34,078 research outputs found

    Spheromak Experiment Using Separate Guns For Formation And Sustainment

    Get PDF
    An experiment is described that incorporates the use of separate magnetized plasma guns for formation and sustainment of a spheromak. It is shown that energy coupling efficiency approaches unity if the gun and spheromak are of comparable size. A large gun should be able to operate at lower current and therefore lower voltage. In addition, it is expected that a gun matched to the size of the spheromak will cause less perturbation to the equilibrium. It is proposed to use a smaller gun for spheromak formation and a large, efficient gun for sustainment. The theoretical basis for the experiment is developed, and the details of the experiment are described. A prediction of the equilibrium magnetic flux surfaces using the EFIT code is presented

    Coherent States for Unusual Potentials

    Get PDF
    The program to construct minimum-uncertainty coherent states for general potentials works transparently with solvable analytic potentials. However, when an analytic potential is not completely solvable, like for a double-well or the linear (gravitational) potential, there can be a conundrum. Motivated by supersymmetry concepts in higher dimensions, we show how these conundrums can be overcome.Comment: 10 pages, 3 figures, added info in Ref.

    Pachystigmus Hellén, 1927 : a substitute name for Noserus Foerster, 1863 (Hymenoptera: Braconidae), not Noserus LeConte, 1862 (Coleoptera: Zopheridae)

    Get PDF
    By establishing the date of its first publication, Noserus Foerster, 1863 (Hymenoptera, Braconidae) is shown to be a junior primary homonym of Noserus LeConte, 1862 (Coleoptera, Zopheridae). The substitute name for Noserus Foerster is that of its subjective synonym, Pachystigmus Hellén, 1927 [type species: Pachystigmus nitidulus Hellén, 1927]. Other described species in the genus are: Pachystigmus facialis (Foerster, 1863) New Combination; P. similis (Szépligeti, 1896) New Combination, P. nitidulus Hellén, 1927, P. gigas (Tobias, 1964)New Combination, P. occipitalis (Belokobylskij, 1986) New Combination, P. olgensis (Belokobylskij, 1994) New Combination, and P. sculpturator (Belokobylskij, 1999) New Combination

    Influence of wear algorithm formulation on computational-experimental corroboration

    No full text
    Experimental wear testing is well-established as an important part of the TKR design process. Recently, in-silico models have proved their value to corroborate long-term in-vitro results on a much shorter timescale [1]. Both FE-based models & multi-body dynamics can be used to predict contact pressures, sliding distances and cross-shear (CS). The precise mechanisms of wear are not sufficiently understood to permit analytical calculations, and so empirical formulations are used to estimate wear depths & volumes.Most early simulations were based on a modified Archard/Lancaster formulation; more recently a number of alternative formulations for cross shear have been proposed; it is unclear which is the most robust or accurate for the widest range of activities. The aim of this study was to develop and corroborate a fast in-silico wear model, and use this to compare different wear formulations

    Two-Page Book Embeddings of 4-Planar Graphs

    Get PDF
    Back in the Eighties, Heath showed that every 3-planar graph is subhamiltonian and asked whether this result can be extended to a class of graphs of degree greater than three. In this paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time and uses existing methods for computing hamiltonian cycles in planar graphs. The second one, which solves the general case of the problem, is a quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201

    Insertion Sort is O(n log n)

    Full text link
    Traditional Insertion Sort runs in O(n^2) time because each insertion takes O(n) time. When people run Insertion Sort in the physical world, they leave gaps between items to accelerate insertions. Gaps help in computers as well. This paper shows that Gapped Insertion Sort has insertion times of O(log n) with high probability, yielding a total running time of O(n log n) with high probability.Comment: 6 pages, Latex. In Proceedings of the Third International Conference on Fun With Algorithms, FUN 200

    Many-to-One Boundary Labeling with Backbones

    Full text link
    In this paper we study \emph{many-to-one boundary labeling with backbone leaders}. In this new many-to-one model, a horizontal backbone reaches out of each label into the feature-enclosing rectangle. Feature points that need to be connected to this label are linked via vertical line segments to the backbone. We present dynamic programming algorithms for label number and total leader length minimization of crossing-free backbone labelings. When crossings are allowed, we aim to obtain solutions with the minimum number of crossings. This can be achieved efficiently in the case of fixed label order, however, in the case of flexible label order we show that minimizing the number of leader crossings is NP-hard.Comment: 23 pages, 10 figures, this is the full version of a paper that is about to appear in GD'1

    Whirling skirts and rotating cones

    Full text link
    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, aNoether is the current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented which bear a suggestive resemblance to the observed patterns.Comment: two additional figures, changes to text throughout. journal version will have a wordier abstrac
    • …
    corecore