13 research outputs found

    Novel Approaches to Immobilized Heteropoly Acid Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes - Final Report

    No full text
    Original research was carried out at the CSM and the 3M Company from March 2007 through September 2011. The research was aimed at developing new to the world proton electrolyte materials for use in hydrogen fuel cells, in particular with high proton conductivity under hot and dry conditions (>100mS/cm at 120°C and 50%RH). Broadly stated, the research at 3M and between 3M and CSM that led to new materials took place in two phases: In the first phase, hydrocarbon membranes that could be formed by photopolymerization of monomer mixtures were developed for the purpose of determining the technical feasibility of achieving the program's Go/No-Go decision conductivity target of >100mS/cm at 120°C and 50%RH. In the second phase, attempts were made to extend the achieved conductivity level to fluorinated material systems with the expectation that durability and stability would be improved (over the hydrocarbon material). Highlights included: Multiple lots of an HPA-immobilized photocurable terpolymer derived from di-vinyl-silicotungstic acid (85%), n-butyl acrylate, and hexanediol diacrylate were prepared at 3M and characterized at 3M to exhibit an initial conductivity of 107mS/cm at 120°C and 47%RH (PolyPOM85v) using a Bekktech LLC sample fixture and TestEquity oven. Later independent testing by Bekktech LLC, using a different preheating protocol, on the same material, yielded a conductivity value of approximately 20mS/cm at 120°C and 50%RH. The difference in measured values is likely to have been the result of an instability of properties for the material or a difference in the measurement method. A dispersed catalyst fuel cell was fabricated and tested using a 150Œm thick HPA-based photocurable membrane (above, PolyPOM75v), exhibiting a current density of greater than 300mA/cm2 at 0.5V (H2/Air 800/1800sccm 70°C/75%RH ambient outlet pressure). Multiple lots of a co-polymer based on poly-trifluorovinylether (TFVE) derived HPA were synthesized and fabricated into films, Generation II films. These materials showed proton conductivities as high as 1 S/cm under high RH conditions. However, the materials suffered from compromised properties due to impure monomers and low molecular weights. Multiple lots of an HPA-immobilized fluoropolymer derived from preformed PVDF-HFP (Generation III films) were synthesized and formed into membranes at 3M and characterized at 3M to exhibit conductivity reaching approximately 75mS/cm at 120°C/40%RH using a Bekktech sample fixture and TestEquity oven (optimized membrane, at close of program). Initial fuel cell fabrication and testing for this new class of membrane yielded negative results (no measureable proton conductivity); however, the specific early membrane that was used for the two 5cm2 MEAs was later determined to have <1 mS/cm at 80°C/80%RH using the Bekktech fixture, vs. ca. 200 mS/cm at 80°C/80%RH for samples of the later-optimized type described above. Future work in this area (beyond the presently reported contract) should include additional attempts to fabricate and test fuel cells based on the later-optimized Generation II and III polymer. A manufacturing study was performed which predicted no difficulties in any future scale up of the materials

    A Small-Angle X‑ray Scattering Study of the Development of Morphology in Films Formed from the 3M Perfluorinated Sulfonic Acid Ionomer

    No full text
    An extensive SAXS investigation of the 3M perfluorinated sulfonic acid ionomer was performed to investigate the morphological changes that occur during and after annealing at temperatures above the <i>T</i><sub>α</sub>. The effect of film thickness in the range studied, 11–45 ÎŒm, was found to be negligible. These properties were studied as a function of equivalent weight from 700 to 1100 and correlated with the water uptake as measured by dynamic vapor sorption. Isoscattering points were observed in dynamic annealing experiments of the unboiled annealed films at <i>q</i> = 0.023, 0.096 Å<sup>–1</sup>. On initial water uptake these films also showed isoscattering points at <i>q</i> = 0.024, 0.220 Å<sup>–1</sup>; <i>q</i> = 0.029, 0.223 Å<sup>–1</sup>; and <i>q</i> = 0.030, 0.211 Å<sup>–1</sup> at 50, 80, or 95 °C, respectively, indicating a decrease in the symmetry of the scattering objects in these size regimes. Isoscattering points were absent in similar water uptake experiment for the films after boiling

    Fast Proton Conduction Facilitated by Minimum Water in a Series of Divinylsilyl-11-silicotungstic Acid-<i>co</i>-Butyl Acrylate-<i>co</i>-Hexanediol Diacrylate Polymers

    No full text
    Studies of proton transport in novel materials are important to enable a large array of electrochemical devices. In this study, we show that heteropoly acids (HPAs) when immobilized in polymer matrixes have highly mobile protons. Divinyl-11-silicotungstic acid, an HPA, was copolymerized with butyl acrylate and hexanediol diacrylate at various weight percentage loadings from 25% to 85% using UV initiated polymerizations. The resultant films were tan colored flexible sheets of ca. 120 ÎŒm thickness. The morphology of these films varied with loading, showing phase separation into clustered HPA above a 50 wt % loading and lamella morphologies above an 80 wt % loading. Water uptake was strongly associated with the HPA clusters, which facilitated transport of protons. This was realized by proton conductivities as high as 0.4 S cm<sup>–1</sup> at 95 °C and 95% RH and 0.1 S cm<sup>–1</sup> at 85 °C and 50% RH. Pulse field gradient spin echo NMR measurements indicated that water self-diffusion was fast (1.4 × 10<sup>–5</sup> and 4.4 × 10<sup>–5</sup> cm<sup>2</sup> s<sup>–1</sup> for 50% and 100% RH, respectively) at 80 °C. We show that the water in these systems is highly associated with the HPA clusters and that fast proton transport is facilitated by as few as 3 water molecules per proton
    corecore