245 research outputs found

    Evidence for inbreeding depression in a species with limited opportunity for maternal effects

    Get PDF
    It is often assumed that mating with close relatives reduces offspring fitness. In such cases, reduced offspring fitness may arise from inbreeding depression (i.e., genetic effects of elevated homozygosity) or from post-mating maternal investment. This can be due to a reduction in female investment after mating with genetically incompatible males ("differential allocation") or compensation for incompatibility ("reproductive compensation"). Here, we looked at the effects of mating with relatives on offspring fitness in mosquitofish, Gambusia holbrooki. In this species, females are assumed to be nonplacental and to allocate resources to eggs before fertilization, limiting differential allocation. We looked at the effects of mating with a brother or with an unrelated male on brood size, offspring size, gestation period, and early offspring growth. Mating with a relative reduced the number of offspring at birth, but there was no difference in the likelihood of breeding, gestation time, nor in the size or growth of these offspring. We suggest that due to limited potential for maternal effects to influence these traits that any reduction in offspring fitness, or lack thereof, can be explained by inbreeding depression rather than by maternal effects. We highlight the importance of considering the potential role of maternal effects when studying inbreeding depression and encourage further studies in other Poeciliid species with different degrees of placentation to test whether maternal effects mask or amplify any genetic effects of mating with relatives.This work was supported bythe Australian Research Council (DP120100339). R.V.-T. is supported by fellowships from Consejo Nacion-al de Ciencia y Tecnologıa-Mexico and the ResearchSchool of Biology

    Sexual signaling and immune function in the black field cricket Teleogryllus commodus

    No full text
    The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls.This work was supported by the Australian Research Council (DP0555943 to M.D.J.). J.H. was funded by the Natural Environment Research Council and a Royal Society Fellowship. J.M.D. was supported by an Australian Postgraduate Award

    Inbreeding depression does not increase after exposure to a stressful environment: a test using compensatory growth

    Get PDF
    BACKGROUND: Inbreeding is often associated with a decrease in offspring fitness (‘inbreeding depression’). Moreover, it is generally assumed that the negative effects of inbreeding are exacerbated in stressful environments. This G × E interaction has been explored in many taxa under different environmental conditions. These studies usually manipulate environmental conditions either in adulthood or throughout an individual’s entire life. Far fewer studies have tested how stressful environments only experienced during development subsequently influence the effects of inbreeding on adult traits. RESULTS: We experimentally manipulated the diet (control versus low food) of inbred and outbred juvenile Eastern mosquitofish (Gambusia holbrooki) for three weeks (days 7-28) to test whether experiencing a presumably stressful environment early in life influences their subsequent growth and adult phenotypes. The control diet was a standard laboratory food regime, while fish on the low food diet received less than 25 % of this amount of food. Unexpectedly, despite a large sample size (237 families, 908 offspring) and a quantified 23 % reduction in genome-wide heterozygosity in inbred offspring from matings between full-siblings (f = 0.25), neither inbreeding nor its interaction with early diet affected growth trajectories, juvenile survival or adult size. Individuals did not mitigate a poor start in life by showing ‘compensatory growth’ (i.e. faster growth once the low food treatment ended), but they showed ‘catch-up growth’ by delaying maturation. There was, however, no effect of inbreeding on the extent of catch-up growth. CONCLUSIONS: There were no detectable effects of inbreeding on growth or adult size, even on a low food diet that should elevate inbreeding depression. Thus, the long-term costs of inbreeding due to lower male reproductive success we have shown in another study appear to be unrelated to inbreeding depression for adult male size or the growth rates that are reported in the current study.This work was supported by the Australian Research Council (DP160100285). R.V.-T. is supported by fellowships from Consejo Nacional de Ciencia y Tecnología-México and the Research School of Biology

    Sexual conflict and cryptic female choice in the black field cricket, Teleogryllus commodus

    Get PDF
    The prevalence and evolutionary consequences of cryptic female choice (CFC) remain highly controversial, not least because the processes underlying its expression are often concealed within the female reproductive tract. However, even when female discrimination is relatively easy to observe, as in numerous insect species with externally attached spermatophores, it is often difficult to demonstrate directional CFC for certain male phenotypes over others. Using a biological assay to separate male crickets into attractive or unattractive categories, we demonstrate that females strongly discriminate against unattractive males by removing their spermatophores before insemination can be completed. This results in significantly more sperm being transferred by attractive males than unattractive males. Males respond to CFC by mate-guarding females after copulation, which increases the spermatophore retention of both attractive and unattractive males. Interestingly, unattractive males who suffered earlier interruption of sperm transfer benefited more from mate guarding and guarded females more vigilantly than attractive males. Our results suggest that post-copulatory mate guarding has evolved via sexual conflict over insemination times rather than through genetic benefits of biasing paternity toward vigorous males, as has been previously suggested

    The fitness cost to females of exposure to males does not depend on water availability in seed beetles

    Get PDF
    Access to multiple males can benefit a female in terms of increased fecundity and/or offspring performance. However, the presence of more males can also impose costs on females that arise from an elevated mating rate (e.g. due to increased genital damage, loss of feeding opportunities) and/or increased harassment. Different environments might influence the relative magnitude of these costs and benefits, because they can influence how often males and females encounter each other as well as the nature of these encounters. In the seed beetle, Callosobruchus maculatus, water is a limiting resource for females that can be obtained from male ejaculates. Here we explored whether the net fitness of female seed beetles is affected by breeding in either a dry or a wet environment when housed with differing numbers of males (none, one or four). Consistent with costly male harassment, females housed with four males laid significantly fewer eggs than those housed alone or with a single male, but there was no effect of the number of males on female egg-laying rate, life span, larval development rate or egg–adult survival of offspring. Although females in the wet environment lived significantly longer, there was only tentative evidence that water availability affected the net fitness cost to females of being exposed to more males. We conclude that to understand the evolution of mating systems it is important to explore how the environment affects female fitness by balancing the costs and benefits of being exposed to males.This work was supported by Australian Research Council (M.J., DP160100285; M.H., Future Fellowship FT160100149)

    Describing mate choice in a biased world: comments on Edward and Dougherty & Shuker

    Full text link

    Artificial selection on male genitalia length alters female brain size

    Full text link
    Male harassment is a classic example of how sexual conflict over mating leads to sex-specific behavioural adaptations. Females often suffer significant costs from males attempting forced copulations, and the sexes can be in an arms race over male coercion. Yet, despite recent recognition that divergent sex-specific interests in reproduction can affect brain evolution, sexual conflict has not been addressed in this context. Here, we investigate whether artificial selection on a correlate of male success at coercion, genital length, affects brain anatomy in males and females. We analysed the brains of eastern mosquitofish (Gambusia holbrooki), which had been artificially selected for long or short gonopodium, thereby mimicking selection arising from differing levels of male harassment. By analogy to how prey species often have relatively larger brains than their predators, we found that female, but not male, brain size was greater following selection for a longer gonopodium. Brain subregion volumes remained unchanged. These results suggest that there is a positive genetic correlation between male gonopodium length and female brain size, which is possibly linked to increased female cognitive ability to avoid male coercion. We propose that sexual conflict is an important factor in the evolution of brain anatomy and cognitive ability

    The Indirect Benefits of Mating with Attractive Males Outweigh the Direct Costs

    Get PDF
    The fitness consequences of mate choice are a source of ongoing debate in evolutionary biology. Recent theory predicts that indirect benefits of female choice due to offspring inheriting superior genes are likely to be negated when there are direct costs associated with choice, including any costs of mating with attractive males. To estimate the fitness consequences of mating with males of varying attractiveness, we housed female house crickets, Acheta domesticus, with either attractive or unattractive males and measured a variety of direct and indirect fitness components. These fitness components were combined to give relative estimates of the number of grandchildren produced and the intrinsic rate of increase (relative net fitness). We found that females mated to attractive males incur a substantial survival cost. However, these costs are cancelled out and may be outweighed by the benefits of having offspring with elevated fitness. This benefit is due predominantly, but not exclusively, to the effect of an increase in sons' attractiveness. Our results suggest that the direct costs that females experience when mating with attractive males can be outweighed by indirect benefits. They also reveal the value of estimating the net fitness consequences of a mating strategy by including measures of offspring quality in estimates of fitness

    Evolution of frequency-dependent mate choice : keeping up with fashion trends.

    Get PDF
    The diversity of sexual traits favoured by females is enormous and, curiously, includes preferences for males with rare or novel phenotypes. We modelled the evolution of a preference for rarity that yielded two surprising results. First, a Fisherian 'sexy son' effect can boost female preferences to a frequency well above that predicted by mutation-selection balance, even if there are significant mortality costs for females. Preferences do not reach fixation, however, as they are subject to frequency-dependent selection: if choosy females are too common, then rare genotypes in one generation become common, and thus unattractive, in the offspring generation. Nevertheless, even at relatively low frequency, preferences maintain polymorphism in male traits. The second unexpected result is that the preferences can evolve to much higher frequencies if choice is hindered, such that females cannot always express their preferences. Our results emphasize the need to consider feedback where preferences determine the dynamics of male genotypes and vice versa. They also highlight the similarity between the arbitrariness of behavioural norms in models of social evolution with punishment (the so-called 'folk theorem') and the diversity of sexual traits that can be preferred simply because deviating from the norm produces unattractive offspring and is, in this sense, 'punished'
    corecore