research

Influence of wear algorithm formulation on computational-experimental corroboration

Abstract

Experimental wear testing is well-established as an important part of the TKR design process. Recently, in-silico models have proved their value to corroborate long-term in-vitro results on a much shorter timescale [1]. Both FE-based models & multi-body dynamics can be used to predict contact pressures, sliding distances and cross-shear (CS). The precise mechanisms of wear are not sufficiently understood to permit analytical calculations, and so empirical formulations are used to estimate wear depths & volumes.Most early simulations were based on a modified Archard/Lancaster formulation; more recently a number of alternative formulations for cross shear have been proposed; it is unclear which is the most robust or accurate for the widest range of activities. The aim of this study was to develop and corroborate a fast in-silico wear model, and use this to compare different wear formulations

    Similar works

    Full text

    thumbnail-image

    Available Versions