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Abstract

We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in
[Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995)
768–826] define fusion algebras with not necessarily positive but integer structure constants. Hence they
define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras
with integer structure constants.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In his classification of irreducible characters of a finite group of Lie type, Lusztig develops a
theory in which a so-called non-abelian Fourier transform emerges. This is a matrix which only
depends on the Weyl group of the group of Lie type. Geck and Malle [6] set up a system of
axioms based on the properties such a Fourier matrix has. Using this system Broué, Malle and
Michel construct analogous transformations for the spetses, which until now remain mysterious
objects.

In [9] Malle defines unipotent degrees for the imprimitive complex reflection groups. The
transformation matrix from the fake degrees to these unipotent degrees defines an algebra via
the formula of Verlinde. In the present article, we show that these matrices yield algebras with
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integer structure constants. We prove this by looking at exterior powers of group rings of cyclic
groups.

We start by giving a definition of the specific type of Z-algebra we will study. It has roughly
the properties of a table algebra, though it is not a C-algebra and its structure constants may be
negative. The based rings Lusztig introduces in [8] are also a variation of the algebras we look at.
A much more extensive investigation of such algebras can be found in the authors dissertation [4].

We then recall the definition of the matrices from [9] and explain their relation to exterior
powers. In the following section we examine the algebras belonging to exterior powers so that
we can prove the result in the next section. Finally, we show a connection to the Kac–Peterson
matrices attached to affine Kac–Moody algebras: exterior powers of matrices of type A

(1)
1 are

matrices of type C
(1)
l .

2. Basic definitions

Definition 2.1. Let R be a finitely generated commutative Z-algebra which is a free Z-module
with basis B = {b0 = 1, . . . , bn−1} and structure constants

bibj =
∑

k

Nk
ij bk, Nk

ij ∈ Z,

for 0 � i, j < n. Assume that there is an involution ∼ :R → R which is a Z-module homomor-
phism such that

B̃ = B, Nk

ĩj̃
= Nk̃

ij , N0
ĩj

= δi,j ,

for all 0 � i, j, k < n, where ĩ is the index with b̃i = b
ĩ
. Then we call (R,B) a Z-based ring.

Remark that if the involution ∼ exists, then it is unique by the third equation above. The
second equation expresses that ∼ is an algebra homomorphism. Remark also, that if we replace
an element b ∈ B by −b, then the new basis spans the same algebra, but ∼ does not necessarily
exist anymore (with respect to the new basis).

Example 1. Let G be a finite group. Then the character ring of G is a Z-based ring with basis
Irr(G) (the irreducible characters) and non-negative structure constants, where multiplication is
just tensor product. The involution ∼ is complex conjugation on the characters.

Example 2. The representation ring of the quantum double of a finite group (see [3]) is a Z-based
ring where the basis is again the set of irreducible representations.

The Z-based rings are a generalization of algebras with the properties of representation rings.
There are many other such generalizations. One of them are the table algebras, to which the Z-
based rings with non-negative structure constants belong (viewed as C-algebras). All Z-based
rings are generalized table algebras (GT-algebras, [1]). But GT-algebras do not have the prop-
erties which we will need. Another structure is the so-called C-algebra, which has an elaborate
structure theory [2]. Unfortunately, the Z-based rings of the present article are not always C-
algebras.
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If (R,B) is a Z-based ring, then we have a linear map τ :R → C defined by τ(bi) = δ0,i . The
map

〈 , 〉 :R × R → Z, 〈r, r ′〉 := τ(r̃r ′),

for r, r ′ ∈ R behaves like an inner product with orthonormal basis B because r =∑
b∈B〈b, r〉b

for all r ∈ R. The set B̃ is the basis dual to B with respect to this inner product. Extending 〈,〉 to
the C-algebra RC := R ⊗Z C, one can prove that RC is semisimple (compare [4, 1.2]).

Proposition 2.2. Let R be a Z-based ring. Then the algebra RC := R ⊗Z C is semisimple.

Proof. Extend ∼ and τ to RC:

r̃ ⊗ z := r̃ ⊗ z̄, τ ′ : r ⊗ z 	→ zτ(r),

where r ∈ R, z ∈ C. This yields a hermitian positive definite sesquilinear form 〈r, r ′〉 := τ ′(r̃r ′).
If I is a left ideal in RC, then the orthogonal complement

I⊥ := {
r ∈ RC

∣∣ 〈r, r ′〉 = 0 ∀r ′ ∈ I
}

is a left ideal too:

〈tr, r ′〉 = τ ′(t̃rr ′) = τ ′(r̃ t̃ r ′) = 〈r, t̃r ′〉 = 0,

for all r ∈ I⊥, t ∈ RC and r ′ ∈ I. The claim follows. �
Now RC is a commutative semisimple algebra over an algebraically closed field, so by the

theorem of Wedderburn–Artin it is isomorphic as a C-algebra to Cn with componentwise mul-
tiplication. By choosing B as a basis for RC and the canonical basis {ei}i with eiej = δi,j ei

for all i, j for Cn, an isomorphism ϕ is described by a matrix s which we will call an s-matrix
of (R,B):

ϕ(bi) =
∑

k

skiek.

Remark that this matrix depends on the choice of the isomorphism ϕ. Another isomorphism
would differ from ϕ by a C-algebra automorphism of Cn, so an s-matrix is unique up to a
permutation of rows.

The rows of s are the one-dimensional representations of R because skiskj =∑
l N

l
ij skl for all

k, i, j . They are orthogonal (see [4, 1.2.3], the proof is the same as for the orthogonality relation
for irreducible characters of finite groups). By normalizing them,

d := ss̄t , Sij := sij√ ,

dii
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where
√

dii is the positive root, we get an orthonormal matrix S which we call S-matrix or
Fourier matrix of (R,B). We can recover the structure constants of R (and the involution ∼)
from the S-matrix via the formula of Verlinde:

Nl
ij =

∑
k

SkiSkjSkl

Sk0
(1)

(this follows immediately by transporting the multiplication via ϕ from Cn to R). The columns
of the s-matrix are the image of B in Cn under ϕ. Conversely, given a matrix S and a column
(here column 0), we may define quantities Nl

ij via (1), which will be structure constants of a
Z-based ring if S satisfies certain properties.

This is equivalent to the following construction: start with a matrix S ∈ Cn×n with SS̄t = 1
and choose a column i0 in which all entries are non-zero. Divide each row by the entry of column
i0 to get a matrix s. The columns of s span a Z-lattice in Cn which is free since S is invertible.
If this lattice is closed under componentwise multiplication, then it is a Z-algebra R with the
columns of s as a basis. In this case, we say that the matrix S (or s) with unit i0 define the
Z-algebra R. The involution ∼ corresponds to complex conjugation on the columns of S.

Example 3. Let G be a finite group. An s-matrix of the character ring of G is the transposed
character table of G.

Example 4. Untwisted affine Kac–Moody algebras have for each level k a Kac–Peterson matrix
which is the S-matrix of a Z-based ring with non-negative structure constants (see [7, 13.8]).

We will need the following lemma later on.

Lemma 2.3. Let S ∈ Cn×n with SS̄t = 1 such that Nl
ij =∑

k

SkiSkj Skl

Sk0
∈ Z and Si0 ∈ R× for all

i, j, l. If the set of columns of S is invariant under complex conjugation, then S defines a Z-based
ring.

Proof. Let ∼ be the permutation of the columns given by complex conjugation. Then

N0
ij =

∑
k

SkiSkjSk0

Sk0
=
∑

k

SkiSkj̃
= δ

i,j̃

because Sk0 ∈ R and SS̄t = 1. We have to check that ∼ is multiplicative:

Nm

ĩj̃
=
∑

k

S
kĩ

S
kj̃

Skm

Sk0
=
∑

k

S
kĩ

S
kj̃

Skm

Sk0
=
∑

k

SkiSkjSkm̃

Sk0
= Nm̃

ij

because Nm

ĩj̃
, Sk0 ∈ R. �
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3. Fourier matrices for imprimitive complex reflection groups

Let us define the Fourier matrices for the imprimitive complex reflection groups G(e,1, n)

(compare with [9]). The original definition is slightly technical, but it takes a simple form if we
express it by means of exterior powers of the S-matrix of a group ring of a cyclic group.

3.1. Definition of the Fourier matrices

We use the notation of [9, 4A]. Let e � 1 and Y be a totally ordered set with d elements.
Consider the set

Ψ := {
ψ :Y → {0, . . . , e − 1}}

and a map π :Y → N. In [9], ‘Ψ ’ is a subset of our Ψ ; we will restrict to that subset later. We
define an equivalence relation ∼π on Ψ :

φ ∼π ψ ⇔ π
(
φ−1(i)

)= π
(
ψ−1(i)

)
for all 0 � i < e,

for φ,ψ ∈ Ψ , ψ−1(i) := {y ∈ Y | ψ(y) = i}, and denote the class of ψ by [ψ]. Now call an
element ψ ∈ Ψ π -admissible if for all y, y′ ∈ Y with π(y) = π(y′) and ψ(y) = ψ(y′) we have
y = y′.

A π -admissible ψ can be interpreted in the sense of [9] as an e-symbol with entries in π(Y ):
an e-symbol is an ordered sequence S = (L0, . . . ,Le−1) of e strictly increasing finite sequences
of natural numbers Li = (λi,1, . . . , λi,mi

), written

S =

⎛⎜⎜⎜⎝
λ0,1 . . . λ0,m0

λ1,1 . . . λ1,m1

...
. . .

...

λe−1,1 . . . λe−1,me−1

⎞⎟⎟⎟⎠ .

For 0 � i < e, the set of entries of Li is π(ψ−1(i)).
We define a matrix S indexed by the classes of π -admissible elements of Ψ (compare with

[9, 4.10]):

S[φ],[ψ] := (−1)m(e−1)

τ (e)m

∑
ϑ∈[φ]

ε(ϑ)ε(ψ)
∏
y∈Y

ζ−ϑ(y)ψ(y),

where ζ = exp(2π i/e), m := � d
e
� ∈ Z and

ε(ψ) := (−1)|{(y,y′)∈Y×Y |y<y′, ψ(y)<ψ(y′)}|, τ (e) :=
e−1∏
i=0

e−1∏
j=i+1

(
ζ i − ζ j

)
.

The Fourier matrices of [9] are submatrices of S. Let r := |π(Y )| and w1, . . . ,wr ∈ N be such that
π(Y ) = {w1, . . . ,wr}. Then ni := |π−1(wi)| = |ψ(π−1(wi))| if ψ is π -admissible. Remark that
if ϑ,φ ∈ Ψ are equivalent (and π -admissible) then there is a permutation σ ∈ Sym(Y ) such that
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φ = ϑ ◦ σ and π ◦ σ = π . Then ε(ϑ)ε(φ) = εσ holds, where εσ is the sign of the permutation σ .
Using this we get

S[φ],[ψ] = (−1)m(e−1)

τ (e)m
ε(φ)ε(ψ)

∑
σ∈Sym(Y )
π◦σ=π

εσ

∏
y∈Y

ζ−φ(σ(y))ψ(y),

and by defining c := (−1)m(e−1)i−(e−1
2 )m√

e
d−em

S[φ],[ψ] = cε(φ)ε(ψ)
∑

σ∈Sym(Y )
π◦σ=π

εσ

∏
y∈Y

1√
e
ζ−φ(σ(y))ψ(y)

because τ(e) = i(
e−1

2 )√e
e. Call a π -admissible ψ ∈ Ψ ordered, if for all y, y′ ∈ Y , y < y′ with

π(y) = π(y′) we have ψ(y) < ψ(y′). Then each class [ψ] has exactly one ordered representa-
tive. So the set indexing S is in bijection with

Ξ := {ψ | ψ ∈ Ψ, ψ π-admissible and ordered}
and we will only consider elements from Ξ from now on. Take ψ1,ψ2 ∈ Ξ and let
ψ1(π

−1(wμ)) = {iμ1 , . . . , i
μ
nμ

}, ψ2(π
−1(wμ)) = {jμ

1 , . . . , j
μ
nμ

} such that i
μ
1 < · · · < i

μ
nμ

, j
μ
1 <

· · · < j
μ
nμ

. We finally get

Sψ1,ψ2 = c̄ε(ψ1)ε(ψ2)

r∏
μ=1

∑
σ∈Snμ

εσ

nμ∏
ν=1

1√
e
ζ

i
μ
ν j

μ
σ(ν) . (2)

3.2. Connection to exterior powers

Let S ∈ Ce×e be the S-matrix of the group ring of the cyclic group Z/eZ, so S = (
ζ ij√

e
)i,j .

Denote by ΛnCe, n � e, the subspace of
⊗n

i=1 Ce spanned by

Cn :=
{ ∑

σ∈Sn

εσ eiσ(1)
⊗ · · · ⊗ eiσ(n)

∣∣∣ 0 � i1 < · · · < in � e − 1

}
,

where e0, . . . , ee−1 is the canonical basis of Ce. The basis Cn is indexed by the set of n-tuples
(i1, . . . , in) with 0 � i1 < · · · < in < e; we will therefore write ī := (i1, . . . , in) for the corre-
sponding element of the basis. The restriction of

⊗n
i=1 S to ΛnCe defines an automorphism

corresponding to the matrix

(
ΛnS

)
ī,j̄

=
∑
σ∈Sn

εσ

n∏
ν=1

Siν,jσ(ν)
= det

(
(Siν ,jν′ )1�ν,ν′�n

)
(3)

with respect to Cn. Now consider the matrix Λn1S ⊗ · · · ⊗ Λnr S on the space Λn1Ce ⊗
· · · ⊗ Λnr Ce with the basis

E := {
ī1 ⊗ · · · ⊗ īr

∣∣ īμ ∈ Cnμ, 1 � μ � r
}
.
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We identify E with the set Ξ by

E → Ξ, ī1 ⊗ · · · ⊗ īr 	→ ψ,

where ψ is the element of Ξ with ψ(π−1(wμ)) = {iμ1 , . . . , i
μ
nμ

} for 1 � μ � r (remember that
π(Y ) = {w1, . . . ,wr}). Formula (2) becomes

Sψ1,ψ2 = c̄ε(ψ1)ε(ψ2)
(
Λn1S ⊗ · · · ⊗ Λnr S

)
ψ1,ψ2

,

which explains why we will first concentrate on exterior powers of S to find out what the structure
constants of submatrices of S look like. Note that since we are only interested in the integrality
of structure constants, we can multiply the column of ψ2 by ε(ψ2) for each ψ2 and do not have
to care about these signs anymore. The ε(ψ1) in the row of ψ1 has no effect on the structure
constants because it is canceled in the formula of Verlinde.

4. Exterior powers

Consider again the matrix ΛnS where S = (
ζ ij√

e
)i,j and e,n ∈ N, e � n. This matrix represents

the restriction of
⊗n

S to ΛnCe with respect to the basis Cn defined above. Our goal is to prove
that ΛnS defines a Z-algebra which is a Z-based ring for an adequate basis (see Theorem 4.3),
so first we need to see that for suitable ī0 the structure constants

Nk̄

j̄,m̄
=
∑
ī∈Cn

(ΛnS)ī,j̄ (Λ
nS)ī,m̄(ΛnS)ī,k̄

(ΛnS)ī,ī0

,

j̄ , m̄, k̄ ∈ Cn, given by the formula of Verlinde are integers. We take ī0 := (0, . . . , n − 1). Notice
that the above formula is then well defined because (ΛnS)ī,ī0 in the denominator is a Vander-
monde determinant and thus unequal to 0.

4.1. Connection to Schur functions

We begin by analyzing the quotient

Dī,j̄ := (ΛnS)ī,j̄

(ΛnS)ī,ī0

.

The theorem about Jacobi–Trudi determinants (see [10, Theorem 4.5.1]) says [10, Lemma 4.6.1
and Corollary 4.6.2], that Dī,j̄ is the Schur function sj̄ ′(x̄) ∈ C[[x̄]], x̄ = {x1, x2, . . .} evaluated at

x1 = ζ i1, . . . , xn = ζ in , xn+1 = 0, . . . , where j̄ ′ is the partition j̄ ′ := (jn−(n−1), . . . , j2 −1, j1).
There is an elementary proof of this statement in [4, 5.1.2].

The definition of the Schur function sj̄ ′ (see [10, 4.4.1]) is sj̄ ′ =∑
T ∈Tj̄ ′ x̄

T , where Tj̄ ′ is the

set of semistandard j̄ ′-tableaux, that means tableaux of shape (Ferrer diagram) j̄ ′ with weakly
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increasing rows, strictly increasing columns and entries in N. If Th1,h2 are the entries of some
T ∈ Tj̄ ′ then x̄T :=∏

h1,h2
xTh1,h2

. This can also be written as

x̄T =
∏
ν∈N

x
wν+1(T )
ν

with suitable wν+1(T ) ∈ N. In our setting, xn+1, xn+2, . . . are all equal to 0, so from now on we
consider

sj̄ ′ =
∑

T ∈Tj̄ ′

n∏
ν=1

x
wν+1(T )
ν

(by abuse of notation). In the proof of the next theorem we will need the following lemma.

Lemma 4.1. Let a ∈ N and zν(a) := {T ∈ Tj̄ ′ | wν+1(T ) = a} for 1 � ν � n. Then∣∣zν(a)
∣∣= ∣∣zν′(a)

∣∣
for all 1 � ν′ � n.

Proof. Proposition 4.4.2 in [10] says that sj̄ ′(x̄) is a symmetric function. This means, that sj̄ ′ =
sj̄ ′(xπ−1(1), . . . , xπ−1(n)) for all permutations π ∈ Sn and hence

∑
T ∈Tj̄ ′

n∏
ν=1

x
wπ(ν)+1(T )
ν =

∑
T ∈Tj̄ ′

n∏
ν=1

x
wν+1(T )
ν .

Therefore, for all 1 � ν � n, a ∈ N and T ∈ Tj̄ ′ with wν+1(T ) = a there is a T ′ ∈ Tj̄ ′ with
wπ(ν)+1(T

′) = wν+1(T ). But then we have |zν(a)| = |zν′(a)| for all 1 � ν′ � n. �
4.2. The structure constants are integers

For j̄ ∈ Cn, we will write Tj̄ instead of Tj̄ ′ . Here is the main theorem:

Theorem 4.2. The structure constants Nk̄

j̄,m̄
defined above are integers.

Proof. First notice that by Eq. (3) we have

(
ΛnS

)
ī,j̄

= 1√
e
n

∑
σ∈Sn

εσ

n∏
ν=1

ζ iνjσ(ν) ,

so we get

Nk̄

j̄,m̄
= 1

en

∑ Pī,j̄ Pī,k̄Pī,m̄

Pī,ī0

,

0�i1<···<in�e−1
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if Pī,j̄ := det(ζ iμjν )μ,ν , ī0 := (0, . . . , n − 1). We have seen that Dī,m̄ := Pī,m̄

Pī,ī0
can be expressed

as

Dī,m̄ =
∑

T ∈Tm̄

n∏
ν=1

ζ iνwν+1(T ).

This remains well defined if we take any tuple (i1, . . . , in), 0 � i1, . . . , in � e − 1 instead of
restricting to those with i1 < · · · < in. In general, Dī,m̄ can be non-zero for some ī with two

equal entries. But the term Pī,j̄ Pī,k̄Dī,m̄ is still 0 in this case because the determinants Pī,j̄ , Pī,k̄

vanish then. Furthermore, we know that Dī,m̄ is invariant under permutation of the i1, . . . , in, if
0 � i1 < · · · < in � e − 1. Under permutation, the determinants Pī,j̄ and Pī,k̄ are modified by
signs which cancel each other. So we are allowed to write

Nk̄

j̄,m̄
= 1

en

∑
0�i1<···<in�e−1

Pī,j̄ Pī,k̄Dī,m̄ = 1

enn!
∑

0�i1,...,in�e−1

Pī,j̄ Pī,k̄Dī,m̄.

We want to prove that a :=∑
0�i1,...,in�e−1 Pī,j̄ Pī,k̄Dī,m̄ is an integer and congruent 0 modulo

enn!. Substitute

Pī,j̄ =
∑
σ∈Sn

εσ

n∏
ν=1

ζ iνjσ(ν)

to get

a =
∑

σ1,σ2∈Sn

εσ1εσ2

∑
T ∈Tm̄

∑
0�i1,...,in�e−1

n∏
ν=1

ζ iν(jσ1(ν)−kσ2(ν)+wν+1(T )),

where the inner sum can be rewritten as

e−1∑
i1=0

ζ i1(jσ1(1)−kσ2(1)+w1+1(T ))
e−1∑
i2=0

ζ i2(jσ1(2)−kσ2(2)+w2+1(T )) · · ·
e−1∑
in=0

ζ in(jσ1(n)−kσ2(n)+wn+1(T )).

For a pair (σ1, σ2), this is not zero if and only if all brackets (jσ1(ν) − kσ2(ν) + wν+1(T )) are
congruent 0 modulo e. By Lemma 4.1, wν+1(T ), T ∈ Tm̄, take the same values for all ν with
the same multiplicities. Hence if (σ1, σ2) is an adequate pair (for which the sum is not zero) then
(σ1τ, σ2τ), τ ∈ Sn, is also adequate (εσ1τ εσ2τ = εσ1εσ2 ). Every adequate pair gives a contribution

of en at the end. So a is congruent 0 modulo enn!. Hence Nk̄

j̄,m̄
∈ Z. �

4.3. Negative structure constants

Here is an example in which the ring defined by ΛnS has negative structure constants:

Example 5. Take e = 4, n = 2. We have 6 elements in the basis. We write the multiplication
table as the list of matrices (N

j
)i,j , . . . , (N

j
)i,j . If we write ‘.’ for ‘0,’ then it is
0,i 5,i
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⎡⎢⎢⎢⎣
1 . . . . .

. 1 . . . .

. . 1 . . .

. . . 1 . .

. . . . 1 .

. . . . . 1

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
. 1 . . . .

. . 1 1 . .

. . . . 1 .

. . . . 1 .

−1 . . . . 1
. −1 . . . .

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
. . 1 . . .

. . . . 1 .

. . . . . 1
−1 . . . . .

. −1 . . . .

. . . −1 . .

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
. . . 1 . .

. . . . 1 .

−1 . . . . .

. . . . . 1

. −1 . . . .

. . −1 . . .

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
. . . . 1 .

−1 . . . . 1
. −1 . . . .

. −1 . . . .

. . −1 −1 . .

. . . . −1 .

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
. . . . . 1
. −1 . . . .

. . . −1 . .

. . −1 . . .

. . . . −1 .

1 . . . . .

⎤⎥⎥⎥⎦.

This is not a Z-based ring, because there exists no involution ∼ as required. Applying substi-
tutions b 	→ −b rectifies this. But it is not possible to obtain a Z-based ring with non-negative
structure constants just by applying such substitutions (the computer easily checks all 26 sign
changes).

It is unknown for which e,n it is possible to get non-negative structure constants by applying
sign changes. Computations show that rings corresponding to e,n with at most 50 base elements
have negative structure constants if and only if both e and n are even and 1 < n < e.

As it is impossible to check all 250 sign changes, we apply another method: If there is an
appropriate sign change, then the new structure constants will be the absolute values of the old
ones and define a Z-based ring. So to decide if a given ring has such a sign change, we try
to compute an s-matrix for these new structure constants (which fails if they do not define an
algebra) and then compare the s-matrices.

A sign change as in the example above corresponds to multiplying a column in the Fourier
matrix by −1, which does not change the Z-algebra. As we see in the example, the matrix ΛnS

does not define a Z-based ring in general. However, we can prove that there are sign changes
such that we obtain a Z-based ring. We want to modify the matrix in such a way that we can
apply Lemma 2.3.

Theorem 4.3. Let ΛnS be as above where S = (
ζ ij√

e
)i,j and e,n ∈ N, e � n. Then ΛnS with the

column ī0 as unit defines a Z-algebra R and a basis B . Applying suitable sign changes to B , we
get a basis B ′ such that (R,B ′) is a Z-based ring.

Proof. First we define the involution ∼. Let ī = (i1, . . . , in) ∈ Cn be an element of the basis.
Define ī′ := (n − 1 − i1, . . . , n − 1 − in) with entries taken modulo e. Permuting ī′ we get

an element ˜̄i ∈ Cn and we will denote the sign of this permutation by γī . If as above Pk̄,ī :=
det(ζ kμiν )μ,ν then

Pk̄,ī = Pk̄,−ī = Pk̄,ī′
n∏

ν=1

ζ−kν(n−1) = γīPk̄,˜̄i
n∏

ν=1

ζ−kν(n−1).
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With θk̄ := √
γī0

∏n
ν=1 ζ− kν (n−1)

2 (for some choice of square root of γī0
) it follows that Pk̄,ī0

θk̄ =
Pk̄,ī0

θk̄ and

Pk̄,īθk̄ = γīPk̄,˜̄i
√

γī0

n∏
ν=1

ζ− kν (n−1)
2 = γīPk̄,˜̄i

√
γī0

√
γī0

−1
θk̄ = γīγī0

P
k̄,˜̄iθk̄.

Remember that Pk̄,ī are the entries of ΛnS up to a factor that is a real number. So multiplying
each row k̄ by θk̄ , which is a root of unity, we get a matrix M whose columns we will denote
by vī . This matrix satisfies MM̄t = 1, all entries in vī0

are real and for every vī either vī or −vī

is a column of M . The matrix M defines the same algebra with the same basis as ΛnS because
we only have multiplied rows with roots of unity.

Now for each set {ī, ˜̄i} such that vī = −v˜̄i choose ī or ˜̄i. Multiply each column vī of M by −1

if ī is a chosen element. The set of columns in the resulting matrix is now closed under complex
conjugation. By Theorem 4.2, this matrix defines a ring with integer structure constants. So all
assumptions of Lemma 2.3 are satisfied and we obtain a Z-based ring. �
5. The fusion algebras for the complex reflection groups G(e,1,n)

The Fourier matrices for the complex reflection groups G(e,1, n) decompose into blocks
which are submatrices of the matrix S considered above. Here, Y has d = em + 1 elements and
we restrict to the subset

E′ :=
{

ī1 ⊗ · · · ⊗ īr ∈ E

∣∣∣ r∑
y=1

ny∑
ν=1

iyν ≡ m

(
e

2

)
(mod e)

}

of E, so S′ := (Sξ1,ξ2)ξ1,ξ2∈E′ is the matrix we will look at now. Let a := m
(
e
2

)
.

Proposition 5.1. Choose ay ∈ Z, 1 � y � r , such that

ξ0 = (a1, . . . , a1 + n1 − 1) ⊗ · · · ⊗ (ar , . . . , ar + nr − 1) ∈ E′.

Then the structure constants

N
ξ3
ξ1,ξ2

:=
∑
ξ∈E′

S′
ξ,ξ1

S′
ξ,ξ2

S′
ξ,ξ3

S′
ξ,ξ0

are integers for all ξ1, ξ2, ξ3 ∈ E′.

Proof. Using the notation and the arguments of Theorem 4.2, we see that for ξ1 = j̄1 ⊗· · ·⊗ j̄ r ,
ξ2 = k̄1 ⊗ · · · ⊗ k̄r , ξ3 = l̄1 ⊗ · · · ⊗ l̄r ∈ E′

N
ξ3
ξ1,ξ2

= e
∑

¯1 ¯r ′

r∏
μ=1

1

enμ
Pīμ,j̄μPīμ,k̄μDīμ,l̄μ
i ⊗···⊗i ∈E
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because cc̄ = ed−em = e and therefore

N
ξ3
ξ1,ξ2

= e

(nr − 1)!

(
r−1∏
μ=1

1

nμ!

)

×
∑

0�i1
1 ,...,i1

n1
�e−1

· · ·
∑

0�ir−1
1 ,...,ir−1

nr−1�e−1

∑
0�ir2 ,...,irnr

�e−1
(ir1=a−ir2−···−irnr

−∑r−1
μ=1

∑nμ
ν=1 i

μ
ν )

r∏
μ=1

1

enμ
Pīμ,j̄μPīμ,k̄μDīμ,l̄μ .

At the heart we find a power of ζ (see the proof of Theorem 4.2) with exponent of the form∑r
μ=1

∑nμ

ν=1 i
μ
ν · wμ,ν , where the coefficient in front of ir1 equals

w := wr,1 = (
j r
σ1(1) − kr

σ2(1) + wr
n+1

(
T r
))

.

Using the relation

ir1w =
(

a − ir2 − · · · − irn −
r−1∑
μ=1

nμ∑
ν=1

iμν

)
w

we can eliminate ir1 by subtracting w from each coefficient wμ,ν belonging to i1
1 , . . . , ir−1

nr−1
,

ir2, . . . , irnr
; the factor ζ aw = (ζ (e

2))
mw = (±1)mw remains, which lies in Z because 2 · (e2) is

divisible by e.
Then the proof goes on as in Theorem 4.2. A pair (σ1, σ2) may only be modified by elements

of the stabilizer of 1 in Snr ; we obtain the desired factor (nr − 1)!. The last sum yields only
enr−1 because there is no sum indexed by ir1 . Together with the e in front, this cancels against
the factor 1

enr . �
As we did for the exterior powers, we want to see that this Z-algebra is a Z-based ring for a

suitable basis. In order to be able to use Lemma 2.3, we need to prove that the rows of S′ are
orthogonal (this is implicit in [9, 4A]):

Proposition 5.2. We have S′S′t = I .

Proof. We want to prove
∑

ξ∈E′ S′
ξ1,ξ

S′
ξ2,ξ

= δξ1,ξ2 , where ξ = ī1 ⊗ · · · ⊗ īr runs through E′, so

r∑
μ=1

nμ∑
ν=1

iμν ≡ a (mod e). (∗)

As in Proposition 5.1 we are allowed to sum over all 0 � i
μ
1 , . . . , i

μ
nμ

< e instead of 0 � i
μ
1 <

· · · < i
μ
nμ

< e for all 1 � μ < r . This yields a factor 1
nμ! . The i

μ
ν are only related by Eq. (∗). We

can therefore restrict to the case r = 1 without loss of generality, which simplifies the subsequent
equations considerably. Now, for ξ1 := k̄ := (k1, . . . , kn), ξ2 := j̄ := (j1, . . . , jn) and ξ := ī :=
(i1, . . . , in) we have
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∑
ξ∈E′

S′
ξ1,ξ

S′
ξ2,ξ

= e

n!
∑

0�i1,...,in�e−1∑n
ν=1 iν≡a

∑
σ1∈Sn

∑
σ2∈Sn

εσ1σ2

n∏
ν=1

1

e
ζ kνiσ1(ν)−jν iσ2(ν)

= e

n!
∑

σ1,σ2∈Sn

εσ1σ2

∑
0�i2,...,in�e−1

ζ a(kσ1(1)−jσ2(1))
1

en

n∏
ν=2

ζ iν(kσ1(ν)−jσ2(ν)−kσ1(1)+jσ2(1)),

which is not zero if and only if

kσ1(ν) − jσ2(ν) ≡ kσ1(1) − jσ2(1) (mod e) (∗∗)

for all 1 � ν � n. But 0 � k1 < · · · < kn < e and 0 � j1 < · · · < jn < e, so this holds only if
σ := σ1 = σ2. If (∗∗) is satisfied, then because of (∗)

nf ≡
n∑

ν=1

kν − jν ≡ a − a ≡ 0 (mod e),

where f := kσ(1) − jσ(1). On the other hand, n = em + 1 ≡ 1 (mod e) by assumption. Conse-
quently, the inner sum in the above formula is zero only if σ1 = σ2 and (∗∗) are true, and in this
case f = kσ1(1) − jσ2(1) ≡ 0. Hence

∑
ξ∈E′

S′
ξ1,ξ

S′
ξ2,ξ

= e

n!
∑
σ∈Sn

ζ af 1

e
= 1.

Conversely, from (∗∗), d = 0 and σ1 = σ2 follow j̄ = k̄. �
Theorem 5.3. The Fourier matrices S′ for the imprimitive complex reflection group G(e,1, n)

define Z-algebras and bases which are Z-based rings by applying sign changes to the bases.

Proof. As in Proposition 5.1, we choose

ξ0 = (a1, . . . , a1 + n1 − 1) ⊗ · · · ⊗ (ar , . . . , ar + nr − 1).

It remains to prove that a suitable involution ∼ exists. We proceed exactly as in Theorem 4.3.
For ξ = (i1

1 , . . . , i1
n1

) ⊗ · · · ⊗ (ir1, . . . , irnr
) ∈ E′, let ξ ′ be

ξ ′ := (
w1 − i1

1 , . . . ,w1 − i1
n1

)⊗ · · · ⊗ (
wr − ir1, . . . ,wr − irnr

)
,

with wμ := nμ − 1 + 2aμ, μ = 1, . . . , r . Define ξ̃ to be the element of E which we get by sorting
each bracket increasingly. Then it lies in E′, because
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r∑
μ=1

nμ∑
ν=1

(nμ − 1 + 2aμ) − iμν =
(∑

μ

nμ(nμ − 1) + 2nμaμ

)
− a

= 2

(∑
μ

( nμ−1∑
ν=0

ν + aμ

))
− a ≡ 2a − a (mod e),

where the last congruence comes from ξ0 ∈ E′.
It is easy to check that for ξ := k̄1 ⊗ · · · ⊗ k̄r , ξ1 := ī1 ⊗ · · · ⊗ īr

Sξ,ξ1 = Sξ,ξ̃1

r∏
μ=1

γīμ

nμ∏
ν=1

ζ−k
μ
ν (nμ−1+2aμ),

where γīμ is the sign of the permutation which sorts the tuple of ξ ′
1 belonging to īμ (as in The-

orem 4.3). From now on, the proof continues exactly as in Theorem 4.3. Remark that we need
Proposition 5.2 at the end. �
5.1. Eigenvalues and representation of SL2(Z)

As Lusztig did it for his non-abelian Fourier matrix, Malle also defines a matrix T of eigen-
values of Frobenius associated to a Fourier matrix S′ for the complex reflection groups G(e,1, n)

(see [9, 4B]). The matrices S′ and T define an SL2(Z)-representation.
For a given S-matrix S, we will call a diagonal matrix T such that S and T define a represen-

tation of SL2(Z), i.e.

S4 = 1, (ST )3 = 1,
[
S2, T

]= 1

a T -matrix associated to S. The pair (S,T ) is then called modular datum (this is not exactly
the usual definition: we do not require that the structure constants defined by Verlinde’s formula
are non-negative, and S is not necessarily symmetric). Remark that a T -matrix is in general not
uniquely determined by S.

There exists also a T -matrix for the exterior power ΛnS as above. It is obtained by taking the
exterior power of a T -matrix corresponding to S (compare [9, 4B]):

Proposition 5.4. Let S := (
ζ ij√

e
)i,j be the S-matrix of the group ring of Z/eZ, where e ∈ N and

ζ := exp(2π i/e), ζ24 := exp(2π i/24). Then the diagonal matrix T with

Ti,i = ζ e−1
24 ζ

i2+ei
2

for 0 � i < e is a T -matrix for S.

Proof. The equation [S2, T ] = 1 is satisfied since T is diagonal and S2 is the permutation cor-
responding to complex conjugation on the columns of S. We have to verify ((ST )3)i,j = δi,j .
Define ti := Ti,i . Because

ζ
i2+ei

2 = ζ
(i+e)2+e(i+e)

2 ,
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ti only depends on the class of i mod e. This allows us to substitute k by k − l − i in the following
equation:

(
(ST )3)

i,j
= 1

e
√

e

e−1∑
k,l=0

ζ ik+kl+lj tktl tj =
∑
k,l

ζ i(k−l−i)+(k−l−i)l+lj tk−l−i tl tj

= 1

e
√

e
ζ

3(e−1)
24

∑
k

ζ
1
2 (k2+ek)+ 1

2 (j2−i2+ej−ei)
∑

l

ζ lj−li .

The inner sum is equal to 0 if i �= j and equal to e if i = j . For i = j it remains to prove

e−1∑
k=0

ζ
1
2 (k2+ek) = ζ

−3(e−1)
24

√
e,

which is a corollary of a theorem of Gauß (or Eq. 4.11 in [9]). �
6. Kac–Peterson matrices and exterior powers

The construction of Fourier matrices from exterior powers also shows up in a different context:
let g(A) be an affine Kac–Moody algebra belonging to an n × n generalized Cartan matrix A of
rank l, h its Cartan subalgebra and 〈 , 〉 :h × h∗ → C the corresponding pairing (we use the
notation of [7]). Define

P := {
λ ∈ h∗ ∣∣ 〈λ,α∨

i

〉 ∈ Z, i = 0, . . . , n − 1
}
,

P+ := {
λ ∈ P

∣∣ 〈λ,α∨
i

〉
� 0, i = 0, . . . , n − 1

}
.

Now let g(A) be of arbitrary untwisted type X
(1)
l or A

(2)
2l (then n = l + 1). The fundamental

weights Λi ∈ P , i = 0, . . . , l, are given by the equations〈
Λi,α

∨
j

〉= δij , 〈Λi, d〉 = 0,

for j = 0, . . . , l, where d ∈ h∗ is given by 〈αi, d〉 = δi,0. The {α∨
0 , . . . , α∨

l , d} form a basis of h

and {α0, . . . , αl,Λ0} form a basis of h∗. The fundamental weights Λ̄i of the finite-dimensional
Lie algebra g◦ satisfy

Λi = Λ̄i + a∨
i Λ0

(Λ̄0 = 0 because a∨
0 = 1; for a definition of a∨

i , see [7, 6.1]).
For each positive integer k, let P k+ ⊆ P+ be the finite set

P k+ :=
{

l∑
j=0

λjΛj

∣∣∣ λj ∈ Z, λj � 0,

l∑
j=0

a∨
j λj = k

}
.

Kac and Peterson defined a natural C-representation of the group SL2(Z) on the subspace
spanned by the affine characters of g which are indexed by P k+. The image of

( 0 −1 ) under
1 0
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this representation is determined in Theorem 13.8 of [7]. It is the so-called Kac–Peterson matrix.
For affine algebras of type X

(1)
l or A

(2)
2l , this matrix is

SΛ,Λ′ = c
∑

w∈W ◦
det(w) exp

(
−2π i(Λ̄ + ρ̄ | w(Λ̄′ + ρ̄))

k + h∨

)
, (4)

where Λ,Λ′ runs through P k+, (· | ·) is the normalized bilinear form of Chapter 6 of [7] and W ◦
is the Weyl group of g◦. The constant c is unimportant for us, since we want to use the matrix in
the formula of Verlinde (1).

Each of these matrices defines a based ring. A classification of the matrices belonging to
type X

(1)
l up to isomorphism was given by Gannon in [5]. Here we prove that the matrices of

type A
(1)
1 are connected to those of type C

(1)
l via exterior powers:

Proposition 6.1. Let k, l ∈ N, k � 1, l � 2 and S be the Kac–Peterson matrix of type A
(1)
1 and

level (k + l − 1). The Kac–Peterson matrix of type C
(1)
l and level k is the exterior power ΛlS

of S.

Proof. We use the notation of [7]. Let A be the Cartan matrix of type C
(1)
l . Choose ā, ā∨ ele-

ments of the kernel of A respectively AT , say ā := (2, . . . ,2,1,1), ā∨ := (1, . . . ,1) (arrange the
matrix in such a way that α0 is at the end). Furthermore, we have κ := k + h∨ = k +∑l

i=0 a∨
i =

k + l + 1, ρ̄ := (1, . . . ,1),

P k+ =
{

λ̄ + ρ̄

∣∣∣ λ̄ ∈ {0, . . . , k}l ,
l∑

i=1

a∨
i λi � k

}

and W ◦ the Weyl group of type Cl . Let D be the diagonal matrix with
a∨

1
a1

, . . . ,
a∨
l

al
on its diagonal.

Then Eq. (4) becomes

Sμ,ν = c
∑

w∈W ◦
det(w) exp

(
−2π i

κ
μDwT A−1T

νT

)

= c
∑

w∈W ◦
det(w) exp

(
−2π i

κ
μMwνT

)
,

where μ,ν ∈ P k+ and Mw := DwT A−1T
. Consider the set

P̃ :=
{

μ̃ :=
(

μ1,μ1 + μ2, . . . ,

l∑
i=1

μi

) ∣∣∣ μ ∈ P k+

}
.

The base change μ 	→ μ̃ transforms the Mw , w ∈ W ◦, into monomial matrices with entries ± 1
2

(up to a factor, this is the base change αi 	→ vi from [7, 6.7]). The formula for S is now
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Sμ̃,ν̃ = c
∑
σ∈Sl

∑
f ∈{±1}l

(
εσ

l∏
i=1

fi

)
ζ−∑l

i=1 fi μ̃i ν̃σ (i) = c
∑
σ∈Sl

∑
f ∈{±1}l

εσ

l∏
i=1

fiζ
−fi μ̃i ν̃σ (i)

= c̃
∑
σ∈Sl

εσ

l∏
i=1

(
ζ μ̃i ν̃σ (i) − ζ−μ̃i ν̃σ (i)

)
,

where ζ := exp( 2π i
2κ

). In the last term, we recognize the determinants of the l × l-submatrices of

the Kac–Peterson matrix of type A
(1)
1 and level k + l − 1 = κ − 2. �
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