654 research outputs found
Keyframe detection in visual lifelogs
The SenseCam is a wearable camera that passively captures images. Therefore, it requires no conscious effort by a user in taking a photo. A Visual Diary from such a source could prove to be a valuable tool in assisting the elderly, individuals with neurodegenerative diseases, or other traumas. One issue with Visual Lifelogs is the large volume of image data generated. In previous work we spit a day's worth of images into more manageable segments, i.e. into distinct events or activities. However, each event coud stil consist of 80-100 images. thus, in this paper we propose a novel approach to selecting the key images within an event using a combination of MPEG-7 and Scale Invariant Feature Transform (SIFT) features
Exploiting context information to aid landmark detection in SenseCam images
In this paper, we describe an approach designed to exploit
context information in order to aid the detection of landmark images from a large collection of photographs. The
photographs were generated using Microsoft’s SenseCam, a
device designed to passively record a visual diary and cover
a typical day of the user wearing the camera. The proliferation of digital photos along with the associated problems of managing and organising these collections provide the background motivation for this work. We believe more ubiquitious cameras, such as SenseCam, will become the norm in the future and the management of the volume of data generated by such devices is a key issue. The goal of the work reported here is to use context information to assist in the detection of landmark images or sequences of images from the thousands of photos taken daily by SenseCam. We will achieve this by analysing the images using low-level MPEG-7 features along with metadata provided by SenseCam, followed by simple clustering to identify the landmark images
Interventional Radiology and the Care of the Oncology Patient
Interventional Radiology (IR) is occupying an increasingly prominent role in the care of patients with cancer, with involvement from initial diagnosis, right through to minimally invasive treatment of the malignancy and its complications. Adequate diagnostic samples can be obtained under image guidance by percutaneous biopsy and needle aspiration in an accurate and minimally invasive manner. IR techniques may be used to place central venous access devices with well-established safety and efficacy. Therapeutic applications of IR in the oncology patient include local tumour treatments such as transarterial chemo-embolisation and radiofrequency ablation, as well as management of complications of malignancy such as pain, organ obstruction, and venous thrombosis
Data transformation and query management in personal health sensor networks
Sensor technology has been exploited in many application areas ranging from climate monitoring, to traffic management, and healthcare. The role of these sensors is to monitor human beings, the environment or instrumentation and provide continuous streams of information regarding their status or well being. In the case study presented in this work, the network is provided by football teams with sensors generating continuous heart rate values during a number of different sporting activities. In wireless networks such as these, the requirement is for methods of data management and transformation in order to present data in a format suited to high level queries. In effect, what is required is a traditional database-style query interface where domain experts can continue to probe for the answers required in more specialised environments. The challenge arises from the gap that emerges between the low level sensor output and the high level user requirements of the domain experts. This paper describes a process to close this gap by automatically harvesting the raw sensor data and providing semantic enrichment through the addition of context data
Stakes and probabilities in information purchase
Subjects purchased information to increase P (probability of a correct decision) in tasks with net expected value held constant. In Experiment 1, Ss purchased more information, and thereby increased P, when stakes were higher. Experiment 2 showed a positive relation between stakes and P regardless of which variable was independent. The hypothesis that Ss were holding variance constant could not account for this tradeoff, however, because Ss treated P as relatively more important than stakes. Finally, under the assumption that risk increases with stakes and decreases with P, the riskier Ss treated P as relatively more important than did the less risky Ss.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34161/1/0000449.pd
Strategies for dose reduction with specific clinical indications during computed tomography
Increasing integration of computed tomography (CT) into routine patient care has escalated concerns regarding associated radiation exposure. Specific patient cohorts, particularly those with cystic fibrosis (CF) and Crohn's disease, have repeat exposures and thus have an increased risk of high lifetime cumulative effective dose exposures. Thoracic CT is the gold standard imaging method in the diagnosis, assessment and management of pulmonary disease. In the setting of CF, CT demonstrates increased sensitivity compared with pulmonary function tests and chest radiography. Furthermore, in specific cases of Crohn's disease, CT demonstrates diagnostic superiority over magnetic resonance imaging (MRI) for radiological evaluation. Low dose CT protocols have proven beneficial in the evaluation of CF, Crohn's disease and renal calculi, and in the follow up of testicular cancer patients. For individuals with chronic conditions warranting frequent radiological follow up, the focus must continue to be the incorporation of appropriate CT use into patient care. This is of particular importance for the paediatric population who are most susceptible to potential radiation induced malignancy. CT technological developments continue to focus on radiation dose optimisation. This article aims to highlight these advancements, which prioritise the acquisition of diagnostically satisfactory images with the least amount of radiation possible
Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium
Introduction
The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery.
Materials and Methods
All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores.
Results
Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p’s < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen’s d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes.
Conclusion
The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels
Opposing roles for striatonigral and striatopallidal neurons in dorsolateral striatum in consolidating new instrumental actions.
Comparatively little is known about how new instrumental actions are encoded in the brain. Using whole-brain c-Fos mapping, we show that neural activity is increased in the anterior dorsolateral striatum (aDLS) of mice that successfully learn a new lever-press response to earn food rewards. Post-learning chemogenetic inhibition of aDLS disrupts consolidation of the new instrumental response. Similarly, post-learning infusion of the protein synthesis inhibitor anisomycin into the aDLS disrupts consolidation of the new response. Activity of D1 receptor-expressing medium spiny neurons (D1-MSNs) increases and D2-MSNs activity decreases in the aDLS during consolidation. Chemogenetic inhibition of D1-MSNs in aDLS disrupts the consolidation process whereas D2-MSN inhibition strengthens consolidation but blocks the expression of previously learned habit-like responses. These findings suggest that D1-MSNs in the aDLS encode new instrumental actions whereas D2-MSNs oppose this new learning and instead promote expression of habitual actions
Biomarker profiles of acute heart failure patients with a mid-range ejection fraction
OBJECTIVES:
In this study, the authors used biomarker profiles to characterize differences between patients with acute heart failure with a midrange ejection fraction (HFmrEF) and compare them with patients with a reduced (heart failure with a reduced ejection fraction [HFrEF]) and preserved (heart failure with a preserved ejection fraction [HFpEF]) ejection fraction.
BACKGROUND:
Limited data are available on biomarker profiles in acute HFmrEF.
METHODS:
A panel of 37 biomarkers from different pathophysiological domains (e.g., myocardial stretch, inflammation, angiogenesis, oxidative stress, hematopoiesis) were measured at admission and after 24 h in 843 acute heart failure patients from the PROTECT trial. HFpEF was defined as left ventricular ejection fraction (LVEF) of ≥50% (n = 108), HFrEF as LVEF of <40% (n = 607), and HFmrEF as LVEF of 40% to 49% (n = 128).
RESULTS:
Hemoglobin and brain natriuretic peptide levels (300 pg/ml [HFpEF]; 397 pg/ml [HFmrEF]; 521 pg/ml [HFrEF]; ptrend <0.001) showed an upward trend with decreasing LVEF. Network analysis showed that in HFrEF interactions between biomarkers were mostly related to cardiac stretch, whereas in HFpEF, biomarker interactions were mostly related to inflammation. In HFmrEF, biomarker interactions were both related to inflammation and cardiac stretch. In HFpEF and HFmrEF (but not in HFrEF), remodeling markers at admission and changes in levels of inflammatory markers across the first 24 h were predictive for all-cause mortality and rehospitalization at 60 days (pinteraction <0.05).
CONCLUSIONS:
Biomarker profiles in patients with acute HFrEF were mainly related to cardiac stretch and in HFpEF related to inflammation. Patients with HFmrEF showed an intermediate biomarker profile with biomarker interactions between both cardiac stretch and inflammation markers. (PROTECT-1: A Study of the Selective A1 Adenosine Receptor Antagonist KW-3902 for Patients Hospitalized With Acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal Function; NCT00328692)
- …