9,598 research outputs found

    Simulation of a model-based optimal controller for heating systems under realistic hypothesis

    Get PDF
    An optimal controller for auxiliary heating of passive solar buildings and commercial buildings with high internal gains is tested in simulation. Some of the most restrictive simplifications that were used in previous studies of that controller (Kummert et al., 2001) are lifted: the controller is applied to a multizone building, and a detailed model is used for the HVAC system. The model-based control algorithm is not modified. It is based on a simplified internal model

    Unique Continuation for the Magnetic Schr\"odinger Equation

    Full text link
    The unique-continuation property from sets of positive measure is here proven for the many-body magnetic Schr\"odinger equation. This property guarantees that if a solution of the Schr\"odinger equation vanishes on a set of positive measure, then it is identically zero. We explicitly consider potentials written as sums of either one-body or two-body functions, typical for Hamiltonians in many-body quantum mechanics. As a special case, we are able to treat atomic and molecular Hamiltonians. The unique-continuation property plays an important role in density-functional theories, which underpins its relevance in quantum chemistry

    Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

    Get PDF
    We study the infrared behaviour of lattice SU(3) Yang-Mills theory in Coulomb gauge in terms of the ghost propagator, the Coulomb potential and the transversal and the time-time component of the equal-time gluon propagator. In particular, we focus on the Gribov problem and its impact on the observables. We observe that the simulated annealing method is advantageous for fixing the Coulomb gauge in large volumes. We study finite size and discretization effects. While finite size effects can be controlled by the cone cut, and the ghost propagator and the Coulomb potential become scaling functions with the cylinder cut, the equal-time gluon propagator does not show scaling in the considered range of the inverse coupling constant. The ghost propagator is infrared enhanced. The Coulomb potential is now extended to considerably lower momenta and shows a more complicated infrared regime. The Coulomb string tension satisfies Zwanziger's inequality, but its estimate can be considered only preliminary because of the systematic Gribov effect that is particularly strong for the Coulomb potential.Comment: 7 pages, 5 pictures, poster presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, Germany; corrected value for fitting parameter

    Perturbative corrections to the determination of Vub from the P+ spectrum in B->X_u l nu

    Full text link
    We investigate the relation between the E_gamma spectrum in B->X_s gamma decay and the P+ spectrum in semileptonic B->X_u l nu decay (P+ is the hadronic energy minus the absolute value of the hadronic three-momentum), which provides in principle the theoretically simplest determination of Vub from any of the "shape function regions" of B->X_u l nu spectra. We calculate analytically the P+ spectrum to order alpha_s^2 beta_0, and study its relation to the B->X_s gamma photon spectrum to eliminate the leading dependence on nonperturbative effects. We compare the result of fixed order perturbation theory to the next-to-leading log renormalization group improved calculation, and argue that fixed order perturbation theory is likely to be a more appropriate expansion. Implications for the perturbative uncertainties in the determination of Vub from the P+ spectrum are discussed.Comment: reference added, to appear in PR

    Hierarchical quantum master equation approach to charge transport in molecular junctions with time-dependent molecule-lead coupling strengths

    Full text link
    Time-dependent currents in molecular junctions can be caused by structural fluctuations or interaction with external fields. In this publication, we demonstrate how the hierarchical quantum master equation approach can be used to study time-dependent transport in a molecular junction. This reduced density matrix methodology provides a numerically exact solution to the transport problem including time-dependent energy levels, molecule-lead coupling strengths and transitions between electronic states of the molecular bridge. Based on a representative model, the influence of a time-dependent molecule-lead coupling on the electronic current is analyzed in some detail

    A Variational Perspective on Accelerated Methods in Optimization

    Full text link
    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. While many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the \emph{Bregman Lagrangian} which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.Comment: 38 pages. Subsumes an earlier working draft arXiv:1509.0361
    • …
    corecore