48 research outputs found

    The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory

    Full text link
    In the framework of perturbative quantum field theory a new, universal renormalization condition (called Master Ward Identity) was recently proposed by one of us (M.D.) in a joint paper with F.-M. Boas. The main aim of the present paper is to get a better understanding of the Master Ward Identity by analyzing its meaning in classical field theory. It turns out that it is the most general identity for classical local fields which follows from the field equations. It is equivalent to a generalization of the Schwinger-Dyson Equation and is closely related to the Quantum Action Principle of Lowenstein and Lam. As a byproduct we give a self-contained treatment of Peierls' manifestly covariant definition of the Poisson bracket.Comment: 56 pages. to appear in Commun. Math. Phy

    Non-Uniqueness of Quantized Yang-Mills Theories

    Get PDF
    We consider quantized Yang-Mills theories in the framework of causal perturbation theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed by a simple commutator relation for the S-matrix. The most general coupling which is gauge invariant in first order contains a two-parametric ambiguity in the ghost sector - a divergence- and a coboundary-coupling may be added. We prove (not completely) that the higher orders with these two additional couplings are gauge invariant, too. Moreover we show that the ambiguities of the n-point distributions restricted to the physical subspace are only a sum of divergences (in the sense of vector analysis). It turns out that the theory without divergence- and coboundary-coupling is the most simple one in a quite technical sense. The proofs for the n-point distributions containing coboundary-couplings are given up to third or fourth order only, whereas the statements about the divergence-coupling are proven in all orders.Comment: 22 pages. The paper is written in TEX. The necessary macros are include

    Perturbative gauge invariance: electroweak theory II

    Full text link
    A recent construction of the electroweak theory, based on perturbative quantum gauge invariance alone, is extended to the case of more generations of fermions with arbitrary mixing. The conditions implied by second order gauge invariance lead to an isolated solution for the fermionic couplings in agreement with the standard model. Third order gauge invariance determines the Higgs potential. The resulting massive gauge theory is manifestly gauge invariant, after construction.Comment: 16 pages, latex, no figure

    Removal of violations of the Master Ward Identity in perturbative QFT

    Full text link
    We study the appearance of anomalies of the Master Ward Identity, which is a universal renormalization condition in perturbative QFT. The main insight of the present paper is that any violation of the Master Ward Identity can be expressed as a LOCAL interacting field; this is a version of the well-known Quantum Action Principle of Lowenstein and Lam. Proceeding in a proper field formalism by induction on the order in \hbar, this knowledge about the structure of possible anomalies as well as techniques of algebraic renormalization are used to remove possible anomalies by finite renormalizations. As an example the method is applied to prove the Ward identities of the O(N) scalar field model.Comment: 51 pages. v2: a few formulations improved, one reference added. v3: a few mistakes corrected and one additional reference. v4: version to be printed in Reviews in Mathematical Physic

    On the assertion that PCT violation implies Lorentz non-invariance

    Full text link
    Out of conviction or expediency, some current research programs take for granted that "PCT violation implies violation of Lorentz invariance". We point out that this claim is still on somewhat shaky ground. In fact, for many years there has been no strengthening of the evidence in this direction. However, using causal perturbation theory, we prove here that when starting with a local PCT-invariant interaction, PCT symmetry can be maintained in the process of renormalization.Comment: 13 page

    Protecting the conformal symmetry via bulk renormalization on Anti deSitter space

    Get PDF
    The problem of perturbative breakdown of conformal symmetry can be avoided, if a conformally covariant quantum field phi on d-dimensional Minkowski spacetime is viewed as the boundary limit of a quantum field Phi on d+1-dimensional anti-deSitter spacetime (AdS). We study the boundary limit in renormalized perturbation theory with polynomial interactions in AdS, and point out the differences as compared to renormalization directly on the boundary. In particular, provided the limit exists, there is no conformal anomaly. We compute explicitly the "fish diagram" on AdS_4 by differential renormalization, and calculate the anomalous dimension of the composite boundary field phi^2 with bulk interaction Phi^4.Comment: 40 page

    Massive Vector Mesons and Gauge Theory

    Get PDF
    We show that the requirements of renormalizability and physical consistency imposed on perturbative interactions of massive vector mesons fix the theory essentially uniquely. In particular physical consistency demands the presence of at least one additional physical degree of freedom which was not part of the originally required physical particle content. In its simplest realization (probably the only one) these are scalar fields as envisaged by Higgs but in the present formulation without the ``symmetry-breaking Higgs condensate''. The final result agrees precisely with the usual quantization of a classical gauge theory by means of the Higgs mechanism. Our method proves an old conjecture of Cornwall, Levin and Tiktopoulos stating that the renormalization and consistency requirements of spin=1 particles lead to the gauge theory structure (i.e. a kind of inverse of 't Hooft's famous renormalizability proof in quantized gauge theories) which was based on the on-shell unitarity of the SS-matrix. We also speculate on a possible future ghostfree formulation which avoids ''field coordinates'' altogether and is expected to reconcile the on-shell S-matrix point of view with the off-shell field theory structure.Comment: 53 pages, version to appear in J. Phys.

    CC^*-algebraic approach to interacting quantum field theory: Inclusion of Fermi fields

    Full text link
    We extend the CC^*-algebraic approach to interacting quantum field theory, proposed recently by Detlev Buchholz and one of us (KF) to Fermi fields. The crucial feature of our approach is the use of auxiliary Grassmann variables in a functorial way.Comment: 31 pages, in this version we added a referenc
    corecore