11 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    An Automated 2-D Line-Shift Measurement From Smoothed and Leveled Diagnostic Interferometric Images of Exploded-Wire Plasma

    No full text
    A novel, automated, 2-D line-shift measurement algorithm is presented for optical interferometry in plasma diagnostics. By using the smoothing and leveling (SL) algorithm as a preprocessing stage to the Fourier transform method (FTM), the proposed SL-FTM algorithm extracts the line shift without a priori knowledge of the spectral properties of the image, a common requirement of other FTM-based algorithms. The algorithm is simple to implement, and demonstrated for side-on views of plasma from exploded wires, where the interference patterns suffer from low contrast, low signal-to-noise ratio (SNR), and spatially varying intensity. SL-FTM and FTM are compared via Monte Carlo simulation of noisy images with realistic background variation. They are shown to have the accuracies of 0.019 and 0.016 lines, respectively. In addition, the cause of the accuracy difference is studied using a modified Jaccard similarity measure. The measure shows how SL-FTM provides a smoother phase surface than FTM, but underestimates the maximum line shift by up to 15%. Also, the well-known contour tracing method (CTM) is automated as SL-CTM. The automated forms of FTM and CTM (i.e., SL-FTM and SL-CTM) permit, for the first time, their direct comparison for a wide range of noisy images. SL-CTM, and by extension, CTM, achieves the best accuracy of 0.013 lines. Finally, each method is shown to have accuracy that exceeds the standard diagnostic accuracy requirement of 0.05 lines

    Distribution of primary and secondary features in the Pahrump Hills outcrop (Gale crater, Mars) as seen in a Mars Descent Imager (MARDI) "sidewalk" mosaic

    No full text
    The Mars Science Laboratory Curiosity rover conducted a reconnaissance traverse across the Pahrump Hills outcrop within Gale crater from Sols 780–797. During the traverse, the Mars Descent Imager (MARDI) acquired a continuous imaging record of primary and secondary sedimentary features throughout the outcrop. The characteristics of the features (laminae, resistant features, fractures, gray clasts) and their spatial distribution provide insight into the processes that contributed to the formation of Pahrump Hills. Thin, regular laminae (mm-scale) are ubiquitous in the bedrock, implying that depositional processes at that scale did not change appreciably during deposition of the mudstone succession at Pahrump Hills. Higher bedrock slopes correlate with undulatory bedrock surfaces, bedrock with elevated Mg contents, and fractures exhibiting wide, raised edges. These collective features are consistent with increased erosional resistance caused by greater quantities of erosionally-resistant, Mg-bearing cement within the bedrock permitted by coarser grain sizes. Resistant features exhibit a range of morphologies, elevated Mg contents, and do not deflect laminae within the bedrock. Their characteristics implicate the involvement of Mg-enriched fluids in a late diagenetic overprint affecting the bedrock. The variations of fracture fill and edge morphologies and chemistries further suggest repeated fracturing and fluid interaction events within the strata exposed at Pahrump Hills. Gray clasts strongly resemble fragments eroded from sandstone horizons interspersed throughout the Pahrump Hills outcrop

    The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Get PDF
    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam‐34 has an f/8, 34 mm focal length lens, and the M‐100 an f/10, 100 mm focal length lens. The M‐34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M‐100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M‐34 can focus from 0.5 m to infinity, and the M‐100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed‐mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The Science Performance of JWST as Characterized in Commissioning

    No full text
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
    corecore