane pressure and duct termination impedance in
the hardwall sections upstream and downstream of the test liners. In a recent study,'? it was shown that a termina-
tion pressure boundary condition gives more stable and consistent results than a boundary condition based on the exit
impedance. Thus, the current formulation incorporates an acoustic pressure condition as the termination boundary
condition. Both the source and duct termination boundary conditions are then modified to account for higher-order
mode effects. The configuration illustrated in Fig. 1b (in which a second liner is located on the wall opposite the
test liner and the microphone array is flush-mounted into a rigid sidewall adjacent to the test liner/liners) is consistent
with the current setup of the CDTR. This configuration has been evaluated for a plane wave source and planar exit
impedance, but has not been tested in the presence of higher-order modes. This paper, therefore, tests the integrity of
this configuration for impedance eduction in the presence of higher-order modes and flow. We also demonstrate how
to design a microphone array for this configuration that is well suited for impedance eduction. The third configuration
(in which a microphone array imbedded in an opposite or adjacent wall to the test liner/liners is eliminated) is depicted
in Fig. 1c. An impedance eduction theory for the third configuration is not available in the duct acoustics literature
and is presented (and tested) in this paper for the first time.

In each of the three duct configurations a right-hand Cartesian coordinate system is used in which the axial,
vertical, and horizontal directions are denoted by z, x, and y, respectively. Each duct has length L, uniform height H
and uniform width W. However, the cross-sectional dimensions of the GIT and GFIT are considerably smaller than
those of the CDTR. Although the height and width of each configuration is depicted as constant, provisions will be
made later to allow for a nonuniform cross-sectional area distribution between the uniform hardwall sections upstream
and downstream of the test liner/liners. Such a nonuniform area distribution exists, for example, when the CDTR is
operated in a curved configuration.

As usual, all transients in the ducts are assumed to have been dissipated away or to have propagated out of the
solution domain, so that acoustic disturbances are assumed to be at steady-state with a harmonic time dependence of
the form €™ where f is the source frequency in Hertz, ¢ denotes the time in seconds, and i is the unit imaginary
number. The source and duct termination planes are located at z = 0 and z = L, respectively, and the origin of the
coordinate system is the lower left corner of the source plane as illustrated in Fig. 1. Note that the left and right
sidewall of each duct is rigid and the upper wall always contains a test liner. Throughout this paper it will be assumed
that the lower wall in configuration 1 is rigid, whereas configurations 2 and 3 may contain a second liner on the lower
wall. In each configuration, the liner/liners lie between the axial locations, L; < z < L, and outside of this region
the upper and lower walls are rigid. All liners are assumed to be locally reacting (i.e., acoustic waves propagate
through them normal to the surface). The impedance of lower and upper wall liners are denoted by {;(z) and {(z),
respectively, so that the impedance of each liner may vary with axial location. Again it is emphasized that the lower
wall of configuration 1la is rigid (i.e., 1/;(z) = 0.0). Further, in this paper all impedances are assumed normalized
with respect to the characteristic impedance of the air in the duct and all variables are in the International System of
Units (unless otherwise specified).

In each duct, there is a subsonic mean flow from left to right along the axis of the duct with speed, Uy. The mean
flow is not shown in Fig. 1 but is assumed present. The boundary layer generated by the flow is assumed thin, so that
the uniform flow assumption is acceptable. Therefore, the mean flow field is assumed to have a constant mean static
density of pg, a constant mean static pressure of Py, and a constant mean static temperature of 7y. Further, each duct
configuration is a model of an aft-fan duct (i.e., sound and flow are in the same direction). Alternatively, inlet duct
modeling (i.e., flow and sound directed in opposite directions) is achieved by reversing the sign on the steady flow
velocity, Up. The problem at hand is to educe the unknown acoustic impedance of the test liner/liners for each of the
three duct configurations, in the presence of the uniformly flowing fluid and higher-order modes.

III. Governing Equations and Boundary Conditions

The acoustic pressure field, p, propagating in the ducts depicted in Fig. 1 satisfies the convected wave equation

Fp p p p

1= M§) = + =2 + =5 — 2ikMy=— +k*p=0 1
( 0)8z2+8x2+8y2 : 08z+ P M
where p is the acoustic pressure field, k = (2nf)/co, is the freespace wavenumber, My = Up/co, is the mean flow
Mach number, and ¢ is the speed of sound in the duct. A detailed derivation of Eq. (1) along with the simplifying
assumptions are given in Ref. 18. The solution to Eq. (1) that satisfies the rigid sidewall boundary conditions is of the
form
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M-1
pzxy) =Y, pu(z,x) cos(mvny) )
m=0
where the upper limit of summation, M — 1, is chosen to include each horizontal mode that propagates without decay
in the hardwall sections of duct. In addition the horizontal mode order, m, is assumed a known integer, so that each
Pm 1s a quasi-3D solution. Because the solution in the horizontal dimension is separable, each quasi-3D solution, p,,,
in Eq. (2) can be shown to satisfy a modified convected wave equation of the form

pm  9*p op mmy 2
a2 m mo . m 2 -
(1= My) 55" + 57— 2ikMo = +[k (W) }me 3)

The wall impedance boundary condition for the locally-reacting liner has been discussed in detail by Myers.'® For
the upper wall, this condition is

apm Pm d Pm M(% 02 Pm
— =ik| — 2My— | =— — = 4
ox ! & + Oaz & + ik 022\ & @
and the wall impedance boundary condition of the lower wall has a similar form
apm o [ Pm ] Pm M(z) 02 Pm
— =ik| — 2My— | — —— | = 5
o (gl T \T ) T a2\ )

Equations (4) and (5) are also used along the hardwall portion of the upper and lower wall, but the reciprocal of the
impedance functions are set to zero [i.e., 1/{;(z) = 1/8(z) = 0.0] along this portion of the wall.

An array of microphones flush-mounted in the hardwall section upstream of the test liners (not shown in the
enclosed figures) is used to measure the acoustic pressure profile, p;(x), at the source plane for each horizontal mode,
m. This measured acoustic pressure profile is used as the source plane boundary condition

Pm(0,%) = ps(x) (6)

Similarly, the microphone array in the hardwall section downstream of the test liners (also not shown in the enclosed
figures) is used to determine the exit plane acoustic pressure boundary condition, p,(x), for each horizontal mode

Pm(L,x) = pe(x) @)

Note that the acoustic pressure profile measurements must be obtained with the test liner/liners installed and must
contain the effects of higher-order modes in the vertical direction (i.e., the x direction). Equations (3)-(7) do not have
exact closed-form solutions for a general set of input parameters. Consequently, they are solved numerically using
a finite element method. A few of the most important details concerning the finite element method are given in the
following section.

IV. Finite Element Solution for the Acoustic Pressure Field

In the ducts depicted in Fig. 1, a grid consisting of N and M evenly spaced grid lines is used in the z and x
directions of the duct, respectively. The N grid lines in the z direction are assumed to be located at axial locations
z2=121,2=22,...2= 2N (Where z1 =0, and zy = L). Similarly, the M grid lines in the x direction are assumed to be
located at x = x1,x = x3,...x = x)y (Where x; =0, and xp; = H). Thus, there are N — 1 columns and M — 1 rows of
elements in the duct as shown in the upper part of Fig. 2. It is convenient therefore to use a double subscript notation,
[1,J], to locate the element in the /th column and Jth row of the grid, where / =1,2,3...N—1landJ=1,2,3...M —1.
A typical rectangular element, [1,J], with width a = z;4| — z; and height b = x;4| — x; consists of four local node
numbers, labeled 1, 2, 3, and 4, respectively, as shown in the bottom part of Fig. 2. The objective is to obtain the
unknown acoustic pressure and its derivatives at the nodes of each of the (M — 1)(N — 1) rectangular elements. This
is achieved by using a Galerkin finite-element method to minimize the field residual error, which is defined as

Rr(e.2) = (1= M) 55" + 53 —zszo§Z+[k2—(";V) }pm (8)
4 0f 19

American Institute of Aeronautics and Astronautics



|||||| TTTTTTT
| |
m | |
| |
o _
— | I
| |
(I _
| |
= |
| |
| |
|||||| F—————r
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
IIIIII TIIIIITIIIII
| |
|| | |
— | |
_ | |
| |
| |
| |
o | |
S _
R |
| |
o __ [, b —
| |
— | !
— | |
| |
[ _
| |
M | |
| |
| |
— | |
— |
|||||| L __L

\ b

Local node

/ numbers

L, J]

TR

xJ+

ZI+1

Figure 2. Finite element discretization and node numbering system.
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Within each rectangular element, [/,J], the acoustic pressure, p,,, is approximated as a cubic polynomial

q=16

x)= Y Ny(z.x)p, 9)
g=1

Expressions for the cubic polynomial basis functions, N,(z,x), are somewhat lengthy and can be found in standard
finite element textbooks such as Ref. 20. Here, we used a C! continuous element?° so that the nodal coefficients, Pygs
are

P11 = gm(zlax.l) D5 = gm(Z1+17xJ) Po = Psz(Z1+17xJ+1) P13 = gm(ZIaxJ+l)
20,X ZUi1,X U1, X 2,
Dy = pm(azl 7) Do = pm(ézl 1) P10 = P 13Z1 J+1) pia= pm(alZ J+1)
_ 9pm(zr, X)) _ 0pm(zrs1,%7) _ Opm(zrs1,X741) _ Opm(z1,%741) (10)
p3= ox p1= ox b= ox P15 = ox
9°pm(z1,%7) _ 0 pm(zri1,%)) _ 0 pm(zri1,x11) _ O (z1,X11)
pa= 0z0x P 0z0x p12 0z0x Pis dz0x

The unknown wall impedance functions {(z) and {;(z) are expanded in series similar to Eq. (9). However, the
coefficients in the expansion are the unknown nodal values of the wall impedance functions [i.e., {;(z;), and &(z;)]
and these coefficients will need to be determined.

The field error in the duct is now minimized by requiring that it be orthogonal to each basis function, N, (z,x).
Because each element is assumed evenly spaced, contributions to the minimization of the field error function for each
element can be computed from that of a single finite element such as element [1, 1]. This contribution is of the form

/[ ]RFquzdx (11)
1,1

Each second-derivative term in the integrand of equation (11) is integrated by parts to obtain

b ra
| ReNadad = / / RpN,dzdx =Ry + Ry + R, +R, (12)
1,1 0
apm aN OPm aN . OPm
R‘*/ A [ azazaxax”"MOazN‘f} dadx (13)
_ @l (mm 2
Ry— /0 /0 {k (W) }pqudzdx (14)
b opm(a,x) b pm(0,x)
_ a2 1% ’ _ A2 14 )
Z_/() (1 Mo)iaz Ny(a,x)dx /0 (1 Mo)iaZ Ny(0,x)dx (15)
_ ([ 9pm(z,D) [ dpm(z,0)
R, = /O {ax Nq(z,b)} dz— /0 {ax N,(z,0) | dz (16)

where a and b are the width and height, respectively, of the finite element as shown in Fig. 2. The wall impedance
boundary conditions are implemented into the boundary integrals in Eq. (16)

/Oa [agan}dZZ—/a[ (CZ)HMO; (2’;’)+A§§§; (2’;)}Ndz,x—a (17)
W [Bemae= [T () v ()« Ss () Jrosermo

The contribution to the minimization of the field error and wall impedance boundary conditions for a typical
element, [/,J], is expressed in matrix form

/[ RiNydzds = APl (19)
1.J

where [AI/]], is the 16 x 16 element stiffness matrix, and {P/]} is a complex column vector of length 16 that
contains the unknown acoustic pressure and its derivatives at the four nodes of element, [/, J]. The coefficients in the
element stiffness matrix are computed in closed form. Assembly of the global matrix equations from the local element
stiffness matrices is a basic procedure in the finite-element method. Appropriate shifting of rows and columns is all
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that is required to add the local element stiffness matrix [Al~/]] directly into the global stiffness matrix, [A]. This results
in a matrix equation of the form B

[A[{P} = {0} (20)

where {0} is a null column vector of length 4NM, [A] is the 4ANM x 4NM block tridiagonal global stiffness matrix,
and {P} is a column vector of length 4NM containing the unknown nodal coefficients. In Eq. (20) the vector {P} is
partitioned as follows

{P1}

{P2}
(py={ A} 1)

{Pv}

were each {P;} is a column vector of length 4M that contains the unknown nodal parameters at the axial gridline,
=7

Equations (20) are a set of linear algebraic equations that minimize the residual error in the duct while satisfying the
wall impedance boundary conditions in weak form. Solutions to Egs. (20) may not, however, satisfy the source plane
[Eq. (6)] and duct termination plane [Eq. (7)] boundary conditions. These two conditions are satisfied by constraining
the nodal degrees of freedom, p,,, in the trial solution given in Eq. (9). The methodology for imposing these constraints
on a linear system such as Egs. (20) is found in standard finite element texts such as Ref. 20. Constraining the nodal
degrees of freedom to satisfy the source and duct termination boundary condition leads to a modified system of linear
equations of the form

[A|{P} ={F} (22)

where {F '} is a column vector of length 4N M that contains the effects of the sound source and duct termination acoustic
pressure, and [A] is the modified asymmetric stiffness matrix. Equation (22) constitutes the system of linear algebraic
equations that are solved to educe the impedance for each of the three duct configurations. The impedance eduction
methodology for duct configurations 1 and 2 are similar and are therefore described in the same section. However, the
impedance eduction methodology for configuration 3 has not been presented in the open literature and is described in
a separate section.

V. Impedance Eduction for Configurations 1 and 2

Given initial estimates for the impedance functions [{;(z;), and {»(z;)] at the finite element boundary nodes,
solutions to Eq. (22) are used to obtain estimates for the acoustic pressure [i.e., pgy(z7)] at axial locations, z;, along
the microphone array. Values of the unknown impedance functions and their derivatives at the finite element nodes are
then iteratively updated until a set of impedance functions are found that reproduces the acoustic pressures, pareqas(z1),
measured at the microphone array to within some tolerance. Throughout this paper the superscript Meas and Est are
used to denote a a measured value and a value obtained from the solution to Eq. (22), respectively.

It is necessary, however, to automate the above iterative procedure so that pgy(z7) is closer to pueqs(z;) for each
new update of the impedance functions. We therefore implement an automated search procedure using an optimization
algorithm. The objective function, £, (1, &,), for the optimization algorithm is defined as

PMeas (Zl ) — PEst (Zl )
PMeas (ZZ) — PEst (12)

! PMeas (Z3) — PEst (Z3) (23)

nwall

Fwall(CvaZ) - H{Rdif}Hsz {Rdif} =

PMeas (anall) — PEst (anall)

where nwall is the number of axial locations, z;, along the microphone array where measurements are taken, and
|| {Rair} H 1, denotes the L2-norm of the residual pressure error vector

{Rair | 12 = {Rais HRGi i} (24)

In Eq. (24) the superscripts * and T denote the complex conjugate and vector transpose, respectively. Note the
following:

1. The objective function is real and nonnegative (i.e., F,q(C1,82) > 0)
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2. The global minimum of the objective function, F,.;(C1,8z) = 0, occurs when pgg (z7) = pyeas(zr) for each z;

Because the acoustic pressure at the microphone array is a unique function of the test liner impedance functions, it
follows therefore that the impedance functions that minimize F,;(E;,&,) are the unknown impedance functions of
the test liner. The optimization algorithm returns the impedance functions [that is, ; (z) and {,(z)] that minimize this
objective function.

VI. Impedance Eduction for Configuration 3

In this section an impedance eduction technique is developed for application to the duct configuration depicted in
Fig. 1c. Note that this configuration does not contain a microphone array in the walls opposite or adjacent to the test
liners. Therefore an impedance eduction method different from that described in the previous section is required.

To begin, the solution to Eq. (22) gives unique values for the axial component of the acoustic pressure gradient,

85%, at the source and duct termination plane for each set of impedance functions. Further, the solution in the hardwall
section upstream of the liner is expanded as a series of hardwall duct modes
N-1 nnx

- -
Pm(z,x) = Z [A,;nelkm-"z+A,,me’K'"~"Z} cos(?) (25)
n=0

i Mox \/1 —(1-M2) [(mn/kvv)2 + (nn/kH)Z}

m,n

ko (1-m3)

(26)

where the upper index of summation [(N — 1)] is chosen so that each mode that propagates along the z axis without
axial decay is included in the series. Here, it is implicitly assumed that the source plane is located far enough upstream
of the leading edge of the liner, that the axially decaying modes have decayed to sufficiently low levels to be neglected.
Further, the right and left-moving mode coefficients (i.e., A,jn:‘n) are assumed known from acoustic measurements. Note
that the left-moving mode coefficients, A, ,,, originate from the reflection of acoustic energy at the leading edge of the
liner, while the right-moving mode coefficients, A}, carry the predominant acoustic energy generated by the sound
source. The solution in the downstream hardwall section is also expanded in a similar series of hardwall duct modes

= Kt o~ iKnZ nnx
pm(ZJX) = Z {Cm,ne e +Cm,ne i } COS( H ) 27
n=0

where the right and left moving mode coefficients (i.e., Ci£ ) are assumed known from acoustic measurements.
The impedance eduction method proposed for configuration 3 is based on the following two criteria

1. The boundary value problem defined by Egs. (3)-(7) is well-posed. That is, the acoustic pressure and its gradients
are uniquely determined by the test liner impedance functions, the source plane and exit plane acoustic pressure

2. The finite-element solution for the axial pressure gradients at the source and duct termination planes must match
those obtained from the acoustic measurements

More specifically, the above two criteria require that the following equations be satisfied

oP1 oP1
{az }Meas B {aZ }Est - {O} (28)

JdPN JdPN
(), 2, -
aZ Meas aZ Est

Here, {aa—[;l} and {ag;ZN} are column vectors containing the axial derivative of the acoustic pressure at the M finite
element nodes located along the source and duct termination planes, respectively. The measured values, {%} ,
Meas

are obtained by differentiating Eqs. (25) and (27), whereas the finite element solutions, {88%1 }E , are obtained from
St

the solution to Eq. (22). Thus Eq. (22) is solved to obtain the axial derivative of the acoustic pressure in the duct for
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specified wall impedance functions, ;(z) and £;(z), and these impedance functions are iterated upon until the finite
element solution for the axial derivative of the acoustic pressure at the source and duct termination planes match the
measurement.

The impedance eduction method is now formulated as an optimization problem. That is, values of the impedance
coefficients are sought that minimize the objective function

Fat1 (C1,82) = [{R} hardll 12 (30)

(p), - ()
{Rhard} = { 81(?3?\7 }Meas B {53.51 }E” (31)
0z Meas 0z Est
Note that the residual error vector, Ry,,4, is defined as the difference between the measured axial derivative of the
acoustic pressure and that computed by the finite element method. Further, using arguments identical to those in the

previous section, it is easily shown that the wall impedance functions that minimize Fy,q;({i,) are the unknown
impedance functions of the test liners.

VII. Results and Discussion

A. The Computer Code

An in-house computer code (MMFEM) that implements the impedance eduction methodologies discussed in this paper
has been developed. The code uses Fortran 90 with double precision (i.e., 64 bit) arithmetic and is designed to run in
a shared memory environment. This approach is chosen because the primary hardware to be utilized is an Altix 350
computer system. In the current implementation, the resistance, 0, and reactance, %, of the test liner are the design
variables (§; = 6, + iy and { = 0, 4 iyp) for softwall configurations. On the other hand, the conductance, R[1/E;],
and susceptance, 3[1/C,], are the design variables for hardwall configurations, where R[ | and 3| | denote the real and
imaginary parts, respectively, of the complex quantity within the brackets. In addition, each set of results is restricted
to a uniform liner on the upper wall with a rigid lower wall ({;=constant, and 1/{; = 0+ 0i). Thus, only two design
variables (8, and ) are allowed to vary in the optimization algorithm. Each linear system [Eq. (22)] is solved using
Pardiso?! (a state-of-the-art parallel sparse solver with equation reordering and iterative refinement).

One of the most important aspects of the impedance eduction technique is the optimization algorithm. The op-
timization algorithm chosen is Stewart’s adaptation of the Davidon-Fletcher-Powell (SDFP) optimization algorithm
that uses a finite difference approximation to the gradient of the objective function.?? This gradient-based optimizer
has the disadvantage that it may converge to local optima (if they exist), and may become stuck in that portion of the
impedance plane where the objective function is extremely flat. However, the above shortcomings of SDFP are more
than mitigated by the fact that SDFP tends to converge faster and give more accurate results than many of its com-
petitors. Further, the occurrence of multiple local optima has to date not been observed with the impedance eduction
methodologies. However, the authors are not aware of any definitive proof that multiple local optima cannot exist in
any of the impedance eduction procedures. Consequently, multiple initial starting values for the impedance coeffi-
cients are used to strengthen our confidence that the global optimum is achieved. Recently, a global-based optimizer,
the “Genetic Algorithm,” was added to our suite of optimization tools. Although the Genetic Algorithm?? runs in par-
allel and locates a global optimum, it tends to be much more computationally expensive because it performs a global
search in the complex impedance plane. For this reason, the Genetic Algorithm was used only sparingly in this paper,
and then only to spot-check the integrity of impedances educed using SDFP. In all cases, no noticeable differences
between the impedance educed using SDFP and the Genetic Algorithm were observed. Therefore, only the SDFP
results are presented in this section. The optimizer (i.e., SDFP) runs only in sequential mode, using central finite
differences to compute the gradient of the objective function, and the algorithm is currently unconstrained. Unless
otherwise stated, a stopping criteria (i.e., tolerance) of 1 x 107% is used (i.e., F({1,82) < 1 x 107®) to terminate the
search for each test liner.

B. Duct Geometry and Mean Flow Field

Results in this section are restricted to that of the geometry of the CDTR (i.e., L} = 0.203 m, L, =1.016 m, L =
1.219 m, W = 0.381 m and H = 0.152 m). Thus, as many as seven horizontal modes (M = 7) may propagate without
axial decay for the lowest order horizontal mode (i.e., n = 0). Results are obtained for six flow Mach numbers (My=0.0,
0.1, 0.2, 0.3, 0.4, and 0.5) and all results are computed at standard atmospheric conditions, so that 7p = 295.00 K,
co = 344.28 m/s, pg = 1.20 kg/m?, and Py = 101325.00 Pa.
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C. Hardwall Results

Several examples are presented to demonstrate the accuracy and robustness of the impedance eduction methodologies
in a hardwall duct. In these examples, the normalized conductance (R[1/E;]) and susceptance (3[1/§;]) of the lower
wall are set to a zero value and the normalized conductance (R[1/;]) and susceptance (3[1/C;]) of the the upper wall
are educed. The CDTR is not currently configured to satisfy configuration 2 because the microphone array on the
adjacent wall has not yet been installed. The data required for these hardwall examples are therefore synthesized from
the exact mode solution for outgoing waves in an infinite hardwall duct:

M—-1N-1
. X T
p(z,x,y) = Z Z A;yne’K';"Z cos (%) cos (Q) (32)

m=0 n=0 4

Equation (32) is used to extract the source and duct termination pressures that are required to construct the finite
element matrix equation [Eq. (22)]. Equation (32) is also used to construct the microphone pressures needed for
impedance eduction in configurations 1 and 2, and the pressure gradients needed in configuration 3. Further, only the
modes that do not attenuate are allowed to propagate through the duct and these are given an amplitude of 20 Pa and
zero phase

A,J,rw =20 Pa (33)

The amplitude and phase of each attenuating mode is given a zero value (Aj,;n =0.0).

A uniform spatial grid with 97 gridlines in the axial direction (N = 97) and 13 gridlines in the vertical direction
(M = 13) is used to educe the impedance from the synthesized data. The uniform grid contains 65 equally spaced
axial points in the liner region and all 65 points are used to construct the microphone array. The microphone array is
a line array (i.e., it is located only along a single horizontal gridline). The normalized conductance and susceptance
are educed for each of the six Mach numbers at six selected frequencies (f = 0.5,1.0,1.5,2.0,2.5, and 3.0 kHz) using
the planar source. Although results are not given, educed normalized conductance and susceptance values for each of
the three configurations in Fig. 1 are in excellent agreement with the expected value of zero to four decimal digits of
precision.

Table 1 shows results for Mach 0.0-0.5 when the sound source contains only the first order vertical mode (i.e.,
the (0,1) mode). The first and second columns in the table contain the frequency, f, in kHz and the uniform flow
Mach number, My, respectively. The lowest frequency in the table (1.5 kHz) is the smallest frequency for which the
(0,1) mode does not attenuate. To highlight the effects of the placement of microphones at pressure nulls, table 1
presents results for two microphone arrays in configuration 2. The first microphone array was a line array located
at the vertical location, x = H /4, and these results are tabulated in columns 5 and 6. The second microphone array
was a line array located at the vertical location, x = H /2 (the location of acoustic pressure nulls), and these results
are tabulated in columns 7 and 8. Note that when the microphones are located at pressure nulls (i.e., x = H/2 for the
(0,1) mode), significant errors in the educed normalized susceptance occur. However, when the microphone array is
located away from pressure nulls (i.e., x = H/4), normalized conductance and susceptance values educed using the
array of microphones adjacent to the test liner compare quite favorably to the expected value of zero. Also, normalized
conductance and susceptance values educed using configurations 1 and 3 (for which the microphone data used does
not contain pressure nulls) are in excellent agreement with their expected value of zero.

Table 2 show results similar to those in table 1 but for a sound source containing equal mode amplitudes and zero
phases in the first three hardwall duct modes (Ao = Ag,1 = Ao 2 = 20 Pa). The impedance eduction methodology for
configuration 2 is observed to be more forgiving to having microphones along the null line of the (0,1) mode than
was observed when the source contains only the (0,1) mode. However, improvements in the accuracy of the educed
normalized conductance and susceptance are clearly observed in configuration 2 when the microphones are placed
away from locations where pressure nulls occur.

D. Softwall Results

To test the ability of the impedance eduction methodologies to accurately educe the impedance for a softwall, a
liner consisting of a perforated plate over honeycomb is installed into the GIT, and its impedance is educed (using
measured data from the GIT) for several flow Mach numbers. Next, the normalized impedance for the liner is educed
using the geometry of the CDTR. Because the necessary input data is not available from CDTR measurements, the

quantities required to educe the impedance (i.e., paseqs(z7) for configurations 1 and 2; {aaﬂ} and {agﬂ} for
Z ) Meas Z Est

configuration 3) are simulated by running the finite-element program with the liner impedance set to that educed in the
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Table 1. Educed normalized conductance, R[1/(;], and normalized susceptance, 3[1/{;], of hardwall duct with the (0,1) mode source.

Configuration 1 Configuration 2 Configuration 2 Configuration 3
array at, x = H /4 array at, x = H/2
£ Mo | RG] ] S[1/G] | R(1/G) [ S1/G] | R/ [ S[1/6] | R1/8] | S[1/8)]
1.5 0 | 0.0000 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.2361 | 0.0000 | 0.0000
2 0 | 0.0000 | 0.0000 | 0.0000 | 0.0270 | 0.0000 | 0.0985 | 0.0000 | 0.0000
2.5 0 | 0.0000 | 0.0000 | 0.0000 | 0.0219 | 0.0000 | 0.0739 | 0.0000 | 0.0000
3 0 | 0.0000 | 0.0000 | 0.0000 | 0.0293 | 0.0001 | 0.1060 | 0.0000 | 0.0000
1.5 ] 0.1 | 0.0000 | 0.0000 [ 0.0000 | 0.0066 | 0.0000 | 0.1569 | 0.0000 | 0.0000
2| 0.1 | 0.0000 | 0.0000 | 0.0000 | 0.0191 | 0.0000 | 0.0569 | 0.0000 | 0.0000
251 0.1 ] 0.0000 | 0.0000 | 0.0000 | 0.0062 | 0.0000 | 0.1710 | 0.0000 | 0.0000
3 10.1| 0.0000 | 0.0000 | 0.0000 | 0.0156 | 0.0000 | 0.0444 | 0.0000 | 0.0000
1.5 ] 0.2 | 0.0000 | 0.0000 [ 0.0000 | 0.0257 | 0.0000 | 0.1184 | 0.0000 | 0.0000
2| 0.2 | 0.0000 | 0.0000 | 0.0000 | 0.0287 | 0.0000 | 0.1779 | 0.0000 | 0.0000
2.5 1 0.2 ] 0.0000 | 0.0000 | 0.0000 | 0.0446 | 0.0017 | 0.1271 | 0.0000 | 0.0000
31021 0.0000 | 0.0000 | 0.0000 | 0.0432 | 0.0000 | 0.1160 | 0.0000 | 0.0000
1.5 ] 03| 0.0000 | 0.0000 [ 0.0000 | 0.0084 | 0.0000 | 0.1211 | 0.0000 | 0.0000
2|03 | 0.0000 | 0.0000 | 0.0010 | 0.0077 | 0.0198 | 0.1902 | 0.0000 | 0.0000
2.5 1 03| 0.0000 | 0.0000 | 0.0000 | 0.0492 | 0.0000 | 0.1031 | 0.0000 | 0.0000
3103 0.0000 | 0.0000 | 0.0000 | 0.0295 | 0.0000 | 0.0554 | 0.0000 | 0.0000
1.5 04 | 0.0000 | 0.0000 [ 0.0000 | 0.0109 | 0.0000 | 0.0986 | 0.0000 | 0.0000
2|04 | 0.0000 | 0.0000 | 0.0000 | 0.0455 | 0.0000 | 0.1037 | 0.0000 | 0.0000
2.5 1 04| 0.0000 | 0.0000 | 0.0009 | 0.0173 | 0.0000 | 0.1280 | 0.0000 | 0.0000
3104 | 0.0000 | 0.0000 | 0.0000 | 0.0337 | 0.0000 | 0.0501 | 0.0000 | 0.0000
1|05 | 00000 | 0.0000 | 0.0000 | 0.0017 | 0.0000 | 0.0568 | 0.0000 | 0.0000
1.5 ] 0.5 | 0.0000 | 0.0000 [ 0.0000 | 0.0221 | 0.0000 | 0.1539 | 0.0000 | 0.0000
2| 0.5 | 0.0000 | 0.0000 | 0.0000 | 0.0469 | 0.0000 | 0.0740 | 0.0000 | 0.0000
2.5 1 0.5 | 0.0000 | 0.0000 | 0.0001 | 0.0315 | 0.0441 | 0.1782 | 0.0000 | 0.0000
3105 | 0.0000 | 0.0000 | 0.0000 | 0.0268 | 0.0761 0.1288 | 0.0000 | 0.0000
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Table 2. Educed normalized conductance, R[1/{,], and normalized susceptance, 3[1/(,], of hardwall duct with an equal mode amplitude
source.

Configuration 1 Configuration 2 Configuration 2 Configuration 3
array at, x = H /4 array at, x = H/2
£ Mo [ R[1/G) [ S[1/G] | RM1/G] [ S[1/8] | R1/G] [ S[1/%] | R(1/G] | S[1/¢)
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.5 0 | 0.0000 | 0.0000 | 0.0001 | 0.0025 | 0.0160 | 0.0546 | 0.0000 | 0.0000
0
0

0.0000 | 0.0000 | 0.0006 | 0.0169 | 0.0004 | 0.0988 | 0.0000 | 0.0000
0.0000 | 0.0000 | 0.0014 | 0.0264 | 0.1918 | 0.1033 | 0.0000 | 0.0000
0 | 0.0000 | 0.0000 | 0.0108 | 0.0197 | 0.0028 | 0.0400 | 0.0000 | 0.0000
0.5 ] 0.1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.5 0.1 | 0.0000 | 0.0000 [ 0.0001 | -0.0063 | 0.0073 | 0.0377 | 0.0000 | 0.0000
2| 0.1 | 0.0000 | 0.0000 | 0.0008 | 0.0197 | 0.0002 | 0.0572 | 0.0000 | 0.0000
2.5 1 0.1 | 0.0000 | 0.0000 | 0.0002 | 0.0068 | 0.1889 | -0.5678 | 0.0000 | 0.0000
3 10.1| 0.0000 | 0.0000 | 0.0018 | 0.0131 0.2491 0.1393 | 0.0000 | 0.0000
0.5 ] 0.2 ] 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.5 1 0.2 | 0.0000 | 0.0000 | 0.0012 | 0.0021 | 0.0007 | 0.1197 | 0.0000 | 0.0000
2|02 | 0.0000 | 0.0000 | 0.0035 | -0.0280 | 0.0325 | 0.0756 | 0.0000 | 0.0000
251 0.2 ] 0.0000 | 0.0000 | 0.0000 | 0.0804 | 0.2100 | 0.1082 | 0.0000 | 0.0000
31021 0.0000 | 0.0000 | 0.0000 | 0.0263 | 0.6794 | -0.2020 | 0.0000 | 0.0000
0.5 ] 0.3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.5 1 03| 0.0000 | 0.0000 [ 0.0001 | -0.0081 | 0.0040 | 0.0581 0.0000 | 0.0000
2|03 | 0.0000 | 0.0000 | 0.0007 | -0.0102 | 0.0331 | 0.1235 | 0.0000 | 0.0000
2.5 1 03] 0.0000 | 0.0000 | 0.0000 | 0.0314 | 0.2193 | 0.1285 | 0.0000 | 0.0000
3103 0.0000 | 0.0000 | 0.0029 | 0.0244 | 0.0014 | 0.3623 | 0.0000 | 0.0000
0.5 ] 04| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1.5 104 | 0.0000 | 0.0000 [ 0.0002 | -0.0106 | 0.0120 | 0.1308 | 0.0000 | 0.0000
2|04 | 0.0000 | 0.0000 | 0.0056 | 0.0208 | 0.0005 | 0.1076 | 0.0000 | 0.0000
251 04| 0.0000 | 0.0000 | 0.0057 | -0.0015 | 0.4006 | -1.3447 | 0.0000 | 0.0000
3104 | 0.0000 | 0.0000 | 0.0010 | 0.0281 0.2100 | 0.0210 | 0.0000 | 0.0000
0.5 ] 0.5 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1] 05| 0.0000 | 0.0000 | 0.0000 | 0.0017 | 0.0001 | 0.0569 | 0.0000 | 0.0000
1.5 1 0.5 | 0.0000 | 0.0000 | 0.0010 | 0.0217 | 0.0097 | 0.1565 | 0.0000 | 0.0000
2105 | 0.0000 | 0.0000 | 0.0001 0.0594 | 0.1978 | 0.1545 | 0.0000 | 0.0000
251 05| 0.0000 | 0.0000 | 0.0031 | 0.0326 | 0.1956 | 0.1738 | 0.0000 | 0.0000
3105 | 0.0000 | 0.0000 | 0.0024 | 0.0238 | 0.2219 | 0.0304 | 0.0000 | 0.0000
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GIT. The source and termination plane acoustic pressure profiles are identical to those in the hardwall example. The
spatial grid and location of the microphones used in the softwall simulations are identical to that used in the hardwall
example.

Table 3. Comparison of the educed normalized resistance, 6,, and normalized reactance, >, of test liner with a plane wave source.

GIT Configuration 1 Configuration 2 Configuration 3
array at, x = H/2
f | Mo 02 X2 02 X2 02 X2 02 X2
0.5 ] 0.0 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893
1.0 | 0.0 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681
1.5 | 0.0 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371
20| 0.0 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 | 0.3469
251 0.0 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945
05103 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588
1.0 | 0.3 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741
1.5 | 03 | 07517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958
20| 03 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 | 0.1476
25103 | 0.8323 | 0.4356 | 0.8323 | 0.4356 | 0.8323 | 0.4356 | 0.8323 | 0.4356

Table 4. Comparison of the educed normalized resistance, 6,, and normalized reactance, > of test liner with the (0,1) mode source.

GIT Configuration 1 Configuration 2 Configuration 3
array at, x = H/2
S| Mo 0> X2 0> X2 0> X2 02 X2
0.5 | 0.0 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893
1.0 | 0.0 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681
1.5 | 0.0 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371
20| 0.0 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 | 0.3469
25| 0.0 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945
05103 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588
1.0 | 0.3 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741
1.5 | 03 | 0.7517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958
20| 03 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 | 0.1476
25103 | 08323 | 04356 | 0.8323 | 0.4356 | 0.8323 | 0.4356 | 0.8323 | 0.4356

Educed normalized resistance and susceptance values for each of the three duct configurations (see Fig. 1) using
the CDTR geometry are compared to that measured in the GIT for the plane wave source, the (0, 1) mode source,
and the equal mode amplitude source in tables 3-5, respectively. Results for duct configuration 2 are presented when
the array of microphones is located along the vertical gridline, x = H/2 (identical results were obtained when the
vertical position of the microphone array was located at x = H/4). The educed impedance for each of the three duct
configurations is in agreement with values obtained in the GIT to five significant digits for the planar source (table 3),
the (0,1) mode source (table 4), and the equal mode amplitude source (table 5). Note that the acoustic pressure nulls
that are located on the right sidewall at x = H/2 in the hardwall duct example are no longer present in this softwall
example. This occurs because of scattering of acoustic energy out of the hardwall duct modes into softwall duct
modes at the leading and trailing edges of the liner. The softwall duct modes do not have pressure nulls along the
right sidewall. Consequently, the loss of accuracy in educed impedance that was encountered for configuration 2 in
the hardwall example is not experienced when a liner is present.
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Table 5. Comparison of the educed normalized resistance, 6,, and normalized reactance, ), of test liner with an equal mode amplitude
source.

GIT Configuration 1 Configuration 2 Configuration 3
array at, x = H/2
S| Mo 0, X2 0, X2 ) X2 2 X2
0.5 | 0.0 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893 | 0.5347 | -2.7893
1.0 | 0.0 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681 | 0.1984 | -1.1681
1.5 ] 0.0 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371 | 0.2282 | -0.1371
2.0 1 0.0 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 | 0.3469 | 0.1150 0.3469
2.5 | 0.0 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945 | 0.1598 | 0.6945
05103 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588 | 1.7279 | -1.7588
1.0 | 0.3 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741 | 0.8210 | -0.8741
1.5 ] 03 | 0.7517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958 | 0.7517 | -0.3958
2.0 1 03 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 | 0.1476 | 0.7340 0.1476
2.5 103 | 0.8323 | 0.4356 | 0.8323 | 0.4356 | 0.8323 | 0.4356 | 0.8323 | 0.4356
4 - 4 -
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Figure 3. Effects of the optimizer tolerance on the educed normalized resistance and reactance of a plane wave source at Mach 0.0.
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It has been observed that the small value of the tolerance used in the computer code (i.e., 10~®) is an important
parameter contributing to such excellent agreement between the educed impedance spectrum from the three duct
configurations and the spectrum computed in the GIT (see tables 3-5). For example, Fig. 3 compares the educed
resistance and reactance for three values of the tolerance (0.1, 0.01 and 0.0001). The duct configuration depicted in
Fig. 1b is used, the sound source is a plane wave source, the Mach number is 0.0, and the microphone array lies at the
vertical location, x = H /2. Tt should be noted that a tolerance of 0.1 means that the optimizer terminates the search
when the objective function is lower than 0.1 (i.e., Fq(E1,82) < 0.1). Note that a minimum tolerance of 0.0001 is
required for accurate impedance eductions. This minimum value of the tolerance (i.e., 0.0001) is also needed for other
Mach numbers, sound sources, and duct configurations.

E. Design of a Microphone Array for the CDTR

Table 6. Selected 32 Microphone Array for the LaRC Curve Duct Test Rig.

Microphone No. | x (in) | z (in) Microphone No. | x (in) | z (in)
1 1 8 17 1 24
2 2 8 18 2 24
3 4 8 19 4 24
4 5 8 20 5 24
5 1 12 21 1 28
6 2 12 22 2 28
7 4 12 23 4 28
8 5 12 24 5 28
9 1 16 25 1 32
10 2 16 26 2 32
11 4 16 27 4 32
12 5 16 28 5 32
13 1 20 29 1 36
14 2 20 30 2 36
15 4 20 31 4 36
16 5 20 32 5 36

Another objective of this work is to design an acceptable microphone array for accurate impedance eduction
in the CDTR. A random number generator is used to determine potential locations of 32 microphones on the right
sidewall of the CDTR (see Fig. 1b). The number of microphone locations is limited to 32 because this was the
number of microphones that are available for insertion into the right sidewall. In addition to the arrays of randomly
distributed microphone locations, approximately 100 rectangular grids containing 32 microphones (each located at
various locations along the right sidewall) are also investigated. A rectangular array of 32 microphones is determined
to be sufficient for the CDTR. Table 6 shows the proposed x and z locations (in inches) for each of the 32 microphones.

Impedances are educed (using the microphone array given in table 6) for the planar wave source, the (0,1) mode
source, and the equal mode amplitude sound source. Impedances are educed for Mach 0.0-0.5 in increments of 0.1 and
for source frequencies ranging from 0.5 to 3.0 kHz in increments of 0.5. These represent the ranges of Mach number
and frequencies of current interest in the CDTR. Impedances are educed for both hard and softwall duct configurations.
The pressure data along the microphone array that is needed for impedance eduction are acquired by running the finite
element program using 1/, = 1/{; = 0 for the hardwall duct, and with 1/{; = 0 and the resistance and reactance
of {, set to those in the GIT for the softwall duct. These data are then used to educe the liner impedance using the
microphone arrangements given in table 6. To account for uncertainty in the input data, the sound pressure levels
(SPLs) and phases acquired from running the finite element program are perturbed using a random number generator.
The SPL is perturbed by i% dB and the phases by 1 degrees. Such uncertainties in microphone array data (i% dB,
and £1 degrees) are possible for the type of microphones currently under consideration for the CDTR.

Conductance and susceptance values computed for the hardwall duct (i.e., for each of the six Mach numbers and
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all three duct configurations) are in agreement with the exact value of zero to four digits of precision (i.e., with and
without random error). These are not shown to limit the number of graphs. Figure 4 compares the educed impedances
(i.e., normalized resistance and reactance) with the liner installed to that measured in the GIT using the plane wave
source and for Mach 0.0 (first row in Fig. 4) and Mach 0.3. (second row in Fig. 4). The normalized impedance educed
using the proposed array is in good agreement with those educed in the GIT. The impact of random errors of :l:% dB
and +1 degrees is small. Figure 5 shows similar results for the equal mode amplitude sound source. The educed
normalized impedance using the selected array is again in good agreement with those educed in the GIT. These results
confirm that measurements on the wall adjacent to the test liner (the right sidewall in this case) can be used to educe
the impedance in the CDTR, with and without higher-order modes, provided the microphone array is properly chosen.
Efforts are current underway to implement the proposed microphone array in the CDTR.
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Figure 4. Educed normalized impedance of test liner using the selected array at Mach 0.0 and Mach 0.3 for plane wave source
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VIII. Conclusions

An impedance eduction method requiring that a microphone array be imbedded in a wall either opposite or adja-
cent to the test liner has been successfully extended to include higher order mode effects. A new methodology that
eliminates the need for this microphone array has also been presented. Based on the results of this study the following
primary conclusions are drawn:

1. The impedance eduction methodology that eliminates the need for a microphone array on a wall either opposite
or adjacent to the test liner performs well in the presence of higher order modes and flow.

2. The method requiring that a microphone array be embedded in a wall either opposite or adjacent to the test liner
performs well except when most of the microphones are located near acoustic pressure nulls.

3. The value of the tolerance used by the optimizer that educes the impedance is an important factor in both
impedance eduction methodologies. Results presented in this paper require a minimum value of 10~ for the
tolerance.

4. This paper confirms that a rectangular array of 32 microphones, mounted in a wall adjacent to the test liner and
with the microphones properly located, may be used to accurately educe the impedance in the presence of higher
order modes and mean flow.
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