2,142 research outputs found

    Fusion algebras for imprimitive complex reflection groups

    Get PDF
    We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.Comment: 14 page

    Classifier Robustness Enhancement Via Test-Time Transformation

    Full text link
    It has been recently discovered that adversarially trained classifiers exhibit an intriguing property, referred to as perceptually aligned gradients (PAG). PAG implies that the gradients of such classifiers possess a meaningful structure, aligned with human perception. Adversarial training is currently the best-known way to achieve classification robustness under adversarial attacks. The PAG property, however, has yet to be leveraged for further improving classifier robustness. In this work, we introduce Classifier Robustness Enhancement Via Test-Time Transformation (TETRA) -- a novel defense method that utilizes PAG, enhancing the performance of trained robust classifiers. Our method operates in two phases. First, it modifies the input image via a designated targeted adversarial attack into each of the dataset's classes. Then, it classifies the input image based on the distance to each of the modified instances, with the assumption that the shortest distance relates to the true class. We show that the proposed method achieves state-of-the-art results and validate our claim through extensive experiments on a variety of defense methods, classifier architectures, and datasets. We also empirically demonstrate that TETRA can boost the accuracy of any differentiable adversarial training classifier across a variety of attacks, including ones unseen at training. Specifically, applying TETRA leads to substantial improvement of up to +23%+23\%, +20%+20\%, and +26%+26\% on CIFAR10, CIFAR100, and ImageNet, respectively

    D-brane interactions in type IIB plane-wave background

    Full text link
    The cylinder diagrams that determine the static interactions between pairs of Dp-branes in the type IIB plane wave background are evaluated. The resulting expressions are elegant generalizations of the flat-space formulae that depend on the value of the Ramond-Ramond flux of the background in a non-trivial manner. The closed-string and open-string descriptions consistently transform into each other under a modular transformation only when each of the interacting D-branes separately preserves half the supersymmetries. These results are derived for configurations of euclidean signature D(p+1)-instantons but also generalize to lorentzian signature Dp-branes.Comment: 24 pages, Normalisation of boundary states correcte

    Use of CCSDS Packets Over SpaceWire to Control Hardware

    Get PDF
    For the Lunar Reconnaissance Orbiter, the Command and Data Handling subsystem consisted of several electronic hardware assemblies that were connected with SpaceWire serial links. Electronic hardware would be commanded/controlled and telemetry data was obtained using the SpaceWire links. Prior art focused on parallel data buses and other types of serial buses, which were not compatible with the SpaceWire and the core flight executive (CFE) software bus. This innovation applies to anything that utilizes both SpaceWire networks and the CFE software. The CCSDS (Consultative Committee for Space Data Systems) packet contains predetermined values in its payload fields that electronic hardware attached at the terminus of the SpaceWire node would decode, interpret, and execute. The hardware s interpretation of the packet data would enable the hardware to change its state/configuration (command) or generate status (telemetry). The primary purpose is to provide an interface that is compatible with the hardware and the CFE software bus. By specifying the format of the CCSDS packet, it is possible to specify how the resulting hardware is to be built (in terms of digital logic) that results in a hardware design that can be controlled by the CFE software bus in the final applicatio

    Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell adhesion, an integral part of <it>D. discoideum </it>development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development.</p> <p>Results</p> <p>Here, we have investigated the role of cyclase-associated protein (CAP), an important regulator of cell polarity and F-actin/G-actin ratio in the <it>aca<sup>- </sup></it>mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in <it>aca<sup>- </sup></it>cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in <it>aca<sup>- </sup></it>cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels.</p> <p>Conclusions</p> <p>Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis.</p

    Type IIB Colliding Plane Waves

    Full text link
    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+22n+2--dimensional Einstein gravity with a n+1n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n=4n=4, our results pertain to the collision of two ten-dimensional type IIB Blau - Figueroa o'Farrill - Hull - Papadopoulos plane waves.Comment: 20+10 pages, 2 figures, uses JHEP3.cls; v2: refs [3,10,22] corrected, remark added below (3.9) on inexistence of conformally flat CPW in our ansatz, final version to appear in JHE

    Large-N Universality of the Two-Dimensional Yang-Mills String

    Get PDF
    We exhibit the gauge-group independence (``universality'') of all normalized non-intersecting Wilson loop expectation values in the large N limit of two-dimensional Yang-Mills theory. This universality is most easily understood via the string theory reformulation of these gauge theories. By constructing an isomorphism between the string maps contributing to normalized Wilson loop expectation values in the different theories, we prove the large N universality of these observables on any surface. The string calculation of the Wilson loop expectation value on the sphere also leads to an indication of the large N phase transition separating strong- and weak-coupling phases.Comment: 18 pages, phyzzx macro, no figure
    corecore