477 research outputs found

    Reduction of moisture problems in old basements

    Get PDF

    Efficient qubit detection using alkali earth metal ions and a double STIRAP process

    Full text link
    We present a scheme for robust and efficient projection measurement of a qubit consisting of the two magnetic sublevels in the electronic ground state of alkali earth metal ions. The scheme is based on two stimulated Raman adiabatic passages (STIRAP) involving four partially coherent laser fields. We show how the efficiency depends on experimentally relevant parameters: Rabi frequencies, pulse widths, laser linewidths, one- and two-photon detunings, residual laser power, laser polarization and ion motion.Comment: 14 pages, 15 figure

    Produktion og anvendelse af ClimOptic specialgødninger fra biogasanlæg

    Get PDF
    Notat og præsentationer fra workshop

    In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism:Randomized, placebo-controlled, double-blind clinical trial

    Get PDF
    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMR(glc)) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [(11)C]PIB (PIB), CMR(glc) with [(18)F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMR(glc) declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMR(glc) after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMR(glc) that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered

    Porcine lungs perfused with three different flows using the 8-h open-atrium cellular ex vivo lung perfusion technique

    Get PDF
    The number of lung transplantations is limited due to the shortage of donor lungs fulfilling the standard criteria. The ex vivo lung perfusion (EVLP) technique provides the ability of re-evaluating and potentially improving and treating marginal donor lungs. Accordingly, the technique has emerged as an essential tool to increase the much-needed donor lung pool. One of the major EVLP protocols, the Lund protocol, characterized by high pulmonary artery flow (100% of cardiac output [CO]), an open atrium, and a cellular perfusate, has demonstrated encouraging short-EVLP duration results. However, the potential of the longer EVLP duration of the protocol is yet to be investigated, a duration which is considered necessary to rescue more marginal donor lungs in future. This study aimed to achieve stable 8-h EVLP using an open-atrium cellular model with three different pulmonary artery flows in addition to determining the most optimal flow in terms of best lung performance, including lung electrolytes and least lung edema formation, perfusate and tissue inflammation, and histopathological changes, using the porcine model. EVLP was performed using a flow of either 40% (n = 6), 80% (n = 6), or 100% (n = 6) of CO. No flow rate demonstrated stable 8-h EVLP. Stable 2-h EVLP was observed in all three groups. Insignificant deterioration was observed in dynamic compliance, peak airway pressure, and oxygenation between the groups. Pulmonary vascular resistance increased significantly in the 40% group (p < .05). Electrolytes demonstrated an insignificant worsening trend with longer EVLP. Interleukin-8 (IL-8) in perfusate and tissue, wet-to-dry weight ratio, and histopathological changes after EVLP were insignificantly time dependent between the groups. This study demonstrated that stable 8-h EVLP was not feasible in an open-atrium cellular model regardless of the flow of 40%, 80%, or 100% of CO. No flow was superior in terms of lung performance, lung electrolytes changes, least lung edema formation, minimal IL-8 expression in perfusate and tissue, and histopathological changes

    Horizontally acquired papGII-containing pathogenicity islands underlie the emergence of invasive uropathogenic Escherichia coli lineages.

    Get PDF
    Escherichia coli is the leading cause of urinary tract infection, one of the most common bacterial infections in humans. Despite this, a genomic perspective is lacking regarding the phylogenetic distribution of isolates associated with different clinical syndromes. Here, we present a large-scale phylogenomic analysis of a spatiotemporally and clinically diverse set of 907 E. coli isolates, including 722 uropathogenic E. coli (UPEC) isolates. A genome-wide association approach identifies the (P-fimbriae-encoding) papGII locus as the key feature distinguishing invasive UPEC, defined as isolates associated with severe UTI, i.e., kidney infection (pyelonephritis) or urinary-source bacteremia, from non-invasive UPEC, defined as isolates associated with asymptomatic bacteriuria or bladder infection (cystitis). Within the E. coli population, distinct invasive UPEC lineages emerged through repeated horizontal acquisition of diverse papGII-containing pathogenicity islands. Our findings elucidate the molecular determinants of severe UTI and have implications for the early detection of this pathogen

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1mHz0.1\,\textrm{mHz} and 1Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201

    Reversible insulin resistance in muscle and fat unrelated to the metabolic syndrome in patients with acromegaly

    Get PDF
    BACKGROUND: Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The aim of the study was to investigative the molecular mechanisms of insulin resistance dissociated from obesity in patients with acromegaly. METHODS: In a prospective study, twenty-one patients with newly diagnosed acromegaly were studied at diagnosis and after disease control obtained by either surgery alone (n=10) or somatostatin analogue (SA) treatment (n=11) with assessment of body composition (DXA scan), whole body and tissue-specific insulin sensitivity and GH and insulin signalling in adipose tissue and skeletal muscle. FINDINGS: Disease control of acromegaly significantly reduced lean body mass (p<0.001) and increased fat mass (p<0.001). At diagnosis, GH signalling (pSTAT5) was constitutively activated in fat and enhanced expression of GH-regulated genes (CISH and IGF-I) were detected in muscle and fat. Insulin sensitivity in skeletal muscle, liver and adipose tissue increased after disease control regardless of treatment modality. This was associated with enhanced insulin signalling in both muscle and fat including downregulation of phosphatase and tensin homolog (PTEN) together with reduced signalling of GH and lipolytic activators in fat. INTERPRETATION: In conclusion, the study support that uncontrolled lipolysis is a major feature of insulin resistance in active acromegaly, and is characterized by upregulation of PTEN and suppression of insulin signalling in both muscle and fat. FUNDING: This work was supported by a grant from the Independent Research Fund, Denmark (7016-00303A) and from the Alfred Benzon Foundation, Denmark

    Preoperative CT versus diffusion weighted magnetic resonance imaging of the liver in patients with rectal cancer:a prospective randomized trial

    Get PDF
    Introduction. Colorectal cancer is one of the most frequent cancers in the world and liver metastases are seen in up to 19% of patients with colorectal cancers. Detection of liver metastases is not only vital for sufficient treatment and survival, but also for a better estimation of prognosis. The aim of this study was to evaluate the feasibility of diffusion weighted MRI of the liver as part of a combined MR evaluation of patients with rectal cancers and compare it with the standard preoperative evaluation of the liver with CT.Methods. Consecutive patients diagnosed with rectal cancers were asked to participate in the study. Preoperative CT and diffusion weighted MR (DWMR) were compared to contrast enhanced laparoscopic ultrasound (CELUS).Results. A total of 35 patients were included, 15 patients in Group-1 having the standard CT evaluation of the liver and 20 patients in Group-2 having the standard CT evaluation of the liver and DWMR of the liver. Compared with CELUS, the per-patient sensitivity/specificity was 50/100% for CT, and for DWMR: 100/94% and 100/100% for Reader 1 and 2, respectively. The per-lesion sensitivity of CT and DWMR were 17% and 89%, respectively compared with CELUS. Furthermore, one patient had non-resectable metastases after DWMR despite being diagnosed with resectable metastases after CT. Another patient was diagnosed with multiple liver metastases during CELUS, despite a negative CT-scan.Discussion. DWMR is feasible for preoperative evaluation of liver metastases. The current standard preoperative evaluation with CT-scan results in disadvantages like missed metastases and futile operations. We recommend that patients with rectal cancer, who are scheduled for MR of the rectum, should have a DWMR of the liver performed at the same time
    corecore