49 research outputs found

    Mechanisms Regulating the Association of Protein Phosphatase 1 with Spinophilin and Neurabin

    Get PDF
    Protein phosphorylation is a key mediator of signal transduction, allowing for dynamic regulation of substrate activity. Whereas protein kinases obtain substrate specificity by targeting specific amino acid sequences, serine/threonine phosphatase catalytic subunits are much more promiscuous in their ability to dephosphorylate substrates. To obtain substrate specificity, serine/threonine phosphatases utilize targeting proteins to regulate phosphatase subcellular localization and catalytic activity. Spinophilin and its homologue neurabin are two of the most abundant dendritic spine-localized protein phosphatase 1 (PP1) targeting proteins. The association between spinophilin and PP1 is increased in the striatum of animal models of Parkinson's disease (PD). However, mechanisms that regulate the association of spinophilin and neurabin with PP1 are unclear. Here, we report that the association between spinophilin and PP1α or PP1γ1 was increased by CDK5 expression and activation in a heterologous cell system. This increased association is at least partially due to phosphorylation of PP1. Conversely, CDK5 expression and activation decreased the association of PP1 with neurabin. As with dopamine depletion, methamphetamine (METH) abuse causes persistent alterations in dopamine signaling which influence striatal medium spiny neuron function and biochemistry. Moreover, both METH toxicity and dopamine depletion are associated with deficits in motor control and motor learning. Pathologically, we observed a decreased association of spinophilin with PP1 in rat striatum evaluated one month following a binge METH paradigm. Behaviorally, we found that loss of spinophilin recapitulates rotarod pathology previously observed in dopamine-depleted and METH-treated animals. Together, these data have implications in multiple disease states associated with altered dopamine signaling such as PD and psychostimulant drug abuse and delineate a novel mechanism by which PP1 interactions with spinophilin and neurabin may be differentially regulated

    Does spinophilin play a role in alteration of NMDAR phosphorylation?

    Get PDF
    poster abstractNormal brain function requires proper organization of downstream signaling pathways. This organization can be modulated by protein phosphorylation. Protein phosphorylation is a balance of phosphatases, such as protein phosphatase 1 (PP1), and kinases such as protein kinase A (PKA) and cyclin dependent kinase 5 (CDK5). Proper targeting of these proteins is critical for their normal function and is perturbed in various disease states. Spinophilin is critical in targeting PP1 to various substrates making it important in regulating the phosphorylation state and thus the function of various proteins including glutamate receptors, such as AMPARs and NMDARs. NMDARs are abundant postsynaptic proteins that are critical for normal synaptic communication. It has been reported that NMDAR phosphorylation modulates channel function. Here we aim to understand if spinophilin regulates NMDAR phosphorylation and function as well as the mechanisms by which the spinophilin NMDAR interaction are altered. Specifically, we have found that the presence of spinophilin decreases the abundance of PP1 bound to NMDAR. This affect was not observed when a PP1 binding-deficient spinophilin mutant (F451A) was expressed. Furthermore, activation of endogenous PKA and/or overexpression of PKA catalytic subunit robustly increased the association between spinophilin and GluN1 and C-terminal tail of the GluN2B subunit of the NMDAR. Conversely, these associations are decreased when CDK5 is present. Our future studies will evaluate the role of spinophilin in regulating the phosphorylation state of the NMDAR. Taken together, our data demonstrate that spinophilin can associate with multiple subunits of the NMDAR in HEK293 cells and that protein kinases can biphasically modulate these associations

    The association of spinophilin with disks large-associated protein 3 (SAPAP3) is regulated by metabotropic glutamate receptor (mGluR) 5

    Get PDF
    Spinophilin is the most abundant protein phosphatase 1 targeting protein in the postsynaptic density of dendritic spines. Spinophilin associates with myriad synaptic proteins to regulate normal synaptic communication; however, the full complement of spinophilin interacting proteins and mechanisms regulating spinophilin interactions are unclear. Here we validate an association between spinophilin and the scaffolding protein, disks large-associated protein 3 (SAP90/PSD-95 associated protein 3; SAPAP3). Loss of SAPAP3 leads to obsessive-compulsive disorder (OCD)-like behaviors due to alterations in metabotropic glutamate receptor (mGluR) signaling. Here we report that spinophilin associates with SAPAP3 in the brain and in a heterologous cell system. Moreover, we have found that expression or activation of group I mGluRs along with activation of the mGluR-dependent kinase, protein kinase C β, enhances this interaction. Functionally, global loss of spinophilin attenuates amphetamine-induced hyperlocomotion, a striatal behavior associated with dopamine dysregulation and OCD. Together, these data delineate a novel link between mGluR signaling, spinophilin, and SAPAP3 in striatal pathophysiology

    Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Get PDF
    Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD

    Patient Simulation: A Literary Synthesis of Assessment Tools in Anesthesiology

    Get PDF
    High-fidelity patient simulation (HFPS) has been hypothesized as a modality for assessing competency of knowledge and skill in patient simulation, but uniform methods for HFPS performance assessment (PA) have not yet been completely achieved. Anesthesiology as a field founded the HFPS discipline and also leads in its PA. This project reviews the types, quality, and designated purpose of HFPS PA tools in anesthesiology. We used the systematic review method and systematically reviewed anesthesiology literature referenced in PubMed to assess the quality and reliability of available PA tools in HFPS. Of 412 articles identified, 50 met our inclusion criteria. Seventy seven percent of studies have been published since 2000; more recent studies demonstrated higher quality. Investigators reported a variety of test construction and validation methods. The most commonly reported test construction methods included "modified Delphi Techniques" for item selection, reliability measurement using inter-rater agreement, and intra-class correlations between test items or subtests. Modern test theory, in particular generalizability theory, was used in nine (18%) of studies. Test score validity has been addressed in multiple investigations and shown a significant improvement in reporting accuracy. However the assessment of predicative has been low across the majority of studies. Usability and practicality of testing occasions and tools was only anecdotally reported. To more completely comply with the gold standards for PA design, both shared experience of experts and recognition of test construction standards, including reliability and validity measurements, instrument piloting, rater training, and explicit identification of the purpose and proposed use of the assessment tool, are required

    Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer

    Get PDF
    BACKGROUND: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. METHODS: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Anti-apoptotic signaling in response to DEX was examined by Western blot analysis. RESULTS: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. CONCLUSION: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients

    Spinophilin regulates phosphorylation and interactions of the GluN2B subunit of the N-methyl-d-aspartate receptor

    Get PDF
    N-methyl-D-Aspartate receptors (NMDARs) are abundant postsynaptic proteins that are critical for normal synaptic communication. NMDAR channel function is regulated by multiple properties, including phosphorylation. Inhibition of protein phosphatase 1 in hippocampal neurons increases NMDAR activity, an effect abrogated by loss of spinophilin, the major protein phosphatase 1 (PP1)-targeting protein in the postsynaptic density (PSD). However, how spinophilin regulates PP1-dependent NMDAR function is unclear. We hypothesize that spinophilin regulates PP1 binding to the NMDAR to alter NMDAR phosphorylation. Our data demonstrate that spinophilin interacts with the GluN2B subunit of the NMDAR. In HEK293 cells, activation and/or overexpression of protein kinase A increased the association between spinophilin and the GluN2B subunit of the NMDAR. Functionally, we found that spinophilin overexpression decreased PP1 binding to the GluN2B subunit of the NMDAR and attenuated the PP1-dependent dephosphorylation of GluN2B at Ser-1284. Moreover, in P28 hippocampal lysates isolated from spinophilin KO compared to WT mice, there was increased binding of GluN2B to PP1, decreased phosphorylation of GluN2B at Ser-1284, and altered GluN2B protein interactions with PSD-enriched proteins. Together, our data demonstrate that spinophilin decreases PP1 binding to GluN2B and concomitantly enhances the phosphorylation of GluN2B at Ser-1284. The putative consequences of these spinophilin-dependent alterations in GluN2B phosphorylation and interactions on synaptic GluN2B localization and function are discussed

    Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites

    Get PDF
    Cyclostreptin (1), a natural product from Streptomyces sp. 9885, irreversibly stabilizes cellular microtubules, causes cell cycle arrest, evades drug resistance mediated by P-glycoprotein in a tumor cell line and potently inhibits paclitaxel binding to microtubules, yet it only weakly induces tubulin assembly. In trying to understand this paradox, we observed irreversible binding of synthetic cyclostreptin to tubulin. This results from formation of covalent crosslinks to β-tubulin in cellular microtubules and microtubules formed from purified tubulin in a 1:1 total stoichiometry distributed between Thr220 (at the outer surface of a pore in the microtubule wall) and Asn228 (at the lumenal paclitaxel site). Unpolymerized tubulin was only labeled at Thr220. Thus, the pore region of β-tubulin is an undescribed binding site that (i) elucidates the mechanism by which taxoid-site compounds reach the kinetically unfavorable lumenal site and (ii) explains how taxoid-site drugs induce microtubule formation from dimeric and oligomeric tubulin. © 2007 Nature Publishing Group.Peer Reviewe

    Intracellular Activation and Deactivation of Tasidotin, an Analog of Dolastatin 15: Correlation with Cytotoxicity

    No full text
    Tasidotin, an oncolytic drug in phase II clinical trials, is a peptide analog of the antimitotic depsipeptide dolastatin 15. In tasidotin, the carboxyl-terminal ester group of dolastatin 15 has been replaced by a carboxy-terminal tert-butyl amide. As expected from studies with cemadotin, [3H]tasidotin, with the radiolabel in the second proline residue, was hydrolyzed intracellularly, with formation of N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline (P5), a pentapeptide also present in dolastatin 15 and cemadotin. P5 was more active as an inhibitor of tubulin polymerization and less active as a cytotoxic agent than tasidotin, cemadotin, and dolastatin 15. [3H]P5 was not the end product of tasidotin metabolism. Large amounts of [3H]proline were formed in every cell line studied, with proline ultimately becoming the major radiolabeled product. The putative second product of the hydrolysis of P5, N,N-dimethylvalyl-valyl-N-methylvalyl-proline (P4), had little activity as either an antitubulin or cytotoxic agent. In seven suspension cell lines, the cytotoxicity of tasidotin correlated with total cell uptake of the compound and was probably affected negatively by the extent of degradation of P5 to proline and, presumably, P4. The intracellular enzyme prolyl oligopeptidase probably degrades tasidotin to P5. When CCRF-CEM human leukemia cells were treated with N-benzyloxycarbonylprolylprolinal (BCPP), an inhibitor of prolyl oligopeptidase, there was a 30-fold increase in the IC50 of tasidotin and a marked increase in intracellular [3H]tasidotin. BCPP also caused a 4-fold increase in the IC50 of P5, so the enzyme probably does not convert P5 to P4. Inhibiting degradation of P5 should have led to a decrease in the IC50 obtained for P5 in the presence of BCPP
    corecore