67 research outputs found

    Rewiring Bacteria, Two Components at a Time

    Get PDF
    In this issue, Skerker et al. (2008) present a rational method for rewiring the protein-protein interactions and output responses of prokaryotic two-component signal transduction systems. This work has important implications for understanding the specificity of protein interactions and for designing protein-based synthetic signaling cascades. The rational design of biological networks and pathways promises to reveal ways to rewire cells for new biological functions or to gain insights into the behavior of natural systems. Much of the work to date has focused on the manipulation of transcriptional and posttranscriptional elements to create synthetic gene networks with desired functions (Bayer an

    Gyrase inhibitors induce an oxidative damage cellular death pathway

    Get PDF
    Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, doublestranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron-sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids

    A network biology approach to prostate cancer

    Get PDF
    There is a need to identify genetic mediators of solid-tumor cancers, such as prostate cancer, where invasion and distant metastases determine the clinical outcome of the disease. Whole-genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by a condition from the hundreds to thousands of genes that exhibit changes in expression. Here, we show that reverse-engineered gene networks can be combined with expression profiles to compute the likelihood that genes and associated pathways are mediators of a disease. We apply our method to non-recurrent primary and metastatic prostate cancer data, and identify the androgen receptor gene (AR) among the top genetic mediators and the AR pathway as a highly enriched pathway for metastatic prostate cancer. These results were not obtained on the basis of expression change alone. We further demonstrate that the AR gene, in the context of the network, can be used as a marker to detect the aggressiveness of primary prostate cancers. This work shows that a network biology approach can be used advantageously to identify the genetic mediators and mediating pathways associated with a disease

    Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

    Get PDF
    Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron–sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids

    Tackling antibiotic resistance: the environmental framework

    Get PDF
    Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment

    Taste Receptor Polymorphisms and Immune Response: A Review of Receptor Genotypic-Phenotypic Variations and Their Relevance to Chronic Rhinosinusitis

    No full text
    Bitter (T2R) and sweet taste (T1R) receptors have emerged as regulators of upper airway immune responses. Genetic variation of these taste receptors additionally confers susceptibility to infection and has been implicated in severity of disease in chronic rhinosinusitis (CRS). Ongoing taste receptor research has identified a variety of biologically active compounds that activate T1R and T2R receptors, increasing our understanding of not only additional receptor isoforms and their function but also how receptor function may contribute to the pathophysiology of CRS. This review will discuss the function of taste receptors in mediating airway immunity with a focus on recently described modulators of receptor function and directions for future research into the potential role of genotypic and phenotypic receptor variation as a predictor of airway disease and response to therapy
    corecore