48 research outputs found

    Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides

    Get PDF
    This work was supported in part by grants from the Canadian Institutes of Health Research (FDN_148364) (to C.W.). S.D.L. is a recipient of a Natural Science and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship and Michael Smith Foreign Study Supplement. C.W. is a Canada Research Chair. J.H.N. is a Wellcome Trust Investigator (100209/Z/12/Z).Capsules are surface layers of hydrated capsular polysaccharides (CPSs) produced by many bacteria. The human pathogen Salmonella enterica serovar Typhi produces "Vi antigen" CPS, which contributes to virulence. In a conserved strategy used by bacteria with diverse CPS structures, translocation of Vi antigen to the cell surface is driven by an ATP-binding cassette (ABC) transporter. These transporters are engaged in heterooligomeric complexes proposed to form an enclosed translocation conduit to the cell surface, allowing the transporter to power the entire process. We identified Vi antigen biosynthesis genetic loci in genera of the Burkholderiales, which are paradoxically distinguished from S. Typhi by encoding VexL, a predicted pectate lyase homolog. Biochemical analyses demonstrated that VexL is an unusual metal-independent endolyase with an acidic pH optimum that is specific for Oacetylated Vi antigen. A 1.22-Å crystal structure of the VexL-Vi antigen complex revealed features which distinguish common secreted catabolic pectate lyases from periplasmic VexL, which participates in cell-surface assembly. VexL possesses a right-handed parallel beta-superhelix, of which one face forms an electropositive glycan-binding groove with an extensive hydrogen bonding network that includes Vi antigen acetyl groups and confers substrate specificity. VexL provided a probe to interrogate conserved features of the ABC transporter-dependent export model. When introduced into S. Typhi, VexL localized to the periplasm and degraded Vi antigen. In contrast, a cytosolic derivative had no effect unless export was disrupted. These data provide evidence that CPS assembled in ABC transporter-dependent systems is actually exposed to the periplasm during envelope translocation.Publisher PDFPeer reviewe

    Structure and Kinetic Investigation of Streptococcus pyogenes Family GH38 α-Mannosidase

    Get PDF
    BACKGROUND: The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH), termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)(5)(GlcNAc)(2) hybrid N-glycans to GlcNAc(Man)(3)(GlcNAc)(2). Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i) 18 microM) at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+) ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity. CONCLUSIONS/SIGNIFICANCE: Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function in the degradation of host N- or possibly O-glycans. The absence of any classical signal peptide further suggests that SpGH38 may be intracellular, perhaps functioning in the subsequent degradation of extracellular host glycans following their initial digestion by secreted glycosidases

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    Structure and heme binding properties of Escherichia coli O157:H7 ChuX

    No full text
    For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 Å resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The νFe-CO and νC-O frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX

    X-ray data collection and structure statistics for Bfo2291, Bfo2290, and Bfo2294.

    No full text
    X-ray data collection and structure statistics for Bfo2291, Bfo2290, and Bfo2294.</p

    Conserved active site residues in Bfo2290 and structurally similar proteins, and superimposition of BT3349.

    No full text
    A) Conserved residues highlighted in red represent residues that were conserved among 5 sulfatases that are structurally similar and had high sequence identity to Bfo2290. The serine residue post translationally modified into formylglycine was highlighted in pink. The superimposed substrate from BT3349 was highlighted in orange, was a trisaccharide of CSA containing 1 sulfated N-acetyl-D-galactosamine flanked on either side by glucuronic acid. B) Bfo2290 was superimposed on to the crystal structure of BT3349 which shares 61% sequence identity and a highly similar structure. Residues labeled are from BT3349.</p

    The original unmodified gel image was used for the creation of Fig 3 in the manuscript.

    No full text
    Gel 1 was used in the creation of Fig 3A–3D, and gel 2 was used in the creation of Fig 3E–3H. The gel was loaded from left to right in the annotated order. Experimental samples are labelled using the relevent figure subheading and coloured blue. Blank lanes are labelled X in yellow. Lanes were cropped, rearranged to omit blank lanes, and color inverted using Adobe Photoshop CS6 in order to create the figure. (PDF)</p

    The crystal structure of Bfo2294.

    No full text
    A) Bfo2294 shows an α/β-barrel tertiary structure. B) The active site contains conserved residues modeled against a KDPGal aldolase from E. coli (PDBID: 2V82). Key residues highlighted in yellow Glu 49 and Lys 141 form a zwitterionic-pair critical to the catalytic function of Bfo2294. KDP was modeled in orange as part of the co-crystal structure of a KDPGal aldolase to show the orientation of the substrate in the active site.</p

    Crystal structure of Bfo2290 arylsulfatase.

    No full text
    The model was refined with a resolution of 2.85Å, in the P212121 space group. A) The asymmetric unit contained 3 proteins arranged in a trimer with C3 symmetry. B) A single chain in the asymmetric unit models a monomer and has an α/β topology typical of glycosaminoglycan degrading sulfatase enzymes. A ribbon structure highlighted secondary structural elements. C) A topology diagram of the structure of Bfo2290 was made with secondary structures highlighted in colours matching the single chain model. Dotted lines represented residues that were removed due to insufficient data.</p
    corecore